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Abstract. We apply the time-renormalization group approach to study the effect of pri-
mordial non-Gaussianities in the non-linear evolution of cosmological dark matter density
perturbations. This method improves the standard perturbation approach by solving renor-
malization group-like equations governing the dynamics of gravitational instability. The
primordial bispectra constructed from the dark matter density contrast and the velocity
fields represent initial conditions for the renormalization group flow. We consider local, equi-
lateral and folded shapes for the initial non-Gaussianity and analyze as well the case in
which the non-linear parameter fyi, parametrizing the strength of the non-Gaussianity de-
pends on the momenta in Fourier space through a power-law relation, the so-called running
non-Gaussianity. For the local model of non-Gaussianity we compare our findings for the
power-spectrum with those of recent N-body simulations and find that they accurately fit
the N-body data up to wave-numbers k ~ 0.25h/Mpc at z = 0. We also present predictions
for the (reduced) matter bispectra for the various shapes of non-Gaussianity.
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1 Introduction

During the last years, the use of semi-analytic methods to study the Large Scale Structure
(LSS) formation via gravitational instability has experienced a renewed interest, motivated
mainly by high precision measurements of statistical properties expected in the next genera-
tion of galaxy surveys. These methods typically involve resummation or closure prescriptions
and need to be compared with numerical simulations to assess their range of validity. Reno-
malized perturbation theory [1, 2] is based on suitable resummations of perturbative terms
and is expected to work well for the linear and “weakly non-linear” regime. Perturbation
theory can be rewritten in a compact way which makes it possible the use of standard tools
of quantum field theory, thus allowing a systematic treatment of perturbative terms in terms
only of a finite set of basic building blocks, namely, the initial fields, the linear propagator,
which describes the linear evolution of the initial fields and an interaction vertez, responsible
for the non linear mode coupling of the fields. This leads to the resummation of infinite
classes of perturbation theory diagrams. The renormalization group perturbation theory [3]
attempts to regulate the relative divergence of one-loop standard perturbation theory (for
a review, see [4]) using renormalization group methods. A path-integral formulation of the
Vlasov equation has been developed in [5] in terms of the distribution function in the phase



space. The lagrangian resummation theory [6] is an extension of the well-developed La-
grangian perturbation theory. Refs. [7] and [8] proposed a formalism based on path-integrals
and renormalization group techniques which provides a systematic resummation scheme of
cosmological perturbation theory (subsequently, this formalism was extended in ref. [9] to
calculate the non-linear propagator in the presence of non-Gaussian initial conditions of the
fields). Finally, in the Time-Renormalization Group (TRG) approach proposed in ref. [10],
the power spectrum, the bispectrum and higher order correlations, are obtained — at any
redshift and for any momentum scale — by integrating a system of differential equations.
The method is similar to the familiar BBGKY hierarchy. Truncating at the level of the
trispectrum, the solution of the equations corresponds to the summation of an infinite class
of perturbative corrections. The approach can be seen as a particular formulation of the
renormalization group, in which time is the flow parameter. Compared to other resummation
frameworks, this scheme is particularly suited to cosmologies other than ACDM and has been
recently applied to compute the non-linear spectrum in presence of neutrino masses [11]. A
critical look at the various cosmological perturbation theory techniques can be found in [12].

On the other hand, over the last decade a great deal of evidence has been accumulated
from the Cosmic Microwave Background (CMB) anisotropy and Large Scale Structure (LSS)
spectra that the observed structures originated from seed fluctuations generated during a
primordial stage of inflation. While standard single-field models of slow-roll inflation predict
that these fluctuations are very close to Gaussian (see [13, 14]), non-standard scenarios al-
low for a larger level of non-Gaussianity (NG) (see [15] and references therein). A signal is
gaussian if the information it carries is completely encoded in the two-point correlation func-
tion, all higher connected correlators being zero. Deviations from Gaussianity are therefore
encoded, e.g., in the connected three- and four-point correlation functions which are dubbed
the bispectrum and the trispectrum, respectively. A phenomenological way of parametrizing
the level of NG is to expand the fully non-linear primordial Bardeen gravitational potential
® in powers of the linear gravitational potential ®r,

O = O+ fyr, (B — (¥7)) - (L.1)

The dimensionless quantity fn1, sets the magnitude of the three-point correlation func-
tion [15]. If the process generating the primordial NG is local in space, the parameter
fn1 in Fourier space is independent of the momenta entering the corresponding correlation
functions; if instead the process which generates the primordial cosmological perturbations is
non-local in configuration space, like in models of inflation with non-canonical kinetic terms,
fn1 acquires a dependence on the momenta. It is clear that detecting a significant amount
of NG and its shape either from the CMB or from the LSS offers the possibility of opening
a window into the dynamics of the universe during the very first stages of its evolution.
Non-Gaussianities are particularly relevant in the high-mass end of the power spectrum of
perturbations, i.e. on the scale of galaxy clusters, since the effect of non-Gaussian fluctuations
becomes especially visible on the tail of the probability distribution. As a result, both the
abundance and the clustering properties of very massive halos are sensitive probes of pri-
mordial non-Gaussianities [16-25], and could be detected or significantly constrained by the
various planned large-scale galaxy surveys, both ground based (such as DES, PanSTARRS
and LSST) and on satellite (such as EUCLID and ADEPT) see, e.g. [26] and [27, 28]. Fur-
thermore, the primordial NG alters the clustering of dark matter (DM) halos inducing a
scale-dependent bias on large scales [29-32] while even for small primordial NG the evolution
of perturbations on super-Hubble scales yields extra contributions on smaller scales [28, 33].



The strongest current limits on the strength of local NG set the fni, parameter to be in the
range —4 < fnr, < 80 at 95% confidence level [34].

In this paper, we implement the TRG approach to investigate the effects imprinted by
a primordial NG in the non-linear evolution of cosmological perturbations. In particular, we
will compute the DM power spectrum and the (reduced) bispectrum when some primordial
initial NG condition is present. In the TRG approach this information is promptly encoded
in the RG equations for the power spectrum and the bispectrum. As a consequence, we can
easily study the impact of the various shapes of NG. In particular, we consider the local, the
equilateral and the folded shapes. As we shall see, our approach is based on a closure assump-
tion, i.e. we solve the RG equations for the power spectrum and the bispectrum, setting the
connected n-point correlators to zero starting from the four-point correlator, the trispectrum.
While this assumption represents a clear limitation of our approach, nevetheless it provides a
well-defined and controllable scheme which allows us to quantify in a precise form the theoret-
ical error associated with the method. For the local model of non-Gaussianity we will compare
our findings for the power-spectrum with those of recent N-body simulations and find that
they accurately fit rather well the N-body data up to wave-numbers k ~ 0.25h/Mpc. We
will also present predictions for the (reduced) matter bispectra for the various shapes of NG.

The paper is organized as follows. In section 2 we review the time evolution of the
correlators governed by Eulerian dynamics and discuss our truncation hypothesis in com-
parison with other approaches in the literature. In section 3 we consider the primordial
non-Gaussianities compatible with the truncation scheme of this paper and some theoreti-
cally motivated models for the primordial bispectrum. In section 4, we introduce the reduced
bispectrum as a relevant tool to study the effects related to the shape of the primordial bis-
pectrum. In section 5 we present our results for the power-spectrum and a comparison with
the results of N-body simulations for “local” NG. We also present several illustrative plots
of the reduced bispectrum for each model of NG. In section 6, we end with our conclusions
and discuss future perspectives on this line of work.

2 Dynamics of gravitational instability

2.1 Eulerian dynamics

Our starting point are the hydrodynamic equations in the “single stream” approximation of a
self-gravitating fluid made of cold dark matter collisionless particles in an expanding Universe.
In terms of the mass-density fluctuation d, the peculiar velocity v of the fluid and the peculiar
gravitational potential ¢, the dynamics of the system is governed by the system of equations

% + V- [(1+9)v] =0, (2.1)
g—: +Hv+ (v-V)v = =Vo, (2.2)

Vi = ;HQQm(S. (2.3)

The first two equations are the continuity and Euler equations respectively, while the third
one is the Poisson equation obeyed by perturbations on sub-horizon scales. Here, a is the
scale factor of the background, 7 = [dt/a is the conformal time, H = dloga/dr = aH
and (2, is the matter density parameter. In the following we restrict our discussion to an



Einstein-de Sitter model, so we take €, = 1.1 As usual, we take the divergence of the Euler
equation and define the velocity divergence § = V - v and Fourier transform. The resulting
equations can be written in a compact notation as [1]

(6abOp + Qap) b (k, n) = €"Vape(k, =P, —a) (P, 0) e (a, ), (2.4)

where we define the two-component field ¢, (a = 1,2) through
<p1(k,n)> _ ( 5(k,n) >
= exp(— , 2.5
(soz(k,n) =) —0(k,n)/H (25)
e = a/a;, for an initial scale factor aj, conveniently fixed at an early epoch,

1= (330 26)

and Ygpe 1 a verter function which describes the non-linear coupling of the modes and whose
only non-vanishing components are

1 a+k)-q
i, a1 = galp +q+ig T, (2.7
1 q+k?q-k
Y222(P; 4, k) = 55(13 +q+ k)#, (2.8)
Y112(Ps 4, k) = 1121(p, k, q). (2.9)

Summation (integration) over repeated index (momenta) is understood in eq. (2.4).

2.2 Time evolution of the correlators

Following ref. [10] the time evolution of the field correlators can be obtained directly from
iterative application of the equations of motion (2.4). The result is an infinite tower of
coupled differential equations relating the evolution of n-point correlators with the n and
(n + 1)-point correlators evaluated at the same time:

O (Pawb) = —QaclPewn) — QelPape)
+e"Yaca{Pepapn) + € VbcalPapepd) »
O (Pavpe) = —Qaalparspe) — WalPapdpe) — QLea{PaPopa)
+eMade (PapePsPe) + €MVbde (PatpdPepe)
+€"Vede(PaPrPape) ;

On (Paprpepd) = -+

(2.10)

Here, we omitted the time and momentum dependence in order to have compact expressions.
To solve this system of equations is equivalent to apply the standard perturbation theory
approach in which one calculates the n-point correlation functions by summing an infinite
series of perturbative corrections depending on the interaction vertex -, the red-shift and

'For a generalization to more general cosmological backgrounds the reader is referred to ref. [10].



the initial statistic of the fields. Next, we introduce the following nomenclature for the first
correlation functions of the fields

(pa(k,m)en(a,m)) = dp(k + a)Pup(k, 1)
(pa(k,n)ep(a,m) e (P, 1)) = 0p(k +q+ P)Bane(k, q, p; 7)
(@a(k,n)n (a0, n)ee (P, n)palr,n)) = dp(k +q)dp(p + r)Pay(k, n)Pea(p, 1)

n)
+6p(k +p)ip(q +r)Puc(k,n) Poa(q,n) + 0p(k +1)dp(q + P) Pua(k, 1) Poc(a, 1)
+5D(k+q+p+ ) abcd(k’ q, p, I; 77),

where Py, is the power spectrum (PS) , By is the bispectrum (BS), and Tjpeq is the con-
nected part of the four-point function, the trispectrum. As said before, if we want to cal-
culate the time evolution of the power-spectrum it will involve the time evolution of the
bispectrum, which in turn involves the trispectrum and so on, giving us the infinite tower
of equations (2.10). This system can be truncated if we neglect the trispectrum Typ.q = 0,
letting us with the following system of two equations for the PS and the BS:

an Pab(k ) 77) = _Qac(k ) 77)1305)(1{ ) 77) - ch(k ) n)Pac(k ) 77)
+e”/d3q Yacd(k, —d, @ — k) Byea(k, —q, q — k; 1)
+Baca(k, —a, 9 — k; 1) Voca(k, —q, 9 — k)] ,
Oy Bape(k, —q, a — k; 1) = —Qqa(k, 1) Bare(k, —q, 9 — k; 1)

—Ma(—4a,7m)Bade(k, —q, 9 — k; 1)
—Qci(a —k,n)Bawi(k, —q, g — k; n)
+2€" [Yade (K, —a, 4 — k) Pay(q,m) Pec(k — q,7)

+7bde( q, q— k7 k)Pdc(k —q, n)Pea(k ) 77)

+ ’che(q - k7 k7 _q)Pda(k ) n)Peb(q777)] . (211)

The system can be formally solved in the form

Poy(k, 1) = Gac(n,0)gpa(n,0)Pea(k ,n = 0)
n !
+ /0 dn'e" / a*q gae (0,1 ) 9o (0, 1)

X [Veca(k, —q, 4 — k) Brea(k, —q, g — k; 7') + (e «— f)]
Bape(k, =, a —k; 1) = gaa(n,0)ge(1,0)ges (1, 0)Baes (k, —q, q — k;1 = 0)

77 /
+2 /0 dn'e” gaa(n,m' ) gve (.1 )ger (0, 1)

X [Vagh(k, —d, 4 — k) Peg(a, 7)) Pprn(k — g, n')
+Yegh(—a, 4 — K, k) Prg(k — q, ') Pan(k,7)
+ ’Yfgh(q - k7 k7 _q)Pdg(k ) T’I)Peh(q777/)] ) (212)

where gq.(k,n,7n') is the linear propagator which is the Green’s function of the linearized
version of equation (2.4) (by setting v = 0) and gives the time evolution of the fields at
linear order: ¢L(k,n) = gac(k,n,7)E(k,n’). The subscript L stands for the linear order
approximation. From eq. (2.12) one gets an insight on the effect of our only approximation,
namely, the truncation prescription T, p.q = 0. First, the solution for the bispectrum is



formally “tree-level”, i.e. it contains no momentum integration. It has the same structure
as the lowest perturbative contribution to the bispectrum, but with the linear power spectra
replaced by the resummed, time-dependent ones. Inserting the bispectrum in the solution for
the power spectrum, we see that it is formally one loop (one momentum integral), but with
resummed power spectra in the loops instead of linear ones. In diagrammatic terms, starting
from the one loop diagrams for the power spectrum (which have been computed by Taruya
et al. [35], for the non-Gaussian case), one is adding all the infinite contributions which can
be obtained by adding corrections to the internal power spectra lines at any perturbative
order. We use the language of Feynman diagrams introduced in [7, 8, 10] to represent
diagrammatically the perturbative contributions to the correlators. The basic building blocks
of this diagrammatic approach are shown in figure 1. In terms of them, we can represent the
lowest order terms of this procedure as shown in figure 2. On the other hand, the comparison
of the bispectrum with the computation by Sefusatti [36] is not so straightforward. Compared
to that computation we, again, add the corrections to the power spectra lines at all orders,
but we do not include the corrections to the vertex, which Sefusatti computed at one-loop.
In order to do that, we should go beyond our truncation approximation and include the
trispectrum in the hierarchy of our equations. This can be easily understood if one recalls that
in perturbation theory the connected four-point correlator always gets a contribution which
is generated by the bispectrum. It is precisely this contribution which generates the one-loop
correction to the bispectrum which can be seen as a correction to the interaction vertices ~.
Diagrammatically, the terms included and not included in this approximation are shown in
figure 3. Including the trispectrum is straightforward in the TRG approach and we leave this
to future work. On general grounds, we expect that the inclusion of the trispectrum will push
the length scale where the method works to smaller scales. For a more detailed explanation
of the diagrammatic of the method the reader is referred to sections 3 and 4 in ref. [10].

3 Bispectrum initial conditions

In this section we calculate the initial conditions, at redshift z = zj,, for the system (2.11)
for our case of non-Gaussian primordial statistics. To this end, we calculate the three-
point correlators for the matter density contrast and velocity divergence up to second order
terms taking into account the effect imprinted by primordial non-Gaussianities. In other
words, we assume that second order perturbation theory holds from z = oo to z = zy,
and the resummation embodied by the TRG is active from zy, down to z = 0. We follow
the notations and results of ref. [33] where the effects of primordial non-Gaussianities in
the general relativistic cosmological evolution of matter perturbations were calculated up to
second order in both the comoving and Poisson gauge, deep in the matter dominated epoch.

Under certain conditions that we shall specify shortly, the results of [33] can be ex-
tended to the case of a ACDM cosmology. In this case, the linear order solution of the fields
are 51(3)(7') = D+(a)51(<0) and 6?1(3)(7') = —Hf(T)D+(a)5l(<0) where D (a) is the linear growth
factor of density perturbations and f(7) = dIn D4 (a)/dIn a. Information about the cosmo-
logical parameters of the background will be encoded in D4 (a) and f(7). At this point,
being interested in fixing the initial conditions at some early zi,, we use the approximation
Qum/f(7)? ~ 1 which, as discussed in ref. [4](see also appendix B of ref. [37]), is a condition
respected during most of the cosmological time evolution. Within this approximation one
can simply use the kernels as can be derived from ref. [33], properly replacing the conformal
time 7 in terms of the functions Dy (a) and f(7). Then, the second order expansions for the
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Figure 1. Basic building blocks for the perturbative approach with non-gaussian initial conditions.
The linear propagator ga,(na, ) is causally oriented from the time 7, (dashed segment) to 7, (solid
segment). The interaction vertex €774 introduces the non linear mode coupling of the fields. The
square on the linear power spectrum diagram, represents the initial conditions of the power spectrum,
while the triangle in the linear bispectrum diagram represents the initial bispectrum, given by the sum
of the newtonian contribution at z = z;, and the contribution due to primordial non-Gaussianities.

matter density perturbation and velocity divergence acquire the form

1
Si(m) = 61 (1) + =62 (1) =60 (1) + / &k dkes s (K, ko; 7)3) ()64 (7)0p (ka2 — k), (3.1)

1

1
O (1) =00 (1) + 20 (1) =6 (1) + / Py dks Ko (ki ko )0 (1)0L) (7)6p (k12— k), (3.2)

2

where we introduced the notation k;;... = k; + k; +--- and, following the procedure and the
results in [33] we find that

K*E(7)

Ks(ki, ka;m) = K§' (ki, ko) +6fléIL(k1ak2)W’ (3.3)
153
1 K*E(7)
Ko(ki, ko;7) = — Ky (k1, ko) + 68 (i, ko) —5s 3.4
'9( 1, QaT) Hf(T) 9( 1, 2)+ fNL( 1, 2) k%k% ) ( )
where E(7) = H3Qum0/(4D4 (a)). In the equations (3.3)—(3.4)
5 2(ky-ko)?  1kp-ko (k7 +k3)
KN (ki,ke) = = + = = 3.5
A A T B R (3:5)
3 4(ky-ko)? 1ki-ko (ki +E3)
Ky (ki,ka) = = + = - 3.6
o (ki,ka) -tz 2R 5 1252 (3.6)
are the standard one-loop Newtonian kernels for the expansion of the fields [38], and
s 5
fau(ky, ko) = S(axe —1) +O(1) (3.7)
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Figure 2. Diagrammatic representation of the formal solution for PS and BS. The first two lines
represents the lowest order contributions to the PS equation. The first line is the O(y?) contribution
to the PS. The second line is the contribution coming from the non-vanishing initial BS which is a
tree level, O(7), contribution. The the third line is the tree level, O(v), contribution to the BS.

/%3 yes /Géb\no

Figure 3. Perturbative corrections to O(y?) order for the bispectrum which are included (left), and
not included (right) by implementing the truncation prescription Typeq = 0.

F (1 Je2) = 2ane — 1)+ 0(1) (3.8)

are the terms arising from non-Gaussian initial statistics. Here an, parametrizes the pri-
mordial NG level, according to the notations of ref. [33]. The O(1) terms in eqgs. (3.7)—
(3.8) depend on the Fourier-space configuration. These terms represent general relativistic
horizon-scale corrections [33] and have proven to be relevant in the description of the clus-
tering of halos in the presence of non-Gaussian initial conditions as was recently discussed
in [28]. Nevertheless, for our purposes here, we will deal with the primordial NG in the limit
lant, — 1] > 1, so, these terms become irrelevant and we will keep just the constant part of
the non-Gaussian terms ff\sfg ~ 5(ant, — 1)/3.2

We assume that primordial NG is encoded in the curvature perturbations described
through the Bardeen’s gauge invariant potential ® which, on sub-horizon scales reduces to
the peculiar gravitational potential ¢ up to a minus sign. The second order expansion of the

2Notice also that we are neglecting the non-Gaussian contribution arising from the second-order evolution
of perturbations during radiation dominance discussed in [39] and [40], since the matching at second-order
into the radiation era will generate a term which then scale as a(7) o< 72, thus being subdominant on small
scales w.r.t. the terms accounted here.



matter density and velocity divergence can be expressed in terms of @, obtaining
O(1) = M(k,a)®(k)
+ / ki ko K (K1, ko) M (K1, )L M (Ko, )@ 0p (ki — k) (3.9)

Ox (1)
Hf

= M(k,a)® (k)
+ / ki dPko K (K1, ko) M (K1, ) B MKz, a) @) 6p (k1o — k), (3.10)

where the primordial gravitational potential ® includes the linear part and the contributions
coming from primordial non-Gaussianities. The function M comes from the Poisson equation
~2K*T (k)

Mik,a) = 36~ N

D.(a), (3.11)

with T'(k) being the transfer function of matter fluctuations normalized such that T'(k) — 1
when k — 0. The expressions above account for a generic shape of the primordial NG,
and also for a ACDM universe. Notice that, while for the primordial gravitational poten-
tial, the first lines of eq. (3.9) and (3.10) are exact, over the second lines applies the same
approximations that led to eqs. (3.1)—(3.2). Using the expressions above, and recalling the
definition (2.5) in which we replace g2 — @2/ f(7) in the ACDM case, the initial BS compo-
nents can be written as

(e1(k1)p1(ka)pr(ks)) = e *"6p (ki + ko + k)
x [2/C5 (k1. ko) M? (K1, @) M? (ka, a) Po (k1) Po (k2) + cyel.]
+e MM k1, a) M (kz,a) M(ks, a) (P, (k1) P, (ko) P, (ks)) (3.12)
(pa(k1)p2(ka)pa(ks)) = e *0p(ky + ko + ks)
x [2KC5" (k1, ko) M (K1, @) M? (K2, a) Po (k1) Pa (k) + cycl.]
+e 3 M(k1, a) M(ka, a) M(k3, a) (B, (k1) B, (ko) B, (k3)) (3.13)
(1(k1)p2(ka)pa(ks)) = 2¢"0p (k1 + ko + ka)
x [K§ (k1, ko) M?(k1, a) M? (ka, a) Po (k1) P (k2)
+ KN (k1 k3) M2 (ky, a) M2 (ks, a) Py (k1) Py (k3)
+ K5 (ka, k3) M2 (k2, a) M? (k3, a) Py (ka) Po (ks) |
+e MM k1, a) M (kz, a) M(ks, a) (D, (k1 )P, (ko) P, (ks)) (3.14)
(1(k1)p1 (ka)pa(ks)) = 2¢~*"6p (k1 + ko + ks)
x [K§ (k1, ko) M?(k1, a)M? (ka, a) Po (k1) Po (k2)
+ K5 (k1. k3) M?(k1, @) M? (ks, a) Po (k1) Po (k3)
+ K5 (ko, k3) M?(ko, a)M? (ks, ) Py (ko) Po (ks)]
+e MM k1, a) M (ka, a) M (ks, a) (®p(k1)Pp(ke) Py (ks3)) (3.15)
where Pg(k) is the gravitational potential power-spectrum, see eq. (3.20) below. The ex-
pressions above constitute the initial conditions for the bispectrum in the system (2.11) and

must be evaluated at the initial time, for which = loga/aiy, = 0. Notice that the expres-
sions above are separated in a perturbative Newtonian term, which is the first term on the



r.h.s of each equation, and in a primordial part, which is the term including the three-point
correlator of the primordial gravitational potential.

3.1 Primordial NG: shapes and running

The functional form of the bispectrum of the primordial gravitational potential entering in
egs. (3.12)—(3.15).

<‘1)(k1)(1)(k2)‘1)(k3)> = 5D(k1 + ko + kg)qu(kl, ko, k?g) (316)

depends on the details of the mechanism that generated the primordial fluctuations. In
the following we will analyze three representative phenomenological models associated to
different mechanisms generating the primordial NG. Note that there exist other possible
configurations (see for instance [41]) which correspond to more general deviations from the
standard slow-roll inflation and which are not well described by the models treated here.

3.1.1 Local shape

In the local model, the NG for Bardeen’s gauge invariant primordial gravitational potential
® is generated by a quadratic expansion which is local in real space

®(x) = Pr(x) + AL (PL(x) — (2)) , (3.17)

where @ is the linear Gaussian part of the potential. The dimensionless constant fni,
defines the NG strength in this model. One must also notice that, since ® and ®; evolve
proportionally to g(a) = D4 (a)/a, the eq. (3.17), and consequently, the definition of fnr,,
depends on the choice of the redshift at which this equation is extrapolated. The relation
between two extrapolation choices a and b is expressed through ff; = g(z = 2,)/9(z =
2a) f%;- Two common conventions in the literature are the LSS convention in which eq. (3.17)
is extrapolated to z = 0, and the CMB convention which extrapolates to z = co. They are
related through f&P° = g(z = 00)/g(0) fSMB where g(z = 00)/g(0) ~ 1.3064. In this paper,
we assume the CMB convention, which implies that ® is evaluated deep in the matter era.
From equation (3.17) one can easily derive the expression for the local bispectrum

B (ky, kg, k3) = fiocal plocal(gy k. ks), (3.18)
where

Flocal(kh ko, ks) = 2 [Po(k1)Po(ka) + Po(k1)Po(ks) + Po(ka)Po(ks3)] (3.19)

— 2A2 1 + 1 4 1
= o (kpkg)3—(s=1) " (kkg)3—(s=1) © (kokg)3—(ns—1)
and Py (k) is the gravitational potential power spectrum

(®(k1)® (ko)) = 6% (k12) Po (k1) = 0% (ki2) Ag - k3D (3.20)

with scalar amplitude Ag and tilt n,. In slow-roll single scalar field inflation, fllﬁfal is sup-

pressed by the slow-roll parameters and consequently the primordial NG is unmeasurably
small [13, 14]. However, in the presence of light fields other than the inflaton, as for instance
in the curvaton model or in multi-field models, inflation can produce large NG of the local
type with | £i54| ~ O(102) [15]. The strongest current limits on the strength of local NG set
the fll\?f parameter to be in the range —4 < fll\?f < 80 at 95% confidence level [34].
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3.1.2 Equilateral shape

We can also consider inflationary models with higher order derivative operators and non
canonical kinetic terms, such as the DBI model [44], for instance. In this case, as was
discussed in [45], the primordial bispectrum is well described by the equilateral template
Bq>(/€1, kQ, /{?3) = ;%Feq(kl, /{?2, kg), where

Fe(ky, ko, ks) = 6 <—P¢(/<:1)Pq>(k:2) + (2 perm.) — 2 { Py (k1) Py (k) Po (k3)}2/3

9 3 1/3
+ (Pokr) {Po (k)Y {Po(ke)}*)  + (5 perm.)
1 2
=6A%Z [-———— (2 perm.) —
’ ( (k1 k)3~ (na=1) 2 ) (ki1k:2k33)2_%(n5_1)
+ ! + (5 ) (3.21)
S y— —3. — perm. . .
ki 3 (ns l)kg 3 (ns 1)k§ (ns—1)

The primordial bispectrum is maximized by configurations with modes of similar momentum
scales ki ~ ko & ks, i.e. for equilateral configurations. At present fyj is constrained to be
—125 < fyl <435 (95% C.L.) [34]

3.1.3 Folded shape

A third template is the so called folded or flattened model. This model is related to the non-
Gaussianities generated by deviations coming from the choice of a non-standard adiabatic
Bunch-Davies vacuum state as initial state [46, 47]. The associated primordial bispectrum
assumes a complicated functional form in terms of the momenta k;. Nevertheless, in ref. [48] it
is proposed a factorized template which reflects very well the main features of the primordial
NG associated to the choice of a non standard vacuum. The proposed factorized template is

Ba(k1, k2, k3) = L F' (K1, ko, k3), with
FO (ky, ko, ks) = 6 <Pq>(k:1)P¢(k2) + (2 perm.) + 3 { Py (k1) P (ko) P (3)

— (Palkn) {Pa(k2))* (Pa(k3))°) s perm.)>

1 3
= 6A2 . — —‘r 2 erm. —‘r
@ ((k1k2)3_(ns—1) ( p ) (k1k2k3)27§(n571)

1
I YT T a (5 perm.) | . (3.22)

The primordial bispectrum for this model is maximized by configurations with modes obeying
the momentum configuration ko ~ k3 =~ k1/2. The triangle configurations relevant for each
model of NG are represented in figure 4.

3.1.4 Running fnr,

So far, we have considered a scale independent fni, parameter regardless the shape of the
primordial bispectrum. However, recently, several inflationary scenarios have been considered
which naturally allow for NG with a generic scale dependence on fn1,. More specifically, it
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ks k2

ki

(1) Squeezed (2) Equilateral (3) Folded

Figure 4. Momentum triangle configurations which maximize the templates functions F(ky, k2, k3).
(1) The squeezed configuration k3 < k1 ~ ks maximize the template function F'°¢®!(ky, ko, k3)
produced in local models of inflation. (2) The equilateral configuration k1 ~ ko &~ k3 maximize
F°9(ky, ko, ks) which arises on models with higher-order derivatives and non canonical terms. (3) The
“folded” or “flattened” configuration ko & k3 ~ k1/2 maximize the F f"l'(kzl, ka2, k3) which is related
to the choice of a non-standard vacuum other than the Bunch-Davies vacuum.

was shown in refs. [46] and [49] that single scalar field models of inflation with variable speed
of sound cs, predict in general a primordial bispectrum of the equilateral type with a scale
dependent fnr,. In the following, for non-Gaussianities of the equilateral type, we adopt the
functional form for the scale dependence proposed in [50]:

w>_2ﬁ (3.23)

ki, ko, k3) =
Inu(kr, ko, ks3) fNL,P< 3t

where fni,p is the non linear parameter evaluated at some pivot scale kp and x is a free
parameter (related to the speed of sound) that quantifies the running on the scale and which
is constant at least between CMB and cluster scales [50]. To be consistent with observational
constraints, the scale dependence must be very mild, then || < 1. Also, in an interesting
discussion regarding the scale dependence of the biasing parameters for the equilateral model,
in ref. [35], the authors found the constraint |k| < 0.3 in order to guarantee the convergence of
the integrals quantifying the scale dependence of the biasing. In this paper we thus consider
values of the running parameter within || < 0.3. Moreover, we use negatives values of k
since in this case the NG is enhanced for scales beyond the pivot scale [50]. Another proposal
for the functional dependence on the running fny, was discussed recently in [51]

—2K
(k1/<72k3)1/3>

" (3.24)

fNL(kl,kQ,k?,) - fNL,P <

which replaces the arithmetic mean of the momenta in equation (3.23) with their geometric
mean. Notice that the two functions coincide for equilateral configurations. While the last
proposal has the virtue of being separable, which simplifies significantly the numerical imple-
mentation of the CMB estimator, the equation (3.23) provides a more accurate description
of the primordial bispectrum in DBI models. The functional dependence (3.24) seems to
be better suited for NG of the local type. It was shown recently that non-Gaussianities of
the local type exhibit significant scale dependence of the amplitude of the primordial bispec-
trum [52, 53|. The form of this amplitude depends on the specific details of the underlying
inflationary model. For example in the case of standard single-field models of inflation it
coincides with the functional form (3.24) in the equilateral limit. Away from this limit, it is

- 12 —



Model h o3 Ng Qm Qa Q
A-CDM WMAPS5 | 0.701 | 0.817 | 0.96 | 0.279 | 0.721 | 0.0462

Table 1. A-CDM cosmological parameters assumed on this paper.

not possible to factor out the geometric mean of the momenta in fyi, but, in principle, the
essentials of the local model can be roughly captured with the expression (3.24).

4 Results

For our analysis, we assume cosmological parameters corresponding to a A-CDM model in
agreement with the WMAP 5-year data [42]. The cosmological parameters for this model
are summarized in table 1. As discussed before, we use second order perturbation theory
from z = 00 to z = 2z, and the TRG from z;, to z = 0. To get the numerical results
presented in the following, we set zi, = 50, and used the CAMB code [43] to derive the linear
power-spectrum. In order to reproduce the cosmological model in table 1, we must fix the
scalar amplitude to be A% = 2.48 x 1079 in the notations of ref. [42]. With these parameters
we are able to compare our results for the matter power spectrum with the results of N-body
simulation of cosmological structure formation with non-Gaussian initial conditions of the
local type from refs. [54] and [55] (see also [29, 56-58] for N-body simulations with local-type
non-Gaussian initial conditions).

We also compute the reduced bispectrum for matter density perturbations. Here we
point out some general features about the effect of the primordial non-Gaussianities on the
bispectrum based on our results.

4.1 The power spectrum

Here, we present the results of the power spectrum of the matter density perturbations re-
sulting from the integration of the system (2.11) on the scales of interest for next generation
galaxy surveys. In order to evaluate the impact of primordial non-Gaussianities on the power-
spectrum we plot the ratio of the power spectra for non-Gaussian and Gaussian initial condi-
tions for different values of the fyi, parameter. It must be noticed that the power spectra for
both Gaussian and non-Gaussian initial conditions were calculated using the TRG method.

4.1.1 Local model

For the local non-Gaussian model, the result of this evaluation is shown in figure 5. For this
type of NG we can compare our findings with the results of N-body simulations in [54]. In
the figures we also show the result from one-loop perturbation theory, see for instance [35].
We notice that up to k ~ 0.2h/Mpc, the one-loop and the TRG describes the data very
accurately while, for larger values of & we begin to have departures from the data. The
difference between one-loop and TRG prediction becomes noticeable for large fnr, and for
higher wavenumbers and lower redshifts as evidenced in the right panel of figure 5, which
is the result of the evaluation at z = 0. From the figures we can also infer that the TRG
approach allows a less suppressed non-linear growth of the power spectrum in the region
k = 0.25h/Mpc. This tendency seems to be general for the different models of primordial
NG. The oscillatory behaviour exhibited in the TRG plots are the result of numerical errors
in the numerical integration of the system 2.11.
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Figure 5. Ratio of the non-Gaussian to Gaussian power spectrum for several values of fy, in the local
model. The dots correspond to the data from the N-body simulations of [54]. The red (continuous)
line is the TRG result of this paper and the blue (dashed) line is the one-loop result.

4.1.2 Equilateral and folded shapes

Here, we show the results of the power spectra ratio for equilateral and folded non-Gaussian
shapes. The result of this evaluation is shown in figures 6. Since at present there are no
simulations using this type of primordial NG, the results displayed here have a predictive
character. Again, as we observed in the local case, when we compare with the one-loop
calculation the TRG predictions allow for less suppressed effects of non-Gaussianities, The
difference is more evident for scales smaller than k ~ 0.2 h/Mpc and for lower redshifts.

4.1.3 Running fn1, equilateral model

In figure 7 we plot the power spectrum ratio for the equilateral model with scale depen-
dent fy according to eq. (3.23). We choose the pivot scale kp = 0.04h/Mpc, and k =
0,0.25,—-0.25. We see that for positive x we have a suppression in the power spectrum,
while, for negative k we can get a significant enhancement of the power spectrum. Notice
that the scale dependence of fy] can make the effects of primordial NG in the power spectrum
of the same order of the local case.

5 The reduced bispectrum

As we will be mainly interested in the study of the dependence of the bispectrum on the shape
of the momentum triangle, it is convenient to focus the analysis on the reduced bispectrum
which is a useful quantity defined as®

B(kly k2a k3)

ki. ko, ky) = —————= 22
Q(k1, ka2, ks3) Sk, g, )

(5.1)
where X(k1, ko, ks) = P(k1)P(k2) + P(k1)P(ks) + P(k2)P(ks). The greatest challenge in the
interpretation of galaxy clustering data from any surveys is galaxy bias. As thoroughlly dis-
cussed in ref. [26], the reduced bispectrum provides an excellent determination of linear and
non-linear bias parameters of intermediate and high-redhift galaxies, when all measurable

3For brevity, in the following we omit the time dependence and the subscripts in the correlators since we
will deal only with the matter density component.
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Figure 6. Ratio of the non-Gaussian to Gaussian power spectrum for several values of fyr, in the
equilateral (top panels) and folded (bottom panels) models. The red (continuous) lines are the TRG
result of this paper and the blue (dashed) lines are the one-loop result.
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Figure 7. Ratio of the non-Gaussian to Gaussian power spectrum for fnr, = 250 in the equilateral
model for different values of . The red (continuous) lines are the TRG result of this paper and the
blue (dashed) lines are the one-loop result.

triangle configurations down to mildly non-linear scales are included. The reduced bispec-
trum is also a powerful probe of primordial NG. The planned galaxy surveys at redshift
z > 2 should yield constraints on NG that are comparable to, or even better than, those
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from CMB experiments. The precise computation of the reduced bispectrum is therefore of
primary importance.

Due to statistical homogeneity and isotropy, the bispectrum and the reduced bispectrum
depends on time, on the magnitude of two of the momenta, for instance, k; and ks, and
the angle between them cosf = ky - ko. Figure 4 shows the geometric parameters in the
three configurations that we consider in this paper. For gaussian initial conditions and an
equilateral configuration, Q(k,k,k) ~ 0.57 at the tree-level in perturbation theory and is
independent of scales. On the other hand, Q(k, k, k) exibits a clear scale dependence when
some NG is present. The same is true when one departs from the equilateral configuration
which reflects the anisotropy on the growth of structures dictated by the non linear Eulerian
dynamics. As the NG appears in our RG equations as post-Newtonian term and therefore
suppressed at small scales and late times compared to the leading Newtonian terms, it is
expected that the NG will be more easily testable at high redshifts and on large scales. This
is particularly true for the local shape as the reduced bispectrum (at the tree-level) which is
directly proportional to fi¥f scales like 1/M(k, a).

In our analysis we fix the ratio ky/k; = 2 and evaluate for different values of ki, fnr,
and for different redshifts. As an extreme case, we also consider the ratio ko/k; = 1 to have
some indications of the maximization of the non-Gaussian effects in the squeezed limit.

5.1 Local model

The results of our evaluations for the local model of primordial NG can be seen in figure 8.
From the upper panels in figure 8, which corresponds to k& = 0.01 A/Mpc, we see that Q
is much more sensitive to the effect of the primordial NG for small k1. In this case we see
that the effect of non-Gaussianities on @) is almost independent of 6 for z = 1 and z = 0.
Nevertheless, for higher redshifts we can see clearly a maximization in the effect of the non
Gaussianities in the squeezed limit which corresponds to # — w. The effect is dramatically
maximized when we consider the squeezed limit of the configuration ks/k; = 1 as shown
by the thin lines of this figure. In this configuration, the condition 6 — m is equivalent to
ks/k; < 1. We can understand the behaviour at this limit by studying the first terms in the
perturbative expansion of ). The first term containing the non-Gaussian contributions is
QUOING (k) ko, k3) = BONG (k) kg, k) /%0(ky, ko, k3). Going to the squeezed limit ks/k; <
1, this non-Gaussian contribution scales roughly as Q(O)’NG(kl,kl,kg) ~ fxp/k3. This is
why in the limit § — 7, the non-Gaussian component is huge, actually, it is divergent. For
this reason we should not consider the evaluation at this extreme configuration as a precise
prediction but as an indication of the behaviour at this limit. The exact scaling of Q(®) NG
depends also on the precise details of the transfer function which could alleviate up to some
extent the divergent behaviour in this configuration for higher values of k; as suggested
by the results in the lower panels of figure 8. On the other hand, the tree level Gaussian
component of the reduced bispectrum Q) (ky, ko, k3) = B™®(ky, ko, k3)/X0(k1, ko, k3), where
B¥¢(ky, ko, k3) is the Newtonian piece of the bispectrum, scales like Q(O)(kl, ki, k3) ~ ks/kq
in the squeezed limit and consequently it goes to zero for § — . This tendency can be seen
in the black-thin lines in the upper panels of figure 8. Finally, the impact of non Gaussianities
for higher values of k; is much smaller and is almost independent of fxr, as can be seen in
the bottom panel of figure 8 which corresponds to k£ = 0.1 h/Mpc.

Figure 9 shows the comparison of the TRG evaluation with the perturbation theory
(PT) tree level reduced bispectrum Q) for several values the fyr, at redshift z = 0. These
plots are meant to help understanding the relevance of non linear effects at different scales
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Figure 8. The reduced bispectrum for the local model of NG with fixed k1 and ratio kao/k; = 2
(thick lines) and ko/k1 = 1 (thin lines). The left panels shows the evaluation at z = 1 while the right
panels does it for z = 0. In each case we plot @) for non-Gaussian initial conditions with fnr, = 250
(green-dotted) and fnr, = 500 (red-dashed). From top to bottom we plot @ for k£ = 0.01, 0.05, and
0.1 h/Mpc respectively. The thin red-dashed and green-dotted lines in the upper panel show the
divergent behaviour due to the non-Gaussian component near § = 7 in the squeezed limit. The black-
continuous thin line on the same panels represent the Gaussian component of the reduced bispectrum
which approaches to zero as § — 7 in this configuration.

and redshifts. It is noticeable that there is a remarkable change in the impact of non linear
effects depending on the scales we are considering. For instance, in the left panel of figure 9,
we plot for ky = 0.01 h/Mpc. At this scale, the fnr, dependence is strong, as we can see
from the large separation in the solid lines which depends of the strength of primordial
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Figure 9. Comparison of the tree level Q(®) and the TRG result for the reduced bispectrum.
Continuous-thick lines are the TRG result and dashed-thick lines represent the tree level evalua-
tion at the configuration ko/k1y = 2. Both evaluations are done at z = 0 for different values of
fni and for ky = 0.01h/Mpec (left), and ky = 0.1h/Mpc (right). Continuous and dashed thin lines
represent the evaluation for ko /kq = 1.

non-Gaussian effects. On the other hand, the effects from non-linearities quantified by the
separation between dashed lines and the solid lines is rather mild. In the right panel, we plot
the same situation for k; = 0.1 h/Mpc. At this scale, we observe that the situation is quite
the opposite, the non-linear effects are stronger, while, the dependence on the primordial
non-Gaussianities is much weaker.

5.2 Equilateral model

The equilateral model exhibits a different pattern compared to the local model. This be-
haviour can be seen more clearly in the upper panel of figure 10. There, we see that @ is
enhanced by non-Gaussianities in a way that it is highly dependent on §. The maximum of
the effect occurs at 6 ~ 27/3 which corresponds to equilateral configurations in this model
and are responsible for the bump in this figure near to 8 ~ 0.87. Again, as in the local
model, the effect of non-Gaussianities is greatly enhanced in the configuration ks/k; = 1
while for higher k; the reduced bispectrum is much less sensitive to the effect of primordial
NG regardless the value of the fyr, parameter.

The result of the evaluation of the running fni, equilateral case is shown in figure 11.
In the configuration ko/k; = 2, we evaluate for k = 0,0.25,—0.25. For k; = 0.01 h/Mpc and
z = 1 we find a remarkable enhancement (suppression) for positive (negative) values of k.
For k1 = 0.1 h/Mpc and z = 0 the effect is rather unnoticeable.

5.3 Folded model

Contrary to the equilateral model, in the folded model, @) is enhanced by the non-Gaussian
contributions coming from the correlations among modes with almost collinear wave-vectors
(0 = 0, ). This effect is maximized in the limit # — 7 (as in the local model) which cor-
responds to a folded configuration of the momentum-space triangle when ko ~ ks ~ k;/2
(figure 4). This effect can be seen in figure 12. As in the previus cases, the effect is maximized
for small k1 and for high redshift. For higher k1 and lower redshift as in the bottom panel
of figure 12 we see that the effect of this model of non-Gaussianities is tiny, regardless the
value of fnr,.
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Figure 10. The same as figure 8 for the equilateral model of primordial NG.

6 Conclusions and discussion

In this work we have studied several aspects related to the effects of primordial non-
Gaussianities in gravitational clustering using the recently developed TRG method. We have
discussed different shapes of primordial NG and evaluated their impact in the non-linear
evolution of the power-spectrum and (reduced) bispectrum of matter density perturbations.
For the power-spectrum with some primordial NG present, we have compared our results
to the ones of standard one-loop perturbation theory and N-body data. In the range 0.1 <
kMpc/h < 0.2, the one-loop and the TRG method reproduce pretty well the data from the
N-body simulations of ref. [54] while, for k& = 0.2 h/Mpc, the one-loop prediction begins to
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Figure 11. Reduced bispectrum for running fxr, with fnr,p = 250 and £ = 0 (solid, black line),
k = 0.25 (dashed, red line) and x = —0.25 (dot-dashed, blue line).

show some inaccuracies which are within the < 2 % level. The non-linear growth of the
power-spectrum is more suppressed in the one-loop calculation than in the TRG calculation.
The differences between the two approaches becomes more evident on smaller scales and
lower redshifts, where the TRG offers a noticeable improvement with respect to the one-loop
but still with a deviation from the N-body data. We expect that such deviations can be
reduced if we take into account the “vertex corrections” including the trispectrum in the
system of equations as we discussed in the Introduction. On general grounds, we expect that
the effects arising from vertex corrections will become relevant for higher wavenumbers and
that they will help to extend the range of validity of wavenumbers to larger values. We have
also computed the reduced bispectrum for various shapes of NG. As stressed in ref. [26],
the reduced bispectrum is a powerful probe of NG. There the authors performed a Fisher
matrix analysis to study the smallest value of the paramater fxr, measurable in high-redshift
galaxy survays for local and equilateral shapes, after marginalizing over the bias parameters.
At the tree-level the signal-to-noise ratio (S/N)? scales like (the sum over momenta forming
a triangle of) B2(ky, ko, k3)/P(k1)P(ko)P(k3). For a local shape of NG, k; < ko ~ ks,
B?(ky, ko, k3)/P(ky)P(ka)P(k3) ~ P(ky). Non-linearities enter in the determination of the
maximum wavenumber kyax at which one computes (S/N) ~ fis¢ kr?;/sx For the equilateral
shape, k1 ~ ko ~ k3, and again at the tree level, the signal-to-noise ratio scales like (S/N) ~

N f’n/fx PY2(kpay) ~ N1, kmax. Going beyond the linear order through the TRG method
one should compute the full Fisher matrix and therefore (OB (ki, k2, k3)/0fx1)?. In this
case the non-linear effects cannot be neglected. We leave this and other issues, such as the

inclusion of the trispectrum, for future work.
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Figure 12. The same as figure 8 for the folded model of primordial NG.
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