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Electrodynamics of Helium with Retardation and Self-Interaction Effects
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We show that an extra constant of motion with an analytic form can exist in the neighborhood of some
discrete circular orbits of helium when one includes retardation and self-interaction effects. The energies
of these discrete stable circular orbits are in the correct atomic magnitude. The highest frequency in the
stable manifold of one such orbit agrees with the highest frequency sharp line of parahelium to within
2%. The generic term of the frequency in the stable manifold to higher orbits is also in agreement with
the asymptotic form of quantum mechanics for helium. [S0031-9007(97)05078-3]

PACS numbers: 31.15.Ct, 03.20.+i, 05.45.+b

In this Letter we explore some surprising consequencesase, in the presence of retardation the frequencies of the
of the retardation effects of Maxwell’s electrodynamics tovariational dynamics depend nonlinearly on the orbit's
atomic physics. We show that electrodynamics with retarfrequency. Because of this, an extra constant is possible
dation prescribes a discrete set of stable circular orbits foior some discrete orbits, which is a genuine signature
the helium atom. The name “circular orbit” refers here toof the dynamics with retardation. We stress that it is
an orbit where the two electrons are performing the samabsolutely essential to include the retardation to unfold
circular motion and in phase opposition, that is, along e&a degeneracy of the Coulomb dynamics, and not to
diameter [1]. attain some better precision. Last, we consider only the

The linearized dynamics about a circular orbit hasdynamics of spinless pointlike charges, and issues like
a one-dimensional stable direction, a one-dimensionajuantum mechanical spin are not discussed.
unstable direction, and ten neutrally stable directions [1]. In this Letter we assume that the self-interaction effects
For an infinitely massivex particle, helium has a six- are described by the Lorentz-Dirac equation (LDE) with
degree-of-freedom Hamiltonian system with only foura renormalized mass [4,7]. The LDE equation for an
independent constants of motion (hamely, the energy anelectron of charge-e¢ can be written in the convenient,
the three components of the total angular momentum). Imoncovariant form as
the neighborhood of circular orbits, even if one restricts
to the center manifold [2], one still has a five-degree-of- 4 (yM,X,) = Fraq + Foxe, (1)
freedom system. Because there are only four constants, dt

the dynamics in the neighborhood of a generic Circu""“i/vhereyke is the electron’s velocityM, the renormalized

orbit can be unstable, and actually is unstable in this casgacironic mass [7], angt = 1/4/1 — (IX.1/c)2. In (1)
[1]. Here we show that an extra complex constant Calp_is the external force, and in this Letter we use

exist in the neighborhood of a discrete set of circular, 202 ... C oo
orbits, when onegincludes retardation effects. Fra = 5 X, which is the lowest order approximation

To include the retardation, we use the work of Pag in powers of(v/c) to the exact relativistic radiation force

. - . 7]. For a circular orbit, this is a term of ordés /c)*.
o semsean s . e oW Itoduce ihe expansion of he retadain
retardation constraint, and one way to convert it into aconstralnt of the L|en_ard—W|echert interaction, h(_enceforth
useful differential eqL;ation is to develop the constraintca”ed the Page series [3]. Lat _be the position of

. electron 1, of charge-e, and B; its velocity vector

|(n /a)Tf;])i/ISoietsaerr(ljeez ﬁérar::iuonnc?stesdtiIroLzaser(;?]n?ar?rgr?(; ;Qdivided byc. The formula for the electric field made by
v/c grang electron 1 at a position, is

described by the Darwin Lagrangian [4]. The Darwin R
Lagrangian is rotationally invariant, which generates ang,, — —, L2 + E(122)(X2,X1,5<1,5i1) + E(132)('x'1) + ...,
angular-momentum-like constant according to Noether's 12

theorem [5]. This constant is the mechanical angular (2)
momentum plus the small correction for the angular

momentum of the electromagnetic field. There is alsovhere

an energylike constant (because the Darwin Lagrangian

2 _ 2(hA - 2)a ‘
is time independent). EY = _e{(lﬁﬂ 3(2 pUIR B
According to standard normal form theory, from a reso- _2R12 2¢R12
nance one can produce an extra complex constant about a (@ - Bpi
fixed point [6]. Differently from the purely Coulombian B 2¢Ry5 } (3)
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and correction are
d 1. . 2¢? e?
B ) = — 26 o M—[<1+—|x|2>x}=——x - (x2—x
Ep (%) = - 73 %1, @ Me 5 Xl R?(Z) ) R?z( 2~ X1)
wherei is the unit vector in the direction of, — x; and + Egp (x1, X2, X2, X2)
R1» = |x, — x;|. Notice that all functions are evaluated ) M .
at the present time. For a circular orbit, in units of the TN X By (X1, X2, X2),

zeroth order Coulomb term, (3) is of order/c)? and (4) ) 5

is of order(v/c)}. We assume that the Taylor series ofm, 4 [(1 + 1 |,'(2|2>,‘(2} __ 2 (x2) — £ (x; — X2)
(2) is convergent or at least asymptotic for circular orbits, 4! 2 R> 02
since(v/c) < 1 in atomic physics. The first term of the + EZ(x0, %1, %1, %))

Page series for the magnetic field of electron %xis [3] .

o Xy X B(llz)(Xz,Xl,fh),

)
In this Letter we consider only the above terms of thewhere M, is the electronic massR, = |xi|, R, =
electromagnetic interaction, as well as the relativistic|x,|, R, = |x; — xal, E(122)(X2,X1,i1,5i1) is defined in

correction to the electronic dynamics up to or¢erc)?. (3), and B(llz)(X2,X1,5(1) is defined in (5). The circular

Along a circular orbit, the total force acting on elec- orpit is the following periodic solution of (8):
tron 2 can be calculated, using (3), (4), (5), and the self-

. e .
B(IIZ)(X2,X1,X1) = ——[B1 X f]. )
Ri,

interaction of electron 2, to be x1 = Rcodwt),  y; = Rsin(w?), 21 =0,
287 e 3 x; = —R codwt), = —Rsinwt), 2, =0.
F2 — ﬁ(xl + X2) _7?<1 _ 7|ﬁ|2>’ (6) 2 i ) Y2 ( ) 2

9
where R is the radius of the circular orbit. In (6) we according to (8), the frequency of the orbit is related to
have also added the Coulomb attraction of th@article g by

(of charge2e) that we suppose is infinitely massive and )

resting at the origin. Along the circular orbit, because M,0* = Te” <1 _3 |13|2>’ (10)
the electrons are in phase opposition, the force along 4R3 7

the velocity cancels out, demonstrating that the circulawhich is correct to second order (n/c).

orbit is a possible periodic solution of the electromagnetic Linearizing (8) about the circular orbit (9), we obtain

equations up to third order ifv/c). a parametric linear differential equation with coefficients
Notice the appearance of the dipole term in (6), periodic in time and period = 7/ [8]. If the Floquet
. ) ) exponents are all nondegenerate, one can find a complete
D = —e(X; + %2). (7)  set of solutions of the form [10]
The total far field caused by the electrons depends linearly Sx1 = 2i 1 2i
on the quantityD of (7), up to quadrupole terms [4]. D X1 = el zwm)g_xnexp( inwi),

is zero, the orbit does not radiate in dipole. The fifth-order

quadrupole terms would be important only in a much 5%, = expRiwpt) > x2exp2inwt), (11)

longer time scale, of ordgF/(v/c)’ [8]. In this Letter we n

consider only the dynamical system defined by truncatingvhere the Floquet exponent is a complex number

the Page series and self-interaction to third orddpifr).  defined in the first Brillouin zone-1/2 < Re(u) <
Next we consider the dynamics of helium in the 1/2. Notice that for the Floquet components we use an

neighborhood of a circular orbit, according to the Darwinupper index, but to label coordinates as functions of time,

Lagrangian. For the Coulomb dynamics, this stabilityas in (8), we use a lower index (to distinguish it from

problem has already been considered by many authot§e Floquet components). To simplify the variational

[1,9]. Here we consider only the second order of theequations, we define the coordinates

Page series, which is essential to unfold a degeneracy 1

of the Coulomb dynamics. The detailed consideration of &» = ﬁ(x;f — iy, X = ﬁ(xff +iyy).

the dissipative effect of the third-order term of the Page !

series and the (also third-order) self-interaction term will (12)

be published elsewhere [8]. Here it suffices to say thaNext we calculate Hill's secular determinant [10] for the

these higher-order terms are important only in a muchinearization of (8) about (9). As a simplification, let

longer time scale. To second order(iry c), the equations us defineii = n + w to be the running variable in the

of motion for helium with retardation and relativistic summations of (11). Last, to introduce physical intuition,
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it is convenient to define the radiation coordinateand  of this degeneracy, the double rodt= —1/2 acquires

relative coordinate, as a correction proportional t¢g]|, instead of the generic
X, = x| + X5, (13)  Second-order correction of the other nondegenerate roots.
Solving the secular equation of (17), in the neighborhood
Xy =X — Xa. (14) of i = —1/2 and in the lowest order approximation in
It turns out, as one can easily verify, that the linearized 81, we find
dynamics for thedx, variable is decoupled from thé&x, 51
variation. Here, for lack of space, we only develop the n=-1/2=* % 18I (19)

dynamics of theéx, variable along thez = 0 plane,

correct to second order ifv/c). We refer to [1] for the According to (11),7 is a frequency of oscillation in

Coulomb eigenvalues of théx, dynamics. A complete units of 2. For example, along the linear mode of
study of the eigenvalues will be published elsewhere [8](17) defined byn = —1/2, the frequencies in (11) are

Before we write the planar variational equations, we need-®@ = 2wii andw = 2w(1 + @1).
still another definition: The circular orbit is a fixed point of the autonomous

vector field describing the dynamics in the system rotating

1 ] : . .
Uy = NG nel T ﬁx,f_l, with the frequency of the circular orbit. To apply resonant
normal form theory [6,8], we must move to this rotating
Pt R | system and find a new nontrivial resonance. In this
V= —=¢é — —=X (15) : L
n J2 et p e rotating system, the new frequency for oscillation along

We make the quantitie§* and V/ into thex andy com-  the mode (19) is found by adding’2 to (19). In units of
ponents of a bidimensional vect®* = (U*,VX), and 2, the frequency of Coulombic oscillations along the

also defineKX = (—VX,U¥), x, = (x,,y,), andx, =  direction in the modéz, is found in [1] to be
(—yx,xf). The variational equations for planar motion )
along the variabléx, can be written most simply in Flo- w) =4/5 =0.5345... (20)

quet components as [8]
and for planar Coulombic oscillations along the mode

1
—4i’x? — E(XZ + 3K%) + 8x,, in the rotating frame, is [1]

i i i - /3 + /32
|ﬁ|2<P(ﬁ)xg + Q()K¢ — 617”5(2 + 18%1@) =0. W =T = 0.5560. .. (21)

(16)  also in units oRw. A new resonance condition involving
We recall thati = n + u, and there is one equation for the root (19) is the easiest to be satisfied for small values
every value ofn. In principle, this would lead to an of |B]. therefore, we are looking for a resonance among
infinite Hill's secular determinant [10]. For the case of the frequencies of (21), (20), and (19), which in the
circular orbits, when we use thg and y variables, we rotating frame evaluates to

find that the¢, variables couple only tor,+; and vice 51
versa. The variational problem for the coordinate,, w3 =4/ og |81 = 1.3496|8], (22)
as defined by (16), turns into the followirgX 2 matrix
equation in units of2w. By inspection, we find that the resonance
| ) _a J involving the above three frequencies and with the mini-
[_(E ;L 4ii%) 1 2 :|[ in :| i mal integer multipliers is of type
i =2
2 —(z +4n%) Xn+1 y w] — wy + 2nw; =0, (23)
|,8|2|: .PZ(n)_ lQZ(?) }{ ’ } =0, wheren is an integer number and the factor of 2 mul-
~iQa(=7y)  Pa(=7iy) || Xasr (17) tiplying w; is because mode 3 comes from a degenerate
) w6 3 ) - eigenvalue. The reason for the special combination of
where P(1) = (— 5 + 7 + 355), Q@) = (- —  (23) should be sought in the normal form and will be dis-

187’5 + %), andiny = (1 + 7). We now consider the cussed elsewhere [8]. Condition (23) is satisfied|f®F

secular equation associated with Eq. (17): |8 = 0, given by

we obtain the eigenvalues of the Coulomb stability 0.00797

problem, 1Bl = ————. (24)
n=0-1,-1/2,-1/2. 18) e binding energies, in atomic units, for the above values

The next step is to consider the secular equation of (17)f |B| are

for finite values of|B|. The essential ingredient for us 2.3853

here is the degenerate rodt= —1/2 of (18). Because E=- n2 (25)
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and the frequencies of the special “stable” circular orbits The extra complex constant is actually two real func-

described by (23), in atomic units, are given by tions of phase space [8]. Together with the four (three in
involution) global constants of helium, this can produce
0.7442 S L
w = . (26)  a barrier in phase space, at least inside a small resonance

n region. This should stabilize the dynamics in a short time

Because we are involving a resonance among the plangcale, possibly by creating a simple homoclinic return for
oscillationséx,, 6x4, and thesz, oscillation, the leading the unstable direction (radial instability [1,9]). Notice that
term of the normal form is a product dfz, times the to emit a sharp line only finite time stability is needed, so
planar coordinate variations. In reference [8] we showesonant normal form is the perfect tool here.
how to construct this extra constant and discuss the shapeHistorically, the radial instability [1], first found by
of its level surfaces. Nicholson [9], led Bohr to postulate that, along a quan-
The frequencyw, for oscillations along théz, linear tized set of orbits, some special mechanism would super-
mode can be obtained, as prescribed by (20), by multiplysede the Coulombian radial instability, thus stabilizing the

ing the above frequency #/2/7, atom, which proved to be a very fruitful intuition [13].
0.7956 Some of the details of how the extra complex constant

. (27)  stabilizes the dynamics, in a time scale of oréigfv /c)?,

are discussed elsewhere [8].
The inclusion of the third-order radiative terms makes For a short review of applications of Eq. (1) to atomic
this linear model of (27) a stable mode [8], whereby thehydrogen, one should see Ref. [14].
perturbation radiates energy and decays to the perfectly The existence of this extra constant is a genuine effect
circular orbit. The frequency of this stable oscillation of electrodynamics with retardation. It is surprising that
should then appear in the spectrum of sharp linesclassical electrodynamics with retardation can offer such a
given that the dynamics selects the neighborhood of theensible approximation to the spectrum of sharp lines. We
stable orbits. For example, the transiti@h? — 1'S  do not know of any prior similar application of dynamics
of parahelium corresponds to a frequency2df037 —  to atomic physics.
2.1237 = 0.7799 atomic units [11,12], and (27) with = | acknowledge discussions with R. Napolitano and J. C.
1 evaluates to 0.7956, which is a 2% difference. TheEgues. This work was supported by Fapesp.
transition3!P — 2!§ in parahelium [12] has a frequency
of 2.1459 — 2.0551 = 0.0908 atomic units, and (27) with
n = 2 evaluates to 0.0995, which is an 8% difference.
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