

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" Campus de Bauru

SOLDAGEM GMAW-P ROBOTIZADA DE ALUMÍNIO: INFLUÊNCIA DO TIPO DE CHANFRO, TECIMENTO E SENTIDO DE LAMINAÇÃO NA DISTORÇÃO ANGULAR

RAFAEL CORAINI

Dissertação apresentada ao Programa de Pós Graduação em Engenharia Mecânica da Universidade Estadual Paulista – Campus de Bauru, como requisito à obtenção do título de Mestre em Engenharia Mecânica.

BAURU – SP JANEIRO – 2011

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" Campus de Bauru

SOLDAGEM GMAW-P ROBOTIZADA DE ALUMÍNIO: INFLUÊNCIA DO TIPO DE CHANFRO, TECIMENTO E SENTIDO DE LAMINAÇÃO NA DISTORÇÃO ANGULAR

RAFAEL CORAINI

Dissertação apresentada ao Programa de Pós Graduação em Engenharia Mecânica da Universidade Estadual Paulista – Campus de Bauru, como requisito à obtenção do título de Mestre em Engenharia Mecânica.

Orientador: Prof. Dr. Yukio Kobayashi. Co-orientador: Prof. Dr. Gilberto de Magalhães Bento Gonçalves. Área de concentração: Soldagem.

Coraini, Rafael. Soldagem GMAW-P robotizada de alumínio: influência do tipo de chanfro, tecimento e sentido de laminação na distorção angular / Rafael Coraini, 2011. 102 f. Orientador: Yukio Kobayashi Co-orientador: Gilberto de Magalhães Bento Gonçalves Dissertação (Mestrado)-Universidade Estadual Paulista. Faculdade de Engenharia, Bauru, 2011 1. Soldagem robotizada. 2. Alumínio. 3. Distorções angulares. 4. Sentido de confomação. 5. Tecimento I. Universidade Estadual Paulista. Faculdade de Engenharia de Bauru. II. Título.

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" CAMPUS DE BAURU FACULDADE DE ENGENHARIA DE BAURU

ATA DA DEFESA PÚBLICA DA DISSERTAÇÃO DE MESTRADO DE RAFAEL CORAINI, DISCENTE DO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA, DO(A) FACULDADE DE ENGENHARIA DE BAURU.

Aos 24 dias do mês de janeiro do ano de 2011, às 08:30 horas, no(a) ANFITEATRO DA SEÇÃO DE PÓS-GRADUAÇÃO DA FACULDADE DE ENGENHARIA, reuniu-se a Comissão Examinadora da Defesa Pública, composta pelos seguintes membros: Prof. Dr. YUKIO KOBAYASHI do(a) Departamento de Engenharia Mecânica / Faculdade de Engenharia de Bauru, Prof. Dr. AMÉRICO SCOTTI do(a) Faculdade de Engenharia Mecânica / Universidade Federal de Uberlândia, Prof. Dr. LUIZ EDUARDO DE ANGELO SANCHEZ do(a) Departamento de Engenharia de Bauru, sob a presidência do primeiro, a fim de proceder a argüição pública da DISSERTAÇÃO DE MESTRADO de RAFAEL CORAINI, intitulado "SOLDAGEM GMAW-P ROBOTIZADA DE ALUMÍNIO: INFLUÊNCIA DO TIPO DE CHANFRO, TECIMENTOS E SENTIDO DE LAMINAÇÃO NA DISTORÇÃO ANGULAR". Após a exposição, o discente foi argüido oralmente pelos membros da Comissão Examinadora, tendo recebido o conceito final: <u>APROVADO</u>...Nada mais havendo, foi lavrada a presente ata, que, após lida e aprovada, foi assinada pelos membros da Comissão Examinadora.

Prof. Dr. YUKIO KOBAYASHI

Prof. Dr. AMÉRICO SCOTTI

Prof. Dr. LUIZ EDUABDO DE ANGELO SANCHEZ

AGRADECIMENTOS

Primeiramente a Deus, inteligência suprema, causa primeira de todas as coisas.

Aos meus queridos pais Antonio e Rosalina, que sempre me orientaram sobre a importância do estudo e conhecimento para o ser humano, e proporcionaram toda a minha educação, caráter e valores.

Aos professores Yukio Kobayashi e Gilberto de Magalhães Bento Gonçalves pela orientação e colaboração nesta dissertação e, principalmente, pela amizade, compreensão e apoio durante estes anos de estudo.

Ao professor Américo Scotti pela disponibilidade de viagem na banca de defesa, além das correções sugeridas e orientações dadas, muito pertinentes por sinal.

Aos colegas de trabalho Fabiano, José Carlos, Vinicius, Lourival, Eleno, Fernando Togni, José Carlos "Bemba", Braulio, Leandro, Adriana, Afrânio, Sérgio, cada um tendo sua parcela de contribuição nas etapas deste trabalho.

A minha irmã Suzana, aos sobrinhos Julia, Guilherme e Eduardo, por serem os outros pilares da família que me dão sustentação.

A minha namorada Juliana pela paciência, apoio e compreensão em todos os momentos.

A empresa Máquinas Agrícolas Jacto S/A que forneceu todos os recursos técnicos e infra-estrutura necessária.

Aos amigos da PiorTur, pela amizade formada mesmo após os anos de convivência em Bauru e onde tudo começou.

Aos demais professores e funcionários da Faculdade de Engenharia da UNESP – Campus de Bauru, que colaboraram direta e indiretamente para que este trabalho fosse concluído.

"Não há fé inabalável senão aquela que pode encarar a razão face a face, em todas as épocas da humanidade."

(Allan Kardec)

RESUMO

A utilização do alumínio em escala industrial vem crescendo cada vez mais nos últimos anos e um dos principais motivos é o espaço que esse material vem conquistando em substituição ao aço. O interesse da indústria em ter um maior controle das distorções provocadas pela soldagem de alumínio se deve ao fato das tolerâncias dimensionais e geométricas estarem cada vez mais precisas nas especificações de projeto, motivando a engenharia de fabricação a desenvolver processos estáveis e que garantam a rotina de produção. O elevado coeficiente de expansão linear desse metal, se comparado ao aço, é uma das suas principais características que geram dificuldades nesse cenário. Visando isso, o presente trabalho tem como principal objetivo analisar o quanto situações rotineiras utilizadas na soldagem robotizada de alumínio podem influenciar nas distorcões angulares deste material, sem comprometer a integridade mecânica da junta soldada e com confiabilidade estatística. Utilizando a liga AA 5052 H34, e a soldagem robotizada no processo GMAW pulsado, foram aplicados três tipos de tecimento ao longo do comprimento da solda, em juntas de topo montadas sem chanfro e com chanfro de 60°, dispostas tanto transversais quanto longitudinais ao sentido de conformação da chapa. A medição das distorções foi realizada por um braço tridimensional, antes e após a soldagem, em três regiões distintas nos corpos de prova. O perfil do cordão de solda foi o fator determinante para as diferentes formas das distorções encontradas, assim como revelado pelas análises macrográficas. A junta com chanfro de 60° apresentou maiores amplitudes das distorções que a junta sem chanfro. O tecimento não foi uma variável de influência estatística significativa Ensaios de tração foram realizados para se avaliar o nessas amplitudes. comportamento mecânico das juntas soldadas.

Palavras-chave: soldagem robotizada; alumínio; distorções angulares; sentido de conformação; tecimento.

ABSTRACT

The use of aluminum by industry has been recently growing more and more each time and one of the main reasons is the position that this material is gaining as a replacement for steel. The industry's interest in having a greater control of the distortions caused by aluminum welding is due to the geometric and dimensional tolerances been more and more precise in the project specifications, motivating the manufacturing engineering to develop stable processes and to ensure routine production. The high coefficient of linear expansion of this metal, which is one of its main features, can create a difficult scenario when compared to the steel. Aiming at it, the main goal of this present work is to analyze how much routine situations used in the robotic aluminum welding can influence in the angular distortions of this material, without affecting the mechanical integrity of the welded joint and with statistical reliability. Using the alloy AA 5052 H34, and the robotic welding in pulsed GMAW process, it was applied three types of weaving throughout the length of the weld, in butt joints assembled without groove and with 60° single-V-groove, arranged transversely as well as longitudinally to the rolling direction of the plate. The measurement of the distortions was made by a three-dimensional equipment, before and after the welding, in three distinct regions in the specimens. The profile of the weld bead was the main factor for the different types of distortions found, as revealed by macrographical analysis. The 60° single-V-groove had higher amplitudes of distortions as the joint without groove. The weaving wasn't a variable of statistically significant influence in this amplitudes. Tensile tests were made to evaluate the mechanical properties of the welded joints.

Key-words: robotic welding; aluminum; angular distortions; rolling direction; weaving.

Lista de Figuras	Х
Lista de Tabelas	XIV
Lista de Abreviaturas e Siglas	XVI
Capítulo 1 – Introdução e Objetivos	01
1.1 – Introdução	01
1.2 – Objetivos	02
Capítulo 2 – Fundamentação Teórica	03
2.1 – O Alumínio e suas ligas	03
2.1.1 – Propriedades das ligas de alumínio	06
2.1.2 – Influência dos elementos de liga na soldabilidade do alumínio	08
2.2 – Processos de soldagem do alumínio e suas ligas	10
2.2.1 – Equipamentos utilizados na soldagem robotizada GMAW	12
2.2.1.1 – Fontes de energia	13
2 2 1 2 – Cabecote de alimentação do metal de adição	14
2.2.1.2 Manipulador ou robô	15
2.2.1.4 – Tocha de soldagem e componentes	17
2.2.1.4 - 100na de soldagem e componentes	17
2.2.1.5 – Gases de proteção	20
2.2.1.0 – Metal de adição (arame-eletrodo)	20
2.2.2 - valiavels up processo GMAVV	21
2 2 3 – Transferência metálica no processo GMAW	23
2 2 4 – Soldagem com arco pulsado	25
2.2.5 – Tecimento no processo de soldagem	27
2.3 – Metalurgia da soldagem	28
2.3.1 – Energia de soldagem	28
2.3.2 – Ciclo térmico de soldagem	29
2.3.3 – Repartição térmica	30
2.3.4 – Características metalúrgicas da liga AA 5052 pós-soldagem	32
2.3.4.1 – Textura	33
2.4 – Tensões residuais e distorções durante a soldagem	34
2.4.1 – Fundamentação	34
2.4.2 – Tensões residuais de soldagem	36
2.4.3 – Distorções de soldagem	37
2.4.3.1 – Contração transversal	38

ÍNDICE

2.4.3.2 – Contração longitudinal	40
2.4.3.3 – Distorção angular	40
Capítulo 3 – Materiais e Métodos	44
3.1 – Materiais e equipamentos utilizados	44
3.1.1 – Célula de soldagem	44
3.1.2 – Gabarito de soldagem	46
3.1.3 – Consumíveis de soldagem	47
3.1.4 – Material base e placas de teste	47
3.1.5 – Equipamento de medição tridimensional	48
3.1.6 – Equipamento de ensaio de tração	49
3.2 – Métodos experimentais	50
3.2.1 – Identificação do sentido de laminação	51
3.2.2 – Avaliação da composição química	52
3.2.3 – Calibração do controlador e fonte de soldagem	52
3.2.4 – Definição dos parâmetros de soldagem	53
3.2.5 – Definição da medição tridimensional e análise estatística	54
3.2.6 – Ensaios mecânicos	57
Capítulo 4 – Resultados e Discussões	59
4.1 – Distorções angulares transversais e flexões longitudinais	59
4.2 – Placas de teste sem chanfro (junta 1)	61
4.2.1 – Sem tecimento	62
4.2.2 – Tecimento "Zig-Zag"	65
4.2.3 – Tecimento "Vai-Vem"	67
4.2.4 – Análise global das placas de testes sem chanfro (junta 1)	70
4.3 – Placas de teste com chanfro 60° (junta 2)	73
4.3.1 – Sem tecimento	74
4.3.2 – Tecimento "Zig-Zag"	76
4.3.3 – Tecimento "Vai-Vem"	79
4.3.4 – Análise global das placas de teste com chanfro 60° (junta 2)	81
4.4 – Comparação das distorções das placas de teste da junta 1 X junta 2	83
4.5 – Ensaios de tração nas placas de teste da junta 1 X junta 2	86
Capítulo 5 – Conclusões	89
Capítulo 6 – Sugestões para Trabalhos Futuros	90
Capítulo 7 – Referências Bibliográficas	91
Apêndice A	97

LISTA DE FIGURAS

Figura 2.1 – Micrografias indicando a têmpera das chapas de Al-Mg (a) 5052-O; (b) 5052-H32; e (c) 5052-H34 (FRAGA, 2009)	6
Figura 2.2 – Detalhe da soldagem GMAW (MIRANDA E FERRARESI, 1999)	11
Figura 2.3 – Desenho esquemático dos principais equipamentos utilizados no processo de soldagem robotizado GMAW (Adaptado de MOTOMAN, 1995)	13
Figura 2.4 – Sistema com um (a) e dois pares (b) de roletes (MARQUES <i>et al.</i> , 2005)	15
Figura 2.5 – Configurações básicas de robôs industriais: (a) retangular; (b) cilíndrico; (c) esférico; e (d) articulado (MARQUES <i>et al.</i> , 2005)	16
Figura 2.6 – Principais componentes de uma tocha de soldagem (Adaptado de MIYAHARA, 2008)	17
Figura 2.7 – Efeito da corrente de soldagem num processo GMAW, aço carbono, curto-circuito, 75%Ar-25%CO ₂ (Adaptado de FORTES e VAZ, 2005)	22
Figura 2.8 – Efeito da tensão de soldagem num processo GMAW, alumínio, spray, argônio (Adaptado de FORTES e VAZ, 2005)	22
Figura 2.9 – Efeito da velocidade de soldagem num processo GMAW, alumínio, spray, argônio (Adaptado de FORTES e VAZ, 2005)	22
Figura 2.10 – Influência do ângulo e direção da tocha no cordão (Adaptado de COSTA, 2003)	23
Figura 2.11 – Modos de transferência: (a) curto-circuito; (b) globular; e (c) "spray" ou goticuar (Adaptado de material de treinamento MILLER_ITW)	24
Figura 2.12 – Forma de onda da corrente no processo GMAW-P: (a) idealizada; (b) mais representativa para equipamentos comerciais	26
Figura 2.13 – Tipos de tecimento (MIYAHARA, 2008)	27
Figura 2.14 – Ciclo térmico de soldagem	30
Figura 2.15 – Repartição térmica de uma solda	31
Figura 2.16 – Ilustração da ZAC para as têmperas O, H32 e H34 (Adaptado de FRAGA, 2009)	32

Figura 2.17 – (a) Diagrama de fase da liga Al-Mg; (b) perfil de temperatura simulada ao longo da ZAC (Adaptado de FRAGA, 2009)	33
Figura 2.18 – Tensões residuais longitudinais (L) e transversais (T) em uma junta de topo (AWS, 2001)	35
Figura 2.19 – Representação esquemática de distorção em uma junta de topo (AWS, 2001)	35
Figura 2.20 – Relação física entre deformações e tensões residuais (BEZERRA, 2006)	36
Figura 2.21 – Variações dimensionais fundamentais que ocorrem em soldagem (Adaptado de AWS, 2001)	38
Figura 2.22 – Variação dimensional rotacional em uma junta de topo: (a) soldagem com eletrodo revestido; e (b) soldagem a arco submerso (Adaptado de AWS, 2001)	39
Figura 2.23 – Flexão longitudinal (MASUBUCHI, 1980)	41
Figura 2.24 – Distorção devido à instabilidade (MASUBUCHI, 1980)	41
Figura 3.1 – Esquema da célula de soldagem robotizada utilizada	44
Figura 3.2 – Robô de soldagem utilizado: (a) foto dos equipamentos para soldagem; e (b) ilustração dos graus de liberdade (Adaptado de MOTOMAN, 1995)	45
Figura 3.3 – Gabarito de soldagem utilizado: (a) fixado na mesa e com a placa de teste montada; e (b) apenas fixado na mesa	46
Figura 3.4 – Qualidade superficial obtida: (a) chapa sem chanfro; e (b) chapa chanfrada por fresamento em 30°	47
Figura 3.5 – Dimensões da junta sem chanfro (junta 1)	48
Figura 3.6 – Dimensões da junta com chanfro em 60° (junta 2)	48
Figura 3.7 – Máquina de medição tridimensional utilizada (Romer)	49
Figura 3.8 – Máquina de tração utilizada (Kratos)	49
Figura 3.9 – Corte das PTs no sentido transversal de laminação	51
Figura 3.10 – Corte das PTs no sentido longitudinal de laminação	51

Figura 3.11 – Reta gerada na calibração, relacionando os valores de argumento programados no controlador com os valores de corrente média na saída da fonte	53
Figura 3.12 – Esquematização da sequência de medição dos pontos	55
Figura 3.13 – Montagem para medição dos pontos	55
Figura 3.14 – Dimensionamento de corte dos corpos de prova para ensaio de tração e macrografia	57
Figura 3.15 – Dimensionamento dos corpos de prova para ensaio de tração e macrografia	58
Figura 4.1 – Distorção transversal "perfil parabólico com concavidade para baixo"	59
Figura 4.2 – Distorção longitudinal "perfil parabólico com concavidade para cima"	59
Figura 4.3 – Distorção transversal "perfil parabólico com concavidade para cima"	60
Figura 4.4 – Distorção longitudinal "perfil parabólico com concavidade para baixo" .	60
Figura 4.5 – Macrografias realizadas no: (a) PTLR2; e (b) PTL3	61
Figura 4.6 – Macrografias realizadas no: (a) PTT10; e (b) PTL8	61
Figura 4.7 – Distorção vista 1, PT sem chanfro (junta 1) e sem tecimento	62
Figura 4.8 – Distorção vista 2, PT sem chanfro (junta 1) e sem tecimento	63
Figura 4.9 – Distorção vista 3, PT sem chanfro (junta 1) e sem tecimento	63
Figura 4.10 – Distorção vista 1, PT sem chanfro (junta 1) e tecimento "Zig-Zag"	65
Figura 4.11 – Distorção vista 2, PT sem chanfro (junta 1) e tecimento "Zig-Zag"	66
Figura 4.12 – Distorção vista 3, PT sem chanfro (junta 1) e tecimento "Zig-Zag"	66
Figura 4.13 – Distorção vista 1, PT sem chanfro (junta 1) e tecimento "Vai-Vem"	68
Figura 4.14 – Distorção vista 2, PT sem chanfro (junta 1) e tecimento "Vai-Vem"	68
Figura 4.15 – Distorção vista 3, PT sem chanfro (junta 1) e tecimento "Vai-Vem"	69
Figura 4.16 – Distorção vista 1, PT chanfro 60° (junta 2) e sem tecimento	74
Figura 4.17 – Distorção vista 2, PT chanfro 60° (junta 2) e sem tecimento	75
Figura 4.18 – Distorção vista 3, PT chanfro 60° (junta 2) e sem tecimento	75
Figura 4.19 – Distorção vista 1, PT chanfro 60° (junta 2) e tecimento "Zig-Zag"	77

Figura 4.20 – Distorção vista 2, PT chanfro 60° (junta 2) e tecimento "Zig-Zag"	77
Figura 4.21 – Distorção vista 3, PT chanfro 60° (junta 2) e tecimento "Zig-Zag"	75
Figura 4.22 – Distorção vista 1, PT chanfro 60° (junta 2) e tecimento "Vai-Vem"	79
Figura 4.23 – Distorção vista 2, PT chanfro 60° (junta 2) e tecimento "Vai-Vem"	80
Figura 4.24 – Distorção vista 3, PT chanfro 60° (junta 2) e tecimento "Vai-Vem"	80
Figura 4.25 – CP para ensaio de tração, antes dos ensaios	87
Figura 4.26 – CP para ensaio de tração após ensaios, rupturas ocorreram na ZTA .	87

LISTA DE TABELAS

Tabela 2.1 – Sistema de classificação das ligas de alumínio trabalháveis em função dos principais elementos de adição (Adaptado de ALCAN, 1993)	4
Tabela 2.2 – Sistema de nomenclatura para classificação das têmperas de ligas de alumínio endurecíveis por tratamento mecânico (Adaptado de ALCAN, 1993; FRAGA, 2009)	5
Tabela 2.3 – Limites de composição química para a liga AA 5052 (Adaptado de ASTM B209M, 2001)	8
Tabela 2.4 – Propriedades mecânicas para a liga AA 5052 H34 (Adaptado de ASTM B209M, 2001)	8
Tabela 3.1 – Parâmetros utilizados na fonte de soldagem no modo padrão 7 (Thermadyne, 1998)	45
Tabela 3.2 – Denominação adotada para as placas de teste (PTs)	50
Tabela 3.3 – Composição química (em %) das chapas utilizadas	52
Tabela 3.4 – Dados resumidos de regressão linear (Argumento X Corrente Média)	53
Tabela 3.5 – Resumo dos parâmetros de soldagem utilizados	54
Tabela 4.1 – Amplitudes das distorções entre PTTs e PTLs na condição sem tecimento, junta 1	64
Tabela 4.2 – <i>Anova: fator único</i> . Saída de dados para análise das amplitudes das distorções entre PTTs e PTLs na condição sem tecimento, junta 1	64
Tabela 4.3 – Amplitudes das distorções entre PTTs e PTLs no tecimento "Zig-Zag", junta 1	67
Tabela 4.4 – Anova: fator único. Saída de dados para análise das amplitudes das distorções entre PTTs e PTLs no tecimento "Zig-Zag", junta 1	67
Tabela 4.5 – Amplitudes das distorções entre PTTs e PTLs no tecimento "Vai- Vem", junta 1	69
Tabela 4.6 – <i>Anova: fator único</i> . Saída de dados para análise das amplitudes das distorções entre PTTs e PTLs no tecimento "Vai-Vem", junta 1	70
Tabela 4.7 – Amplitudes das distorções para as PTs da junta sem chanfro (junta 1)	71

Tabela 4.8 – <i>Anova: fator duplo com repetição</i> . Saída de dados para a análise de variância global dos resultados das amplitudes das distorções nas PTs com junta sem chanfro (junta 1)	72
Tabela 4.9 – Limite de escoamento, em MPa, dos corpos de prova retirados no metal base	73
Tabela 4.10 – Amplitudes das distorções entre PTTs e PTLs na condição sem tecimento, junta 2	76
Tabela 4.11 – <i>Anova: fator único</i> . Saída de dados para análise das amplitudes das distorções entre PTTs e PTLs na condição sem tecimento, junta 2	76
Tabela 4.12 – Amplitudes das distorções entre PTTs e PTLs no tecimento "Zig- Zag", junta 2	78
Tabela 4.13 – <i>Anova: fator único</i> . Saída de dados para análise das amplitudes das distorções entre PTTs e PTLs no tecimento "Zig-Zag", junta 2	79
Tabela 4.14 – Amplitudes das distorções entre PTTs e PTLs no tecimento "Vai- Vem", junta 2	81
Tabela 4.15 – <i>Anova: fator único</i> . Saída de dados para análise das amplitudes das distorções entre PTTs e PTLs no tecimento "Vai-Vem", junta 2	81
Tabela 4.16 – Amplitudes das distorções para as PTs da junta com chanfro 60° (junta 2)	82
Tabela 4.17 – <i>Anova: fator duplo com repetição</i> . Saída de dados para a análise de variância global dos resultados das amplitudes das distorções nas PTs com junta chanfrada em 60° (junta 2)	83
Tabela 4.18 – Amplitudes das distorções para as PTs da junta 1 e junta 2	84
Tabela 4.19 – <i>Anova: fator duplo com repetição</i> . Saída de dados para a análise de variância global dos resultados das amplitudes das distorções nas PTs nas juntas 1 e 2	85
Tabela 4.20 – Limites de resistência obtidos para os CPs das juntas 1 e 2	87

LISTA DE ABREVIATURAS E SIGLAS

Al-Mg	Alumínio-Magnésio (liga)			
Anova	Análise de variância			
C_3	Constante (vale 12 ou 305, dependendo de L e e)			
CC	Corrente contínua			
CC ⁺	Corrente contínua com polaridade positiva			
CC	Corrente contínua com polaridade negativa			
CP	Corpo de prova			
CPs	Corpos de prova			
DBCP	Distância bico de contato peça			
е	Espessura da chapa (mm)			
E	Energia de soldagem (J/mm)			
FSW	Friction Stir Welding			
GMAW	Gas Metal Arc Welding			
GMAW-P	Gas Metal Arc Welding-Pulsed			
GTAW	Gas Tungsten Arc Welding			
H32	Têmpera, material com um fator de encruamento entre 20% e 25%			
H34	Têmpera, material com um fator de encruamento entre 33% e 45%			
I	Corrente de soldagem (A)			
l _b	Corrente de base (A)			
l _p	Corrente de pulso (A)			
L	Comprimento de solda (mm)			
MAG	Metal Active Gas			
MB	Metal base			
MIG	Metal Inert Gas			
0	Têmpera indicando que o material laminado está no estado recozido			
PT	Placa de teste			
PTs	Placas de teste			
PTL	Placa de teste retirada no sentido longitudinal de laminação da chapa			
PTLR	Placa de teste reserva retirada no sentido longitudinal de laminação			
PTT	Placa de teste retirada no sentido transversal de laminação da chapa			
PTTR	Placa de teste reserva retirada no sentido transversal de laminação			
r	Coeficiente de correlação linear de Pearson			
r ²	Coeficiente de determinação			
SMAW	Shielded Metal Arc Welding			
t _b	Tempo de base			
t _p	Tempo de pulso			
T _c	Temperatura crítica (°C)			
T _f	Temperatura de fusão (°C)			
Tp	Temperatura de pico ($^{\circ}$ C)			
TIG	Tungsten Inert Gas			
V	Velocidade linear de soldagem (mm/s)			

V	Tensão de soldagem (V)
V _b	Tensão de base (V)
ZF	Zona fundida
ZTA	Zona termicamente afetada, ou ZAC (Zona afetada pelo calor)
α	Nível de significância
ΔL	Contração longitudinal (mm)
ΔZ_{Ponto}	Valor real de distorção no ponto (mm)
σ_x	Tensão residual longitudinal
σ _Y	Tensão residual transversal

CAPÍTULO 1

INTRODUÇÃO E OBJETIVOS

1.1 – Introdução

A globalização e o avanço tecnológico crescente têm induzido a engenharia de fabricação a buscar reduções nos custos, aumentos na produtividade e na qualidade do produto. A automação dos processos e o emprego de materiais que possuam elevada resistência mecânica e baixo peso específico são alguns dos requisitos importantes a serem considerados nos projetos.

No que concerne aos materiais, cada vez mais as ligas de alumínio têm sido escolhidas, sobretudo em substituição aos aços, pois apresentam excelente resistência a corrosão, assim como elevada relação resistência/peso. Toros, Ozturk e Kacar (2008) mostram que a demanda por alumínio na indústria automotiva européia e norte americana praticamente dobrou nos últimos vinte anos.

As ligas de alumínio magnésio são as mais utilizadas em escala industrial por oferecerem as características descritas acima, além de boa soldabilidade.

Durante a manufatura de produtos estruturais, a soldagem se destaca por ser um dos processos mais importantes e que demanda maior controle, desde a qualificação dos procedimentos e soldadores, até o controle dimensional e geométrico que garanta a qualidade final especificada.

Dentre os processos de soldagem disponíveis para o alumínio, a utilização de arco elétrico com proteção gasosa inerte e arame maciço, também conhecido como processo GMAW, em modo pulsado, possui ótima aceitação industrial devido resultados satisfatórios de produtividade e qualidade.

Entretanto, essas ligas não possuem fácil soldabilidade e são susceptíveis a dificuldades como a incidência de trincas de solidificação, geração de áreas de resistência mecânica reduzida e formação de distorções permanentes, devido principalmente aos elevados valores de condutividade e expansão térmica intrínsecos a esse material. Estas distorções causam problemas dimensionais e geométricos, podendo comprometer a montagem e/ou a vida útil de componentes mecânicos soldados.

Outra tecnologia, ligada à automação de processo e atualmente muito utilizada em rotinas industriais, são os sistemas robotizados, que se mostram como uma alternativa eficaz para revigorar a competência produtiva e de qualidade na soldagem GMAW.

Na empresa Máquinas Agrícolas Jacto S/A, verifica-se uma necessidade cada vez maior de que as distorções sejam minimizadas, principalmente em conjuntos soldados de alumínio que possuem diversos tipos de juntas, a fim de evitar problemas durante a montagem e comprometimento da linha de produção. Pra obter tal finalidade, o desenvolvimento de bons gabaritos e a definição de sequências ótimas de soldagem são as formas mais aplicadas no controle operacional.

Geralmente, por não serem especificadas em folhas de processos ou procedimentos de soldagem, algumas características são desconsideradas e algumas técnicas aplicadas de maneira livre durante a operação, onde pode-se citar o sentido de laminação da chapa no posicionamento para o corte e processamentos posteriores, e os tipos de tecimentos aplicados no avanço da tocha, entre outras.

Porém, pouco se sabe se essas características e técnicas citadas influenciam de maneira significativa nas distorções angulares originadas na soldagem da liga de alumínio magnésio, material esse especificado em muitos conjuntos soldados da empresa. Na literatura pesquisada não foram encontrados dados relacionando essas variáveis com esse tipo de liga.

Outro ponto importante é a aplicação da soldagem robotizada na empresa, a qual é amplamente usada na união de aços carbono microligados ARBL (Alta Resistência Baixa Liga), porém não com o alumínio. Visando adequar os processos de alguns produtos soldados em alumínio de maneira semi-automática, a análise de viabilidade técnica da soldagem robotizada desse tipo de liga se faz necessária atualmente dentro do ambiente industrial.

1.2 – Objetivos

O objetivo principal deste trabalho é estudar o comportamento das distorções angulares em juntas de topo formadas pela liga AA 5052 H34, soldadas pelo processo GMAW pulsado robotizado, sob condições diferenciadas de tecimentos, tipos de chanfros e sentido de laminação da chapa em relação ao cordão de solda.

CAPÍTULO 2

FUNDAMENTAÇÃO TEÓRICA

2.1 – O Alumínio e suas ligas

O alumínio é o segundo metal mais abundante na crosta terrestre, possuindo um conjunto único de propriedades mecânicas, físicas e químicas sem similar na natureza (WHITE MARTINS, 2002). A sua grande aceitação pela indústria metalmecânica se deve principalmente aos seguintes fatores: elevada relação resistência/peso, baixa densidade, cerca de três vezes menor que a do aço, elevadas condutividades térmica e elétrica, elevado coeficiente de expansão linear, cerca de duas vezes maior que a do aço, e elevada resistência à corrosão.

Mesmo possuindo ductilidade elevada, as principais limitações deste material, em seu estado puro, referem-se à resistência mecânica e dureza, que são relativamente baixas, mas podem ser melhoradas pela adição de elementos de liga, dando origem a várias ligas a partir do alumínio comercialmente puro. Essas ligas têm a principal aplicação de aliar as características do alumínio a uma maior resistência mecânica. Os principais elementos de liga são: cobre (Cu), magnésio (Mg), manganês (Mn), silício (Si) e zinco (Zn) (ALCAN, 1993).

Uma das principais características desse metal é sua afinidade química pelo oxigênio, que resulta na formação de óxidos do tipo Al₂O₃ na superfície do metal, quando esta é exposta a meios oxidantes. A camada de óxido que se forma na superfície é muito fina e tenaz, sendo que essa alta tenacidade dificulta sua ruptura pela ação das tensões superficiais geradas durante sua própria formação. Essa camada, que é uma proteção contra a corrosão, é também uma barreira a ser vencida durante a soldagem, pois enquanto o alumínio se funde a 660 °C, a camada de óxido só se funde ao alumínio quando a temperatura ultrapassa os 2000 °C (WHITE MARTINS, 2002).

As ligas de alumínio são encontradas em duas condições básicas (ALCAN, 1993): fundidas e trabalháveis. Apenas as últimas serão detalhadas nessa revisão, devido a liga utilizada no presente estudo se enquadrar entre as mesmas.

As ligas trabalháveis são aquelas em que a forma final do produto é conseguida através de transformações mecânicas (a frio ou a quente) de um tarugo ou placa produzida pela solidificação do metal líquido. De acordo com a *Aluminum Association* (AA), são classificadas através de um sistema numérico de quatro dígitos: o primeiro dígito classifica a liga pela série, de acordo com o principal elemento adicionado, como pode ser visto na Tabela 2.1; o segundo dígito, se diferente de zero, indica modificação na liga básica, por exemplo, a liga 5652 deriva da liga 5052; e o terceiro e quarto dígitos, para o alumínio comercial (série 1XXX) indicam a porcentagem de alumínio que excede a 99% e, para as ligas, identificam composição específica.

Designação de série - Liga	Principal elemento químico da liga
1XXX	Alumínio não-ligado Mínimo 99% de pureza
2XXX	Cobre
3XXX	Manganês
4XXX	Silício
5XXX	Magnésio
6XXX	Magnésio e Silício
7XXX	Zinco
8XXX	Outros elementos
9XXX	Série não utilizada

Tabela 2.1 – Sistema de classificação das ligas de alumínio trabalháveis em função dos principais elementos de adição (Adaptado de ALCAN, 1993).

Considerando agora a forma de se aumentar as propriedades mecânicas das ligas de alumínio trabalháveis, essas podem ser (ALCAN,1993): tratáveis termicamente e não-tratáveis termicamente. Apenas as últimas serão detalhadas nessa revisão, devido à liga utilizada no presente estudo se enquadrar entre as mesmas.

As ligas trabalháveis não-tratáveis termicamente são aquelas em que o aumento de propriedades mecânicas só pode ser conseguido por deformação a frio (deformação plástica por tratamento mecânico), tais como trefilação e laminação. As propriedades obtidas desta maneira são reduzidas pelo aquecimento acima de determinadas temperaturas, como acontece na soldagem, não podendo ser restauradas, exceto por trabalho a frio adicional.

O termo têmpera, aplicado às ligas de alumínio, designa o estado que o material adquire pela ação de trabalho mecânico a frio ou a quente, por tratamentos

térmicos ou pela combinação de ambos, os quais exercem influência decisiva sobre a estrutura e propriedades do produto (ALCAN, 1993).

E necessário esclarecer que o tratamento de têmpera não é o mesmo que leva a obtenção de uma estrutura martensítica, como no caso dos aços. Consiste no endurecimento por precipitação, no qual um componente supersaturado em uma solução sólida se precipita, de modo disperso e fixo, em um grão cristalino. As características do material endurecido por precipitação dependerão fundamentalmente dos elementos químicos presentes na liga (JUNIOR e TREMONTI, 1994). Porém é citado dessa maneira nas literaturas consultadas (ALCAN, 1993; FIGUEIREDO, 2000; entre outras), sendo mantido da mesma maneira nessa revisão bibliográfica.

As ligas trabalháveis não-tratáveis termicamente são produzidas em várias têmperas, de acordo com o grau de encruamento e, em geral, são das séries 1XXX, 3XXX, 4XXX e 5XXX (ALCAN, 1993; ABAL, 1994). A Tabela 2.2 mostra a classificação das têmperas de ligas de alumínio trabalháveis não-tratáveis termicamente. O sistema de designação é alfanumérico e posicionado após a designação referente à composição química, por exemplo, a liga AA 5052 H34.

Têmpera	Designação	Descrição
F	Como fabricado	Produtos trabalhados que não tiveram controles especiais relacionados com tratamentos térmicos e/ou mecânicos.
0	Recozido	Produtos trabalhados que foram recristalizados e encontram-se na condição de menor dureza.
н	Encruado	Produtos trabalhados endurecidos por tratamento mecânico (deformação plástica), com ou sem tratamento térmico posterior para controle do grau de endurecimento (encruamento). Essa letra é seguida de até três dígitos para indicar a condição específica de tratamento; o primeiro dígito indica a combinação específica de operações básicas; o segundo dígito indica a condição final de endurecimento, enquanto que o terceiro dígito, se utilizado, designa variantes específicas que resultam em apreciáveis diferenças nas propriedades.
H1X	Apenas encruada	As propriedades mecânicas do material são obtidas exclusivamente por trabalho a frio, sem nenhum tratamento suplementar.
H2X	Encruada e recozida parcialmente	As propriedades mecânicas são aumentadas mais do que o nível desejado e depois são diminuídas por recozimento parcial.
НЗХ	Encruada e estabilizada	Aplica-se somente àquelas ligas que amolecem com o passar do tempo após terem sido deformadas plasticamente a frio (encruada). Esse amolecimento pode ser acelerado e estabilizado com tratamento térmico após encruamento.
H32		Trabalho a frio que fornece resistência à tração média entre o recozido (O) e a têmpera H34 - "1/4 duro".
H34		Trabalho a frio que fornece resistência à tração média entre o recozido (O) e a têmpera H38 - "1/2 duro".
H36		Trabalho a frio que fornece resistência à tração média entre as têmperas H34 e H38 - "3/4 duro".
H38		Trabalho a frio que sofre redução mecânica a frio de aproximadamente 75% após um recozimento completo - "duro".
H39		Têmperas de limite de resistência mecânica mínimo acima da têmpera H38, - "extra duro".

Tabela 2.2 – Sistema de nomenclatura para classificação das têmperas de ligas de alumínio endurecíveis por tratamento mecânico (Adaptado de ALCAN, 1993; FRAGA, 2009).

Na Figura 2.1 pode-se observar em (a) uma microestrutura completamente recozida, correspondente à têmpera O, e em (b) e em (c) graus de encruamento subseqüentes, respectivos às têmperas H32 e H34. Percebe-se claramente como os grãos vão se tornando mais alongados, características típicas do escorregamento cristalográfico devido o trabalho a frio executado nas têmperas. Segundo Fraga (2009), a têmpera H34 corresponde a um fator de encruamento entre 33% e 45%.

Figura 2.1 – Micrografias indicando a têmpera das chapas de Al-Mg (a) 5052-O; (b) 5052-H32; e (c) 5052-H34 (FRAGA, 2009).

2.1.1 – Propriedades das ligas de alumínio

Segundo Okumura e Taniguchi (1982) e ALCAN (1993), algumas das características e propriedades das ligas de alumínio são:

• Alumínio puro para uso industrial – série 1000 – Apresenta uma pureza compreendida entre 99,0% e 99,9%. Este material é dotado de alta resistência à corrosão, alta condutibilidade térmica e elétrica, e excelente flexibilidade, sendo muito utilizadas em produtos que necessitam passar por operações de grande conformação durante sua fabricação (como repuxo). Destinam-se principalmente à fabricação de estruturas onde prevalece a necessidade de alta resistência a corrosão, como em tanques e tubulações para indústrias químicas e petroquímicas. Sua soldabilidade, brasabilidade, usinabilidade e conformabilidade são bastante satisfatórias, apesar de sua baixa resistência mecânica.

Liga Al-Cu – série 2000 – Esta é uma série típica de ligas tratáveis termicamente.
Suas propriedades mecânicas são comparáveis às do aço doce, graças ao tratamento de endurecimento por precipitação após a solubilização. Sua resistência à corrosão, entretanto, é inferior às das outras séries. Sua soldabilidade também

deixa muito a desejar, razão pela qual esta liga é empregada quase que exclusivamente em estruturas rebitadas, principalmente destinas a aplicações aeroespaciais, sendo especificações bastante conhecidas nesse ramo as ligas 2017 (duralumínio) e 2024 (superduralumínio).

Liga Al-Mn – série 3000 – As ligas Al-Mn são não-tratáveis termicamente e os diferentes níveis de resistência mecânica são conseguidos mediante encruamento a frio. Adicionando-se manganês ao alumínio, aumenta-se levemente sua resistência mecânica, além de melhorar também sua resposta ao encruamento, sem que isso venha a reduzir apreciavelmente sua ductilidade ou resistência à corrosão. As principais vantagens desta série são que a resistência à corrosão, a usinabilidade e soldabilidade são tão boas quanto às do alumínio puro, aliadas ainda às suas altas propriedades mecânicas.

 Liga Al-Si – série 4000 – Esta série também é não-tratável termicamente. Devido à adição do silício, a temperatura de fusão desta liga é mais baixa, o metal possui uma excelente fluidez e dificilmente ocorrem problemas de trincas, razões que tornam esta liga bastante indicada como material de enchimento, na soldagem de fundidos e de ligas tratáveis termicamente.

Liga Al-Mg – série 5000 – As ligas desta série são às vezes combinadas com manganês, e também são não-tratáveis termicamente. O magnésio é um dos elementos mais eficazes e largamente empregados na formação de ligas de alumínio, sendo o principal responsável pelo aumento da resistência mecânica sob trabalho a frio. As ligas dessa série são as que apresentam as maiores resistências entre as ligas não-tratáveis termicamente e, por isso, são de grande importância para aplicações estruturais em diversos campos, destinando-se em particular a área de transporte, como, por exemplo, na fabricação de vagões ferroviários, embarcações e carrocerias. São facilmente soldáveis e resistentes à corrosão, principalmente em atmosfera marítima.

A quantidade de Mg não pode exceder o limite de 5,5% em peso. Valores acima desse limite podem formar precipitados de magnésio preferencialmente nos contornos de grão com uma fase anódica (Mg₅Al₃ ou Mg₅Al₈), que causa susceptibilidade à corrosão sob tensão e ao aparecimento de trinca intergranular (BRAY, 1992; ANDERSON, 2005).

7

A Tabela 2.3 mostra os limites máximos de composição química especificados para a liga 5052 (em %) e a Tabela 2.4 mostra os requisitos de propriedades mecânicas especificados para a mesma liga, com têmpera H34.

Tabela 2.3 - Limites de composição química para a liga AA 5052 (Adaptado de ASTM B209M, 2001).

Liga	Si	Fe	Cu	Mn	Mg	Cr	Zn	AI
5052	0,25	0,40	0,10	0,10	2,20-2,80	0,15-0,35	0,10	Restante

 abela 2.4 Trophedades mecanicas para a liga AA 3002 Tro4 (Adaptado de AO Tri D20011), 2001									
Têmpera	Espessura especificada (mm)		Limite de Re Tração	esistência a (MPa)	Limite de Escoamento (MPa)		Alongamento (%)		
	Inferior	Superior	Mínimo	Máximo	Mínimo	Máximo	min, em 50 mm		
H34	3,2	6,3	235	285	180	****	6		

Tabela 2.4 – Propriedades mecânicas para a liga AA 5052 H34 (Adaptado de ASTM B209M, 2001).

Liga Al-Mg-Si – série 6000 – Esta série reúne ligas de alumínio tratáveis termicamente e apresenta características satisfatórias de usinabilidade, resistência à corrosão e soldabilidade. A combinação de dois elementos de liga, magnésio e silício, produz um composto, siliceto de magnésio, que concede às ligas dessa série a sua tratabilidade térmica e média resistência mecânica. No entanto, este tipo de liga pode sofrer uma perda de dureza na zona de solda, devido ao insumo de calor. Um exemplo típico desta série é a liga 6063, largamente empregada em esquadrias de alumínio para construções civis.

 Liga Al-Zn – série 7000 – Esta série também é tratável termicamente e pode conter magnésio como elemento químico suplementar, ou ainda pequenas porcentagens de cobre e cromo. Essas ligas têm um limite de ruptura da ordem de 50 kgf/mm², sendo também conhecidas como ultraduralumínio. Por outro lado, sua resistência à corrosão, bem como sua soldabilidade, deixam muito a desejar.

2.1.2 – Influência dos elementos de liga na soldabilidade do alumínio

Soldabilidade é o termo que está associado à facilidade com que uma liga pode ser soldada, produzindo uma junta com adequada resistência mecânica, resistência à corrosão e outras propriedades quando necessárias. No início de seu emprego nas aplicações industriais, o alumínio foi considerado um material de difícil soldabilidade devido ao fato de se empregar técnicas de soldagem semelhantes às empregadas para materiais ferrosos, obtendo soldas de baixa qualidade (FIGUEIREDO, 2000).

A alta condutividade térmica, o alto coeficiente de expansão linear e a necessidade de maior aporte de calor podem causar consideráveis distorções durante a soldagem do alumínio. Esta alta condutividade térmica torna a soldagem do alumínio mais rápida que do aço, pois ela proporciona uma rápida solidificação da poça de solda (ALCAN, 1993).

Como citado anteriormente, a adição de elementos de liga no alumínio tem a função de fornecer propriedades ao mesmo. A adição de cobre fornece alta resistência. O silício diminui o ponto de fusão e dá fluidez à liga. O manganês atua no sentido de oferecer um aumento moderado na resistência mecânica aliado a uma excelente ductilidade. Já o magnésio oferece as maiores resistências mecânicas e mantém boa resistência à corrosão (FIGUEIREDO, 2000).

Quando se combina o magnésio com o silício têm-se ligas com boa resistência mecânica, plasticidade e extrudabilidade. O zinco com o magnésio e o cobre oferecem resistências muito elevadas. Já as ligas combinando zinco e magnésio são capazes de recuperar parte da resistência mecânica perdida na soldagem por meio de tratamento de envelhecimento em temperatura ambiente (BILONI *et al.*, 1981; ALCAN, 1993).

O alumínio puro para uso industrial tem uma soldabilidade bastante satisfatória pelos processos de fusão a arco, embora as faixas de fusão estreitas possam causar falta de fusão e outros tipos de defeitos (ALCAN, 1993). Quando se acrescentam elementos de liga no alumínio, estes podem alterar sua soldabilidade, melhorando-a ou tornando difícil sua correta realização. Conforme Okumura e Taniguchi (1982) e Alcan (1993), a soldabilidade varia da seguinte forma para as diversas ligas de alumínio:

 Liga Al-Cu (série 2000) – a soldabilidade desta liga pelos processos a arco deixa muito a desejar em virtude de serem muito suscetíveis à fissuração a quente;

 Liga Al-Mn (série 3000) – esta liga tem uma boa soldabilidade e não é suscetível à ocorrência de trincas de solidificação;

 Liga Al-Si (série 4000) – esta liga possui excelente fluidez e dificilmente ocorrem problemas de trincas na solda. Normalmente é utilizada como material de enchimento;

9

 Liga Al-Mg (série 5000) – as ligas desta família, em geral, são facilmente soldáveis. Quando possuem teor de Mg abaixo de 2,5% e são soldadas com os processos de fusão a arco, ficam sujeitas à fissuração a quente durante a fase de solidificação, caso o metal de adição tenha a mesma composição química do metal de base;

Liga Al-Mg-Si (série 6000) – esta família de ligas tem soldabilidade satisfatória, mas pode sofrer uma perda de dureza na zona de solda. Para recuperar a resistência na zona termicamente afetada é necessário executar um tratamento térmico completo pós-soldagem. Para chapas finas, é possível obter maior resistência mecânica após a solda com um aumento na velocidade de soldagem. Já no caso de chapas grossas, este aumento de resistência não é significativo.

 Liga Al-Zn (série 7000) – assim como a liga Al-Cu, a soldabilidade por processo de fusão a arco deixa muito a desejar, mas também possui algumas ligas soldáveis;

 Liga Al-Zn-Mg – esta liga tem uma soldabilidade satisfatória e a diminuição da dureza na zona da solda pode ser realizada através de envelhecimento natural.

2.2 – Processos de soldagem do alumínio e suas ligas

As ligas de alumínio podem ser unidas pela maioria dos processos de soldagem. Dentre os principais, o processo com Eletrodo Revestido (conhecido como SMAW – *Shielded Metal Arc Welding*), MIG (*Metal Inert Gas*, ou GMAW – *Gas Metal Arc Welding*) e TIG (*Tungsten Inert Gas*, ou GTAW – *Gas Tungsten Arc Welding*). Recentemente o processo FSW (*Friction Stir Welding*) tem sido pesquisado na soldagem deste material, onde pode-se citar como exemplos os trabalhos de Torres e Ramirez (2010), e Capelari e Mazzaferro (2009). Cada um destes processos apresenta vantagens e limitações, sendo escolhido de acordo com os requisitos exigidos para a junta a ser soldada.

O processo GMAW é a soldagem a arco metálico com atmosfera gasosa, onde a união das peças metálicas ocorre pelo aquecimento destas com um arco elétrico estabelecido entre um eletrodo metálico (arame), que é consumível, e a peça de trabalho. O arco e a região da solda são protegidos contra contaminações da atmosfera por um gás ou mistura de gases, que podem ser inertes ou ativos.

Conforme a literatura (BILONI *et al.*, 1981; ALTSHULLER, 1998; entre outros), os processos de soldagem GMAW e GTAW são os mais empregados na soldagem

do alumínio, sendo que o primeiro se destaca em relação ao segundo por ter alta produtividade, pois possui uma elevada taxa de deposição e alto fator de trabalho do soldador. Além disso, possui as seguintes vantagens: grande versatilidade quanto ao tipo e espessura dos materiais; soldagem possível em todas as posições; permite maiores profundidades de penetração. O arco elétrico formado no processo GMAW possui boa eficiência. Segundo Wainer *et al.* (1995), algumas outras vantagens seriam a possibilidade de controlar a diluição e a penetração durante a operação, e visibilidade total da poça de fusão.

Apesar destas vantagens, o processo GMAW, quando comparado aos processos de soldagem GTAW e SMAW, apresenta algumas dificuldades, tais como: maior sensibilidade à variação dos parâmetros elétricos durante a operação; exige um ajuste rigoroso dos parâmetros de soldagem para se obter um determinado conjunto de características na solda; possui uma menor variedade de consumíveis (BILONI *et al.*, 1981; BLEWETT, 1982). Outras limitações são: a soldagem deve ser protegida de correntes de ar; como o bocal da tocha precisa ficar próximo do metal base a ser soldado, a operação não é fácil em locais de difícil acesso; projeções de gotas de metal líquido durante a soldagem (WAINER, BRANDI e MELLO, 1995).

A Figura 2.2 mostra esquematicamente o processo.

Figura 2.2 – Detalhe da soldagem GMAW (MIRANDA e FERRARESI, 1999).

A soldagem GMAW de alumínio e suas ligas opera normalmente em corrente contínua com polaridade positiva (denominada CC⁺, onde o arame de solda está

ligado na polaridade positiva e a peça-obra ligada na polaridade negativa), podendo ser semi-automática (alimentação automática e deslocamento manual da tocha) ou automática (ambos movimentos automáticos). Devido às altas velocidades de soldagem possíveis (50 a 100 cm/min), o processo GMAW robotizado é bastante empregado industrialmente (BILONI *et al.*, 1981; PÓVOA, 1988; ALCAN, 1993), além de manter constantes variáveis previamente programadas como a velocidade de soldagem, o tecimento, a distância do bocal até a peça e a posição da tocha.

O *stick-out* é o comprimento do arame (eletrodo) não fundido que se estende além do bocal (AWS, 1994). Outras formas similares, encontradas na literatura, para mensurar essa característica são distância do bico de contato a peça (DBCP) ou distância do bocal até a peça. A última será utilizada no presente trabalho.

2.2.1 – Equipamentos utilizados na soldagem robotizada GMAW

Os principais equipamentos do sistema de soldagem GMAW robotizado são: fonte de energia; unidade de alimentação do arame de soldagem com seus controles; tocha de soldagem com sua unidade de refrigeração; sistema de alimentação de gás de proteção, o qual pode ser em cilindros ou rede de gás; e o manipulador ou robô de soldagem, com sua respectiva unidade de controle e programação. Esses equipamentos podem ser visualizados na Figura 2.3, e serão discutidos separadamente na sequência, sendo que essa foi a tecnologia utilizada no presente estudo.

Vieira e Bracarense (2004), ao soldar juntas formadas por tubos de alumínio de quadro de bicicleta com o processo GMAW robotizado, concluíram que essa tecnologia é perfeitamente viável de ser aplicada, podendo ser utilizada em muitas posições, ampliando assim sua utilização na indústria, já que possui grande versatilidade. Quando se tratar de soldas repetitivas de grande volume, a soldagem robotizada é ideal, mesmo para o alumínio, pois o processo se torna relativamente fácil de ser realizado a partir do momento que os parâmetros são corretamente determinados e as trajetórias definidas de forma suave no programa.

Figura 2.3 – Desenho esquemático dos principais equipamentos utilizados no processo de soldagem GMAW robotizado (Adaptado de MOTOMAN, 1995).

2.2.1.1 – Fontes de energia

Uma das formas adotadas de classificação das fontes é pela sua curva característica de saída: fontes de correte constante e fontes de tensão constante (MARQUES, MODENESI e BRACARENSE, 2005).

O início do processo se caracteriza pela abertura do arco, que é diferente para os dois tipos de fonte. Nas fontes de tensão constante, a abertura do arco é simples e segura, visto que a sua corrente de curto-circuito é muito elevada. Mesmo quando o arame toca a peça com velocidade de soldagem plena, o arco se inicia sem grandes dificuldades (ALCAN, 1993; ALTSHULLER, 1998).

Já nas fontes de corrente constante, como não há um aumento da corrente durante o curto, o arame não pode avançar à velocidade plena e, conseqüentemente, o alimentador deve possuir um controle eletrônico capaz de fornecer uma velocidade de arame lenta no início (*"slow-run-in"*) para facilitar a abertura do arco e, depois, passar rapidamente para a velocidade de arame plena, tão logo o arco tenha sido estabelecido (ALCAN, 1993). A partir da década de 1960 e, de forma importante, nas décadas de 1980 e 1990, novos conceitos foram introduzidos no projeto e fabricação de fontes de energia para soldagem. Estes conceitos têm em comum a introdução de dispositivos eletrônicos, muito mais versáteis e rápidos, para o controle de saída, ultrapassando as fontes convencionais estáticas (transformadores e transformadores-retificadores) que pouco mudaram nos últimos quarenta anos. As fontes mais conhecidas que podem ser classificadas como de comando eletrônico no seu conceito de projeto são: as tiristorizadas, as transistorizadas em série, as transistorizadas chaveadas e as inversoras (MARQUES, MODENESI e BRACARENSE, 2005).

Ao escolher uma fonte de soldagem, um fator importante a considerar é o ciclo de trabalho.

2.2.1.2 – Cabeçote de alimentação do metal de adição

O cabeçote leva o arame desde o carretel/barrica até a saída da tocha de soldagem, sendo que no processo GMAW robotizado o mesmo é montado sobre o robô, e engloba todos os sistemas de controle de velocidade do arame e de passagem do gás de proteção. Diferentes tipos de roldanas de tração podem ser montadas no cabeçote de acordo com o diâmetro e o tipo de arame usado, as mais usuais são as com canais recartilhados usados para arame tubular, as com canais em "U" para arame de alumínio e as com canal em "V" para arame maciço. Uma pressão adequada deve ser mantida a fim de não danificar ou distorcer o arame.

Segundo Marques *et al.* (2005) poucas alterações têm sido propostas no projeto e construção dos alimentadores de arame desde o início da utilização dos processos de soldagem com arame consumível. Equipamentos com dois pares de roletes foram inicialmente introduzidos para reduzir a pressão sobre arames tubulares ou materiais macios e, assim, reduzir a chance destes serem amassados durante a sua passagem entre os roletes. O detalhe dos sistemas de cabeçotes com um ou dois pares de roletes pode ser visualizado na Figura 2.4.

Quanto ao conceito do alimentador de arame, normalmente se utiliza o tipo extrator ou então o tipo impulsor-extrator ("*push-pull*") quando a velocidade é crítica e metal de adição é macio. Arames de pequeno diâmetro (0,8 mm, por exemplo) também apresentam problemas de alimentação, pois tendem a dobrar facilmente quando se utiliza o alimentador do tipo impulsor (OKUMURA e TANIGUCHI, 1982).

Figura 2.4 - Sistema com (a) um e (b) dois pares de roletes (MARQUES et al., 2005).

Quanto ao conceito do alimentador de arame, normalmente se utiliza o tipo extrator ou então o tipo impulsor-extrator ("*push-pull*") quando a velocidade é crítica e metal de adição é macio. Arames de pequeno diâmetro (0,8 mm, por exemplo) também apresentam problemas de alimentação, pois tendem a dobrar facilmente quando se utiliza o alimentador do tipo impulsor (OKUMURA e TANIGUCHI, 1982).

Condutos flexíveis adequadamente dimensionados e revestidos com teflon, nylon ou plástico, melhoram a alimentação do arame de alumínio através de longas distâncias, evitando abrasão. Uma alimentação uniforme também é assegurada quando se usa conexões de ajuste não-metálicas, que devem ser verificadas periodicamente.

2.2.1.3 – Manipulador ou robô

Os robôs utilizados para o processo de soldagem são manipuladores programáveis, em geral com 6 graus de liberdade e com capacidade de carga específica para comportar uma tocha de soldagem (6 kg em média). Geralmente os robôs são montados em bases fixas à frente dos gabaritos de soldagem e seus posicionadores, assumindo diversas possibilidades de *layout* dependendo dos requisitos especificados e do produto a ser soldado. Porém existem sistemas que podem ter mais graus de liberdade, através de carros que deslocam o robô em um eixo coordenado em relação à peça.

Na década de 1980, os robôs de soldagem por resistência conduziram o mercado no que diz respeito às vendas. Já na década de 1990, os robôs de soldagem a arco cresceram como uma porcentagem de vendas novas nesse ramo, especialmente fora da indústria automotiva (AWS, 2001). Atualmente existem robôs que possuem sensores que monitoram a posição relativa entre os componentes da

junta, retroalimentando, corrigindo o sistema e fazendo pequenos ajustes de posicionamento para evitar falhas de soldagem. Essa tecnologia é bastante empregada na produção seriada.

As configurações dos robôs mais utilizados em operações de soldagem são apresentadas na Figura 2.5. São eles: de configuração retangular (ou cartesiana), cilíndrico, esférico e articulado. Esta última configuração, cujos movimentos são todos de rotação, apresenta um espaço de trabalho mais complexo e flexível, tornando-o adequado para qualquer tipo de soldagem (linear ou fora de posição). Devido a esta grande flexibilidade, o robô do tipo articulado é o mais utilizado atualmente (MARQUES *et al.*, 2005).

Figura 2.5 – Configurações básicas de robôs industriais: (a) retangular; (b) cilíndrico; (c) esférico e (d) articulado (MARQUES *et al.*, 2005).

A maior vantagem da utilização dos robôs no processo de soldagem é facilidade e rapidez em executar cordões repetitivos e longos, aumentando a produtividade, além da garantia da manutenção constante da velocidade de deslocamento, posição da tocha e distância do bocal até a peça durante todo o processo, conforme previamente programado. Pode-se programar juntas soldadas cujas variáveis, que acabaram de ser citadas, podem ser variadas durante o processo, visando uma melhor qualidade da soldagem (ALFARO, 2003).

2.2.1.4 – Tocha de soldagem e componentes

A tocha de soldagem utilizada no processo de soldagem GMAW robotizado é refrigerada a água, levando-se em conta que os sistemas robotizados são projetados para operar em altos ciclos de trabalho. Para executar sua função básica de manter o arco-elétrico e levar o arame de soldagem continuamente à poça de fusão, a tocha é composta por vários itens como pode ser observado na Figura 2.6. Algumas tochas podem conter em seu corpo sua própria unidade de assistência ao tracionamento de arame (HOLLIDAY, 1993).

Figura 2.6 - Principais componentes de uma tocha de soldagem (Adaptado de MIYAHARA, 2008).

Segundo Marques *et al.* (2005), a tocha de soldagem consiste basicamente de punho ou suporte, que sustenta um bico de contato (onde se energiza o arame), de um bocal que orienta o fluxo de gás e de um gatilho de acionamento do sistema, que quando acionado movimenta um contactor ligado ao primário do transformador da máquina de solda, energizando o circuito de soldagem, além de acionar o alimentador de arame e uma válvula solenóide, que comanda o fluxo de gás.

2.2.1.5 – Gases de proteção

A função primária dos gases de proteção é proteger o arame, a poça de fusão e o arco contra efeitos nocivos do ar atmosférico. É um dos principais consumíveis da soldagem GMAW, além do arame e do líquido anti-respingo (nem sempre utilizado). O bico de contato e os conduítes precisam ser trocados devido ao desgaste natural durante a operação, porém em menor freqüência, podendo ser considerados também como consumíveis do processo.

Segundo Jönsson *et al.* (1995) e Pandey *et al.* (1995), os gases de proteção constituem uma variável de influência crítica no processo de soldagem GMAW. A proteção gasosa afeta diretamente a penetração e as propriedades mecânicas da solda, o formato e a regularidade do cordão, a estabilidade do arco e os fenômenos de transferência metálica.

As três principais características de um gás de proteção são: o seu potencial de ionização; a sua condutividade térmica; e o seu potencial de oxidação.

A energia necessária a produção de um elétron livre é chamada de potencial de ionização. O acendimento e a estabilidade do arco sofrem grande influência do potencial de ionização dos gases de proteção utilizados nos processos de soldagem. Por exemplo, o argônio tem um potencial de ionização mais baixo que o hélio, ou seja, o argônio tem maior facilidade em transformar átomos em íons, ajudando assim a manter um arco mais suave e estável (LYTTLE e STAPON, 1990).

Diferenças na condutividade térmica dos componentes do gás de proteção geram diferenças nas características do depósito da solda resultante. Os gases que têm alta condutividade térmica transferem mais calor para a peça e promovem uma maior penetração na junta e maior fluidez da poça de fusão. Na soldagem de metais altamente condutores, como alumínio e cobre, a condutividade térmica se torna fator crítico. Hélio e dióxido de carbono têm condutividades térmicas maiores do que a do argônio e eles transferem calor mais facilmente para o metal base (LYTTLE e STAPON, 1990).

A capacidade do gás de proteção oxidar um metal durante a soldagem é geralmente chamada de potencial de oxidação. Stenbacka e Persson (1989) e Vaidya (2002) comentam que tanto o CO₂ quanto o O₂, quando presentes no gás de proteção, aumentam o conteúdo de oxigênio no metal de solda. Entretanto, o efeito desses gases é desigual, ou seja, o potencial de oxidação (PO) varia com a percentagem volumétrica dos mesmos na mistura. Machado (1996) mostra por meio gráfico que, quanto mais oxidante a mistura utilizada, menor é a tenacidade do metal de solda, principalmente quando se eleva a temperatura.

A maioria dos gases inertes (argônio, criptônio, neônio, xenônio ou hélio) poderiam ser utilizados para fins de proteção na soldagem GMAW de alumínio.
Entretanto, por razões de custo, os únicos gases normalmente empregados são o argônio (Ar) e o hélio (He) ou misturas dos dois. Na sequência, serão mostradas as características dos gases normalmente utilizados na soldagem GMAW de alumínio:

• Argônio (Ar): é um gás inerte, com baixo potencial de ionização, baixo potencial de oxidação e baixa condutividade térmica. Sua densidade em relação ao ar é maior (ar 1,0; argônio 1,38), portanto um fluxo moderado deste gás promove uma efetiva ação protetora, substituindo o ar na região da solda facilmente, tornando-a menos susceptível a reações, principalmente nos posições plana, horizontal, e vertical. O argônio comercialmente puro é o mais utilizado como gás de proteção nas soldagens de alumínio, conforme verificado na literatura corrente (PIERRE, 1987; LYTTLE e STAPON, 1990; ALCAN, 1993; YOUNG, 1995; ALTSHULLER, 1998; entre outros). Segundo Lyttle (1993), o baixo potencial de ionização do argônio gera uma abertura de arco mais fácil e uma coluna mais estreita, com alta densidade de corrente, concentrando a energia numa menor área e gerando uma maior penetração na solda, porém com perfil mais estreito do cordão.

Hélio (He): também é um gás inerte. De acordo com a literatura (PIERRE, 1987; LYTTLE e STAPON, 1990; ALCAN, 1993; YOUNG, 1995; ALTSHULLER, 1998; entre outros) o hélio tem um alto potencial de ionização e baixa densidade em relação ao ar (ar 1,0; hélio 0,14). Devido ao alto potencial de ionização, o hélio requer maior tensão para ionizar, produzindo assim um arco com temperaturas mais altas. Quanto à baixa densidade, o hélio requer uma vazão maior do que a do argônio para proteger adequadamente a região do arco. Caracteristicamente o hélio transfere mais calor para a peça de trabalho do que o argônio, resultando em boas penetrações, com um perfil mais arredondado de penetração, tendo a vantagem de permitir tolerâncias maiores no desalinhamento entre o arco e a junta, assim como ajuda a evitar a ocorrência de penetração inadequada e falta de fusão.

• Mistura de gases: na soldagem de alumínio, pode-se usar misturas Ar+He, visando uma mistura de suas qualidades. Pequenas variações na composição da mistura de gases têm um efeito relativamente pequeno na taxa de fusão do arame, em comparação com sua influência nas características de transferência arco/metal e no comportamento da poça de fusão. Conforme Marques *et al.* (2005), nos últimos anos foi observado que misturas gasosas ternárias ou mesmo multicomponentes específicos tem sido desenvolvidas para aplicação nas operações de soldagem. Os

19

componentes e a proporção de mistura são otimizados para cada aplicação e, de modo geral, constituem segredo industrial dos diversos fornecedores.

A especificação ANSI/AWS A5.32 trata dos gases de proteção para soldagem. Para que o efeito do gás de proteção seja o desejado, o fluxo deverá ser ajustado corretamente. Segundo Machado (1996), o fluxo deve ser necessariamente laminar. Para um mesmo diâmetro de bocal, quanto maior a vazão, mais alta será a velocidade do mesmo. Caso a velocidade seja muito alta, passando para o regime turbulento, ocorre sucção de ar atmosférico para o interior do arco. Outro cuidado a ser tomado refere-se à pureza dos gases de proteção, pois estes entram em contato direto com o arco elétrico e a poça de fusão, sendo que a pureza exigida, tanto do argônio quanto do hélio, é de 99,99%.

2.2.1.6 – Metal de adição (arame-eletrodo)

O arame-eletrodo é um componente crítico na soldagem GMAW, pois atua com duas funções importantes no processo. A primeira é agir como o anodo do arco elétrico de solda e a segunda é ser o metal de enchimento na soldagem. Como anodo, deve estar centralizado no bocal e ter um ajuste perfeito com o bico de contato para se obter uma ótima ação de fricção entre os mesmos, de modo que a corrente de soldagem tenha uma transferência consistente. Como metal de enchimento, deve estar isento de compostos a base de hidrogênio, evitando assim problemas de qualidade do cordão de solda (ALCAN, 1993; ALTSHULLER, 1998).

Os principais elementos empregados na fabricação de arames de alumínio para soldagem são o magnésio, manganês, zinco, silício e cobre. A principal razão para adicionar esses elementos é aumentar a resistência mecânica do alumínio puro (FORTES e VAZ, 2005).

Marques *et al.* (2005) citam que os arames para soldagem são constituídos de metais ou ligas metálicas que possuem composição química, condições superficiais e dimensões bem controladas. As más qualidades em termos destas propriedades citadas podem produzir falhas de alimentação, consequentemente instabilidade do arco e descontinuidades no cordão de solda.

Os arame-eletrodos são classificados com base na composição química da liga utilizada nas suas fabricações e, para o alumínio, geralmente são especificados dentro dos requisitos da norma ANSI/AWS A5.10, que possui padrões de qualidade

elevados tanto para o produto quanto para a embalagem. Os mais populares são as ligas AWS ER5356 (com adição de magnésio) e AWS ER4043 (com adição de silício).

2.2.2 – Variáveis do processo GMAW

As variáveis de soldagem são os fatores que podem ser regulados para controlar as características do cordão. Para obter os melhores resultados no processo, é necessário conhecer o efeito de cada variável sobre as diversas características ou propriedades da solda.

As variáveis de soldagem são divididas em três grupos para o processo GMAW: pré-selecionadas, primárias e secundárias.

As variáveis pré-selecionadas (conhecidas como variáveis fixas) são o diâmetro e o tipo de arame, o tipo de gás de proteção e sua vazão.

As variáveis primárias reguláveis (conhecidas também com parâmetros de soldagem) controlam o processo depois que as variáveis pré-selecionadas foram determinadas. São elas a tensão do arco, a velocidade de alimentação do arame e a velocidade de soldagem.

As variáveis secundárias, que também podem ser reguláveis, são, às vezes, difíceis de medir com precisão. Elas não afetam diretamente a formação do cordão, mas agem sobre uma variável primária que, por sua vez, provoca certa modificação nas características. São elas a distância do bocal até a peça, e os ângulos de ataque e de trabalho da tocha.

O ângulo de trabalho é dado pela posição da tocha num plano perpendicular à direção de avanço. Nas soldas de topo, ele é 90° em relação à superfície das peças. Já o ângulo de ataque é dado pela linha de centro da pistola e uma linha perpendicular ao eixo da solda (soldagem "puxando" ou "empurrando").

2.2.2.1 – Influência das variáveis de soldagem nas propriedades do cordão

A corrente elétrica é controlada principalmente pela velocidade de alimentação do arame. Um aumento dessa velocidade implica em maior quantidade de arame a ser fundido, como consequência uma maior quantidade de corrente é fornecida pela fonte de soldagem para suprir tal necessidade. A principal influência desta variável está no controle da penetração de solda, a qual é diretamente proporcional à corrente de soldagem, como pode ser verificado na Figura 2.7.

Figura 2.7 – Efeito da corrente de soldagem num processo GMAW, aço carbono, curto-circuito, 75%Ar-25%CO₂ (Adaptado de FORTES e VAZ, 2005).

A tensão de soldagem controla o comprimento do arco elétrico. Um aumento na tensão provoca um acréscimo na altura e no diâmetro do cone do arco. Com o aumento do arco elétrico, uma maior área do metal de solda é aquecida resultando num cordão mais largo e mais baixo pelo aumento da fluidez da poça de fusão. Esse é o principal parâmetro para regular a largura do cordão, conforme pode ser visualizado na Figura 2.8.

Figura 2.8 – Efeito da tensão de soldagem num processo GMAW, alumínio, spray, argônio (Adaptado de FORTES e VAZ, 2005).

A velocidade de avanço da tocha (velocidade de soldagem) também influencia a penetração da solda. Na Figura 2.9 pode-se perceber a diferença na penetração com três valores de velocidade de soldagem.

Figura 2.9 – Efeito da velocidade de soldagem num processo GMAW, alumínio, spray, argônio (Adaptado de FORTES e VAZ, 2005).

O ângulo de ataque também exerce influência sobre a penetração da solda e largura do cordão. Soldando com inclinação positiva ("puxando" a tocha), o arco elétrico atua diretamente sobre a poça de fusão, aumentando a penetração. Já no sentido negativo ("empurrando" a tocha), o arco elétrico permanece sobre o metal

de base frio, reduzindo a penetração e aumentando a largura do cordão. Na Figura 2.10 é possível verificar o descrito acima.

No processo GMAW com alumínio, a tocha deve ser conduzida mantendo-se uma distância do bocal até a peça de 12 a 15 mm, devendo ser inclinada no sentido "empurrando", com um ângulo de 5 a 15º com a vertical, melhorando a molhabilidade (ALCAN, 1993; ALTSHULLER, 1998).

Figura 2.10 – Influência do ângulo e direção da tocha no cordão (Adaptado de COSTA, 2003).

Souza, Resende e Scotti (2009) estudaram a influência da polaridade negativa (CC⁻) e positiva (CC⁺) na geometria do cordão de solda, utilizando a técnica de perfilografia com filmagem digital a alta velocidade, também conhecida como "*Back-lighting*", sendo essa uma característica importante a ser considerada no processo GMAW, apesar da polaridade positiva ser amplamente utilizada nessas aplicações devido maior estabilidade do arco, geração de menos respingos e formação de cordões com geometria adequada.

2.2.3 – Transferência metálica no processo GMAW

De uma forma simplificada, pode-se considerar que existem três tipos básicos de transferência metálica neste processo, que dependem principalmente do tipo de gás de proteção utilizado, do nível de energia (corrente e tensão), do diâmetro e tipo do metal de adição, e do tipo do metal base. São eles (LINCOLN, 2000): transferência por curto-circuito; globular; e "spray" ou goticular.

O primeiro tipo básico de transferência existente é por curto-circuito, a qual pode ser alcançada com qualquer tipo de gás de proteção, a um baixo nível de energia, analisando-se sempre a estabilidade do arco. Segundo Lincoln (2000), Bracarense (2003) e Marques *et al.* (2005), a ponta do arame se funde pela ação do arco elétrico e aumenta de tamanho até atingir a poça de fusão, quando o arco se extingue. A gota então é destacada pela ação de forças eletromagnéticas (efeito *"pinch"*) e transferida à poça por tensão superficial. A formação de respingos é uma característica, a qual pode ser limitada pela seleção adequada dos parâmetros de soldagem e regulagem da indutância na fonte de energia, de forma que os curtos circuitos ocorram de forma suave. O arame-eletrodo toca a poça de fusão numa faixa de aproximadamente 20 a 200 curtos circuitos em um segundo.

Esse tipo de transferência permite a soldagem em todas as posições pelo fato de possuir uma energia relativamente baixa. A utilização de misturas a base de argônio proporciona boa estabilidade de arco e gotas pequenas, minimizando a projeção de respingos. A Figura 2.11 (a) mostra uma foto deste tipo de transferência.

Figura 2.11 – Modos de transferência: (a) curto-circuito; (b) globular; e (c) "spray" ou goticular (Adaptado de material de treinamento MILLER_ITW).

O segundo tipo básico de transferência existente, obtida com nível de energia de soldagem maior que na transferência por curto-circuito, é a globular. Ainda segundo Lincoln (2000), Bracarense (2003) e Marques *et al.* (2005), é caracterizada por um nível de respingos relativamente elevado, sendo que a gota possui o diâmetro maior que o do arame. Com o aumento do tamanho da gota, o seu peso aumenta, acabando por ocasionar a sua separação e sua transferência para a poça de fusão pela ação da gravidade.

É um tipo de transferência existente, porém não aplicado do ponto de vista de processo. Uma ilustração deste tipo de transferência pode ser visualizada na Figura 2.11 (b).

Goticular ou "spray" é o terceiro tipo básico de transferência existente, a qual é muito estável e praticamente isenta de respingos, mas necessita de alta energia de soldagem, sendo formada quando se atinge a chamada "corrente de transição". Conforme Lincoln (2000), Bracarense (2003) e Marques *et al.* (2005), o metal é transferido por pequenas gotículas (menores que o diâmetro do eletrodo) que são arremessadas em direção ao metal base por forças eletromagnéticas muito fortes, axialmente através do arco, a velocidades que vencem a força da gravidade. Devido a isto, o processo, sob certas condições, pode ser utilizado em qualquer posição, sendo mais recomendada sua utilização na plana.

Proporciona alta taxa de deposição (produtividade) e boa penetração com pouquíssima geração de respingos, já que o arco elétrico não apaga. A Figura 2.11 (c) mostra uma foto deste tipo de transferência.

Ferraresi, Figueiredo e Ong (2003) criaram no estudo em questão, através de perfilografia com filmagem digital a alta velocidade, mapas nos quais os tipos de transferência e suas respectivas zonas de transição foram determinadas, na soldagem GMAW convencional de alumínio, com fonte de tensão constante, variando o tipo de gás de proteção e o diâmetro do arame.

2.2.4 – Soldagem com arco pulsado

A pulsação foi introduzida para controlar a transferência do metal a cada intervalo de tempo, obtendo o destacamento de uma gota a cada pulso e com uma baixa corrente média (CORRÊA, 2001).

O processo GMAW pulsado (conhecido como GMAW-P, abreviação de *Pulsed*) tem sido objeto de vários estudos que visam melhorar a qualidade e a produtividade da soldagem (GRUBIC e ANDRIC, 1995). A sua aplicação nas ligas de alumínio não é diferente, visto que as vantagens obtidas com o seu uso são muitas em comparação com o processo GMAW convencional.

O processo se caracteriza por uma forma de onda descrita por quatro grandezas, conforme mostra a Figura 2.12, que são I_p (corrente de pulso), t_p (tempo de pulso), I_b (corrente de base) e t_b (tempo de base), além de suas correspondentes para o oscilograma de tensão. Esses parâmetros devem ser considerados em conjunto com as variáveis tradicionais do processo GMAW (AWS, 1991).

25

Durante o pulso ou tempo de pulso t_p , a corrente I_p é suficientemente alta para provocar o destacamento da gota devido ao efeito eletromagnético, tal como na transferência por "spray", sendo que a cada pulso ocorre o destacamento de uma única gota de diâmetro igual ou menor que o diâmetro do eletrodo. Durante o tempo de base t_b , a corrente I_b é suficiente para manter o arco aberto e conservar o efeito de aquecimento sob controle, mas insuficiente para promover a transferência metálica.

Figura 2.12 – Forma de onda da corrente no processo GMAW-P: (a) idealizada; (b) mais representativa para equipamentos comerciais.

Neste modo de transferência, as peças soldadas são de fácil reprodutibilidade, apresentam baixo aporte de calor e ocorre a formação de um cordão considerado uniforme (KIM e EAGAR, 1993).

O desenvolvimento da soldagem GMAW-P gerou inúmeras aplicações na indústria. Devido à corrente média poder ser reduzida, o tamanho da poça de fusão pode ser controlado, permitindo que o processo seja usado em trabalhos fora de posição (NORRISH e RICHARDSON, 1988; CUNHA e GRUNDMANN, 1995). Com o modo pulsado, a freqüência da transferência e a corrente média podem ser manipuladas para produzir uma gota menor, mais adequada para soldagem fora de posição do que em transferência "spray" convencional com alta energia e transferência por curto-circuito convencional (CRAIG, 1987).

As quantidades de O₂ ou CO₂ nas misturas a base de argônio são restritas no processo pulsado. Utilizando-se altos níveis de CO₂, respingos excessivos ocorrem devido às gotas não serem destacadas suavemente da ponta do arame.

2.2.5 – Tecimento no processo de soldagem

O tecimento (ou trançamento) é o deslocamento lateral, feito com o arame na condução da tocha durante a operação, em relação ao eixo do cordão. Este movimento é utilizado para se depositar um cordão mais largo, fazer flutuar a escória (no caso da soldagem com eletrodo revestido) e garantir a fusão das paredes laterais da junta (MODENESI, 2004). O número de tecimentos é muito grande, os quais podem ser realizados dependendo do tipo de solda, da preparação da junta e da habilidade do soldador. Alguns exemplos são ilustrados na Figura 2.13.

Figura 2.13 – Tipos de tecimento (MIYAHARA, 2008).

Os tipos de tecimento (a) e (i) são os mais usados em soldagens de topo, (d) e (g) são os mais apropriados para soldas de ângulo, (b) é particularmente adequado para chapa grossa, (f) é recomendado quando mais calor deve ser aplicado a uma borda.

Para obter um cordão consistente é essencial que o balanço do movimento de tecimento seja mantido constante. Grande parte da qualidade de uma solda dependerá do perfeito domínio, pelo soldador, da execução destes movimentos. Em soldagem robotizada, existem programas pré-definidos de tecimento que podem ser escolhidos conforme a necessidade do processo.

Durante o movimento de tecimento podem ser observadas variações no comprimento do arco resultando em variações de tensão proporcionalmente, as quais podem ser percebidas geralmente no centro da junta e nas bordas. Essas oscilações podem implicar em alterações nas características do cordão em diferentes regiões da junta soldada. Estudos mostraram que a amplitude do tecimento deve ser relacionada com o diâmetro do arame e valores ótimos foram encontrados quando essa amplitude ficou entre 2,0 e 2,5 vezes o diâmetro do arame-eletrodo de soldagem (KIM e RHEE, 2005).

2.3 – Metalurgia da soldagem

A soldagem geralmente é realizada com aplicação localizada de calor e/ou deformação plástica. Como resultados, alterações das propriedades do material, nem sempre desejáveis ou aceitáveis, podem ocorrer na região da junta. A maioria destas alterações depende das reações ocorridas durante a solidificação e resfriamento do cordão de solda e de sua microestrutura resultante. Assim, a compreensão destes fenômenos metalúrgicos é importante em muitas aplicações da soldagem (MARQUES *et al.*, 2005). Apesar da riqueza e complexidade do assunto, apenas os conceitos básicos necessários ao presente trabalho serão mostrados nessa revisão da literatura.

2.3.1 – Energia de soldagem

Na soldagem a arco elétrico, energia é transferida do eletrodo de soldagem para o metal base através de um arco elétrico. A quantidade de calor adicionada a um material, por unidade de comprimento linear, é o que se chama energia de soldagem, geralmente representada pelas letras E ou H, e cuja unidade usual é kJ/mm, sendo também apresentada em kJ/cm ou J/mm. Para a soldagem a arco elétrico o valor de E, em J/mm, é dado pela Equação 2.1.

$$E = \frac{V_m \times I_m}{v} \tag{2.1}$$

28

Sendo:

E = Energia de soldagem (J/mm);

 V_m = Tensão média (V);

 I_m = Corrente média (A);

v = Velocidade linear de soldagem (mm/s).

A energia de soldagem é a relação entre a Potência do arco (V x I), em *watt*, e a velocidade de soldagem (mm/s), sendo que 1 *watt* = 1 *Joule/s*.

Para o cálculo da energia de soldagem, em processos com arco pulsado, Resende (2009) mostra que o método correto utiliza a Potência Instantânea do arco, ou seja, a média aritmética da multiplicação da tensão pela corrente feita pontualmente, assim como mostrado na Equação 2.2.

$$E = \frac{P_{inst}}{v} = \frac{\frac{\left(\sum V_i \times I_i\right)}{n}}{v}$$
(2.2)

Sendo:

 V_i = Tensão instantânea (V);

 I_i = Corrente instantânea (A);

n = número de vezes que foram feitas as leituras de V_i e I_i.

A energia de soldagem é uma importante característica porque, assim como o pré-aquecimento e a temperatura interpasses, influencia na taxa de resfriamento, a qual pode afetar as propriedades metalúrgicas e mecânicas na zona termicamente afetada (FUNDERBURK, 1999). Após a soldagem, a dissipação de calor na peça ocorre principalmente por condução, das regiões de maior temperatura para o restante do metal.

2.3.2 – Ciclo térmico de soldagem

A variação da temperatura em diferentes pontos da peça durante a soldagem pode ser estimada na forma de uma curva denominada ciclo térmico de soldagem, como pode ser visto na Figura 2.14. Cada ponto localizado próximo à junta experimentará uma diferente variação de temperatura devido à passagem da fonte de calor.

Figura 2.14 – Ciclo térmico de soldagem.

Conforme Marques *et al.* (2005), essa curva apresenta os seguintes pontos importantes:

• Temperatura de pico (T_p), que é a temperatura máxima atingida no ponto. A T_p indica a possibilidade de ocorrência de transformações microestruturais, determinando assim a extensão da região afetada pelo calor durante a soldagem (ZTA). A T_p diminui com a distância ao centro da solda;

 Temperatura crítica (*T_c*), que é a temperatura mínima para ocorrer uma alteração microestrutural relevante, como por exemplo, uma transformação de fase;

 Tempo de permanência (t_p) acima de uma temperatura crítica (T_c), que é o tempo em que o ponto fica submetido a temperaturas superiores a uma temperatura crítica, onde ocorre uma alteração microestrutural ou de propriedades significativas no material;

• Velocidade de resfriamento, que é definida por $(T_1-T_2)/\Delta t$, sendo o tempo necessário para a solda se resfriar de uma dada temperatura (T_1) até outra (T_2) .

2.3.3 – Repartição térmica

Considerando o ciclo térmico de cada ponto próximo à junta, pode-se dizer que a temperatura de pico (T_p) de cada ponto varia com sua distância ao centro do cordão de solda. Colocando na forma de um gráfico as temperaturas de pico contra a distância ao cordão de solda, consegue-se uma curva esquemática semelhante à exibida na Figura 2.15. Esta curva é conhecida como repartição térmica.

Figura 2.15 - Repartição térmica de uma solda.

Marques *et al.* (2005) cita que os ciclos térmicos de soldagem e a repartição térmica são principalmente dependentes dos seguintes parâmetros:

 Tipo de metal de base: relativo principalmente a sua condutividade térmica, pois quanto maior a condutividade térmica do metal, maior sua velocidade de resfriamento (como por exemplo, o alumínio);

 Geometria da junta: como exemplo, uma junta em T possui três direções para o escoamento de calor, enquanto uma junta de topo possui apenas duas (no caso de chapa fina);

 A espessura da junta: para uma mesma condição de soldagem, uma junta de maior espessura facilita o escoamento do calor da região da solda, o que ocorre até uma espessura limite; acima desse limite, a velocidade de resfriamento independe da espessura;

 A velocidade de resfriamento diminui com o aumento do aporte térmico e da temperatura inicial da peça, ou seja, a repartição térmica torna-se mais larga.

A curva de repartição térmica (Figura 2.15) ainda permite definir, para uma solda por fusão, três regiões básicas: Metal Base (MB, regiões C), Zona Termicamente Afetada (ZTA, regiões B) e Zona Fundida (ZF, as temperaturas de pico dessa região foram superiores à temperatura de fusão, T_f , do metal base). A região A compreende tanto o metal de solda quanto a zona fundida.

2.3.4 – Características metalúrgicas da liga AA 5052 pós-soldagem

A liga 5052, assim como as demais da série 5000, não apresenta mudanças de fase no estado sólido durante a soldagem (KAISER, 1978).

Para esse tipo de liga, no estado recozido (O), a mudança estrutural mais marcante será o crescimento do grão. Já no estado encruado (H3X), a ZTA apresentará, além de uma região de crescimento de grão adjacente à ZF, uma região recristalizada localizada um pouco mais afastada (MARQUES *et al.*, 2005).

Fraga (2009) demonstrou em seu trabalho a influência que o grau de encruamento (têmpera) exerce sobre a quantidade de recristalização que pode ser promovida ao longo do material, para a formação da ZTA durante a soldagem. Na Figura 2.16 são apresentadas ilustrações exemplificando a morfologia dos grãos na ZTA para os materiais de têmperas O, H32 e H34, na liga 5052.

Figura 2.16 – Ilustração da ZAC para as têmperas O, H32 e H34 (Adaptado de FRAGA, 2009).

Nas condições testadas pelo autor, o material com têmpera O apresentou a menor ZTA, enquanto que o material com têmpera H34 apresentou a maior ZTA, e o material com têmpera H32 apresentou uma ZTA com largura intermediária entre as outras duas têmperas.

No mesmo estudo, Fraga (2009) utilizou a Figura 2.17 como parte do método para identificar o ponto de início da ZTA, mantidas as mesmas escalas entre o diagrama de fase da liga AI-Mg e gráfico do perfil de temperatura simulada ao longo da ZTA. O início da ZTA corresponde à região mais próxima da linha de fusão do metal de solda com o metal base, é a parte do metal base que não fundiu durante a soldagem, mas que sofreu influência da alta temperatura. Desta forma, a temperatura de início da ZTA é definida no diagrama de fases como sendo 610 °C

por ser a temperatura que toca a linha *Solidus* para a quantidade de 2,8% de magnésio, que é a composição de Mg para a liga 5052.

Figura 2.17 – (a) Diagrama de fase da liga Al-Mg; (b) perfil de temperatura simulada ao longo da ZAC (Adaptado de FRAGA, 2009).

2.3.4.1 – Textura

Uma variável metalúrgica de influência na distorção de ligas encruadas de alumínio é conhecida como Textura. Fraga (2009) realizou análises dessa variável em seu trabalho e concluiu que a presença da textura tipo *Brass* foi o parâmetro responsável pela influência da direção de soldagem sobre as distorções, ou seja, foi a anisotropia das propriedades mecânicas relacionadas a essa textura no material que propiciou a maior quantidade de distorção quando os corpos de prova foram soldados paralelo ao sentido de laminação.

Segundo Padilha e Siciliano Jr. (1995) e Humphreys e Haterly (2004), as orientações cristalográficas de todos os grãos que constituem um material podem estar distribuídas totalmente aleatórias com relação a um sistema de referência, como também estarem concentradas, em maior ou em menor grau, ao redor de alguma ou de algumas orientações particulares. Neste último caso, diz-se que o material policristalino apresenta orientação preferencial ou textura. A textura pode ser desenvolvida num metal ou liga durante uma ou mais operações de processamento, como fundição, conformação mecânica e até no recozimento.

Ainda conforme os mesmos autores, em processos de conformação mecânica, a deformação plástica acontece principalmente por deslizamento de determinados planos cristalinos. Ocorre a rotação do reticulado por deslizamento de planos para orientações mais favoráveis, denominada de textura de deformação. Os principais fatores que influem na textura final de deformação são: a orientação inicial dos grãos antes da deformação; a mudança de forma imposta ao material na conformação; e a temperatura em que o material foi deformado.

Conforme Engler (1996), as texturas de deformação mais freqüentes no alumínio e suas ligas são as do tipo Cobre, tipo *Brass*, e eventualmente a presença das componentes do tipo *Goss* e tipo S. A textura de deformação está intimamente relacionada com o grau e a direção de laminação do material.

Chaturvedi e Chen (2004) avaliaram as propriedades mecânicas na soldagem de chapas de alumínio 2195-T8 soldadas pelo processo FSW e identificaram significativa variação na tenacidade, no limite de resistência, na resistência à fadiga e à propagação de trincas em juntas soldadas com o FSW em função do sentido de laminação da chapa. Os autores explicam que a redução da magnitude dessas propriedades para uma determina direção no material foi causada pela presença de textura cristalográfica *Brass* nessa direção.

2.4 – Tensões residuais e distorções durante a soldagem

Marques *et al.* (2005) explicam que as regiões aquecidas durante a soldagem tendem a se dilatar, mas a dilatação é dificultada pelas partes adjacentes submetidas a temperaturas menores, o que causa o aparecimento de deformações elásticas e, eventualmente, plásticas na região da solda. Como resultado, ao final da soldagem, tensões internas (tensões residuais) e mudanças permanentes de forma e de dimensões (distorções) se desenvolvem na junta, podendo afetar de modo importante a utilidade e o desempenho da estrutura soldada.

2.4.1 – Fundamentação

Quando a soldagem é feita progressivamente, a porção de solda que já está solidificada resiste à contração das porções adjacentes do cordão que está sendo feito. Conseqüentemente, as porções soldadas primeiro são tensionadas em uma

direção longitudinal à linha de solda, diminuindo o comprimento dos cordões. No caso de juntas de topo, as tensões residuais transversais estão também presentes (AWS, 2001). A Figura 2.18 exemplifica o descrito.

Figura 2.18 – Tensões residuais longitudinais (L) e transversais (T) em uma junta de topo (AWS, 2001).

As tensões térmicas na soldagem podem ter dois principais efeitos: produzir distorção ou causar fratura prematura, ou ambos. Distorção é causada quando a região de solda aquecida contrai de maneira não uniforme, causando tensionamento em uma parte da solda por gerar forças excêntricas na seção transversal.

Em juntas de topo essas distorções podem aparecer como variação tanto longitudinal quanto transversal. Pode também aparecer uma variação angular (rotação) quando a face da solda contrai mais do que a raiz. A variação angular produz dobramentos transversais nas chapas e ao longo do comprimento (AWS, 2001). Estes efeitos estão ilustrados na Figura 2.19.

Figura 2.19 - Representação esquemática de distorção em uma junta de topo (AWS, 2001).

As deformações geradas na soldagem são inicialmente transientes e, após o completo resfriamento do material, passam a ser permanentes. Em geral, a afirmação de que a deformação é resultado das tensões residuais não é correta. Radaj (2003) explica que as deformações e as tensões residuais são antagônicas,

ou seja, tensões altas ocorrem quando as deformações são restringidas, e tensões baixas surgem quando as deformações não são restringidas. A Figura 2.20 exemplifica esta relação entre tensões e deformações.

Figura 2.20 - Relação física entre deformações e tensões residuais (BEZERRA, 2006).

Segundo AWS (2001), as distorções podem ser controladas por meio de várias técnicas. As técnicas mais utilizadas controlam a geometria da junta soldada antes ou durante a soldagem. Estas técnicas incluem: (1) a preparação das peças a serem soldadas de modo que as distorções geradas durante a soldagem conduzam à geometria final desejada (pré-deformação); e (2) restrição às peças de modo que elas não possam distorcer durante a soldagem (gabaritos). Uma técnica adicional utilizada é a realização de um projeto e um procedimento de soldagem de modo que a adição de metal seja balanceada em ambos os lados da junta. A seleção do processo de soldagem, bem como a seqüência de solda a ser utilizada, também influenciam na distorção e na tensão residual.

O aparecimento de tensões residuais e/ou distorções em uma estrutura soldada pode ocasionar vários problemas, tais como a formação de trincas, uma maior tendência da estrutura a apresentar fratura frágil, falta de estabilidade dimensional e dificuldade no ajuste de peças ou componentes devido à sua mudança de forma (MODENESI, 2008).

2.4.2 – Tensões residuais de soldagem

Os estudos das tensões residuais (teóricos ou métodos de quantificação) envolvem análises complexas e não serão aprofundados nessa revisão bibliográfica devido os objetivos propostos no presente trabalho.

As tensões residuais são aquelas que permanecem na peça quando todas as solicitações externas são removidas. Aparecem frequentemente em peças submetidas a diferentes processamentos térmicos ou mecânicos, como fundição laminação, forjamento, soldagem, usinagem, dobramento, têmpera, entre outros (MODENESI, 2008).

Em soldagem, as tensões térmicas são geradas por escoamentos parciais localizados que ocorrem durante o ciclo térmico. Como causas geradoras de tensões térmicas em soldagem, pode-se citar (Gurova *et al.*): contração durante o resfriamento de regiões diferentemente aquecidas na operação (*shrinkage residual stresses*); resfriamento superficial mais intenso (*quenching residual stresses*); e transformações de fase (*transformation residual stresses*).

Segundo Modenesi (2008), em sistemas compostos por vários componentes, tensões residuais podem também resultar de forças de reação que se desenvolvem quando os componentes são colocados em posição. Por exemplo, pode-se citar uma estrutura parafusada, quando os parafusos são apertados, tensões se formam nos parafusos e nos componentes presos por eles. Estas tensões independem de solicitações externas, podendo ser, portanto, consideradas como tensões residuais.

As tensões residuais também podem ser reduzidas por tratamentos térmicos ou mecânicos. Por exemplo, a resistência à fratura frágil de muitos aços soldados é geralmente melhorada pelo alívio de tensões térmico. A tenacidade das ZTAs é melhorada por este procedimento.

Em AWS (2001), pode-se encontrar exemplificações das distribuições típicas de tensões residuais longitudinais (σ_X) e transversais (σ_Y) em uma solda de passe único numa junta de topo, e fórmulas propostas para calculá-las.

2.4.3 – Distorções de soldagem

Durante o processo de soldagem, a distribuição de temperaturas não é uniforme, ultrapassando, em algumas regiões, a chamada "temperatura de escoamento do material". Essa é a temperatura na qual a tensão de escoamento do material é praticamente zero e ele não resiste às tensões de origem térmica desenvolvidas no seu interior (MAZZAFERRO e MACHADO, 1992). Nesta temperatura inicia-se o processo de deformação plástica localizada no material

devido às tensões térmicas e que permanecem após o resfriamento. Em soldagem, essas deformações são chamadas de distorções.

Figura 2.21 – Variações dimensionais fundamentais que ocorrem em soldagem (Adaptado de AWS, 2001).

A distorção encontrada em estruturas soldadas é causada por três tipos fundamentais de variações dimensionais que ocorrem durante a soldagem: (1) contração transversal, que ocorre perpendicular ao cordão de solda; (2) contração longitudinal, que ocorre paralela ao cordão de solda; e (3) distorção angular, que consiste em uma rotação em torno do cordão de solda (AWS, 2001; MODENESI, 2008). Estas variações dimensionais são ilustradas na Figura 2.21.

2.4.3.1 – Contração transversal

Segundo AWS (2001), a contração transversal ocorre após a soldagem, ou seja, em temperaturas inferiores às atingidas na realização da solda, durante o processo de resfriamento.

A Figura 2.21 (a) mostra a contração transversal uniforme ao longo da solda, porém isto nem sempre ocorre na prática, especialmente quando o comprimento soldado é grande. Geralmente esse fenômeno é mais complexo e os fatores que têm mais influência na contração transversal são (AWS, 2001): dimensionamento da junta; restrição não-uniforme da junta; e soldagem com vários passes.

Dimensionamento da junta. Conforme AWS (2001), desde que a soldagem seja feita por uma fonte de calor que se mova de uma extremidade à outra da junta, porções ainda não soldadas se movem com o progresso da operação de soldagem, causando variação dimensional rotacional (conhecida como distorção rotacional). Quando duas chapas livres são soldadas de topo, as porções do metal ainda não soldado ou se fecham na extremidade (típico de baixo aporte térmico) ou se abrem (típico de alto aporte térmico), assim como exemplificado na Figura 2.22.

Figura 2.22 – Variação dimensional rotacional em uma junta de topo: (a) soldagem com eletrodo revestido; e (b) soldagem a arco submerso (Adaptado de AWS, 2001).

Pontos de solda são tipicamente utilizados para minimizar a distorção rotacional em soldas de topo. No caso de soldagem manual, os pontos de solda podem ser realizados facilmente. No entanto, quando o processo é automatizado, é necessário que um soldador realize os pontos de solda, culminando em custos adicionais. Deve haver um cuidado especial para fundir completamente os pontos de solda durante a operação de soldagem subsequente.

 Restrição não-uniforme da junta. A quantidade de contração transversal que ocorre na soldagem é afetada pelo grau de restrição aplicado à junta. Restrições externas agem como se fossem um sistema de molas transversais. O grau de restrição é expresso pela rigidez do sistema de molas, sendo que a quantidade de contração diminui com aumento do grau de restrição. Para um conjunto soldado com grande número de juntas, a restrição não é uniforme ao longo da soldagem (AWS, 2001).

 Soldagem com passes múltiplos. Conforme a literatura corrente (AWS, 2001), a soldagem é feita freqüentemente em um único passe, para chapas finas. Entretanto, quando a soldagem é feita através de vários passes, no caso de chapas grossas, a contração é acumulada. A maior parte da contração transversal que ocorre em juntas de topo, soldadas em passe único, decorre da contração do metal de base. O metal de base se expande durante a soldagem, mas quando o metal de solda se solidifica, o metal de base expandido se contrai.

2.4.3.2 – Contração longitudinal

A distribuição da tensão residual longitudinal (σ_x) é mostrada na Figura 2.21 (b), sendo essa tensão a responsável pela contração longitudinal, também mostrada na mesma figura. Essa deformação no metal de solda e regiões adjacentes é restringida pelo metal de base ao redor, sendo resultado da desigual distribuição de temperaturas. A contração longitudinal tende a ser menor que a transversal em cerca de 1/1000 do comprimento da solda (AWS, 2001; MODENESI, 2008)

A seguinte equação foi proposta para estimar a contração longitudinal em juntas de topo (KING, 1964, MASUBUCHI, 1970; apud AWS, 2001):

$$\Delta L = \frac{C_3 \times I \times L}{e} \times 10^{-7} \tag{2.3}$$

Sendo:

 ΔL = Contração longitudinal (mm);

 $C_3 = 12 \text{ e } 305 \text{ quando } L \text{ e } e \text{ estão em polegadas e milímetros, respectivamente;}$

I = Corrente de soldagem (A);

L = Comprimento de solda (mm);

e = Espessura da chapa (mm).

2.4.3.3 – Distorção angular

A distorção angular, mostrada na Figura 2.21 (c) e (d), é gerada pelas diferenças de temperatura entre a face superior e inferior do cordão, que provocam variações nos valores da magnitude de contração no sentido da espessura da chapa. Ocorre geralmente em juntas de topo quando a contração transversal não é uniforme na direção da espessura (AWS, 2001).

A magnitude da distorção angular depende dos seguintes fatores (AWS, 2001): largura e profundidade da zona de fusão relativa à espessura da chapa; tipo de junta; sequência de soldagem; propriedades termomecânicas do material; e parâmetros do processo de soldagem.

A distorção angular também pode aparecer no sentido longitudinal, sendo conhecida como flexão longitudinal. Quando a linha de solda não coincide com a linha neutra da estrutura (no sentido da espessura da chapa), a contração longitudinal do metal depositado produz um momento de curvamento, resultando em flexão longitudinal. Se a solda for realizada em uma posição acima do eixo neutro, a chapa irá se curvar para cima. Caso a solda seja realizada em uma posição abaixo do eixo neutro, a chapa irá se curvar para baixo (AWS, 2001). A Figura 2.23 ilustra a flexão longitudinal em uma junta soldada.

Figura 2.23 – Flexão longitudinal (MASUBUCHI, 1980).

Outro tipo de distorção angular, conhecida como distorção devido à instabilidade, ocorre em chapas finas quando o comprimento da chapa de teste excede o comprimento crítico para uma determinada espessura. O aumento da energia de soldagem também aumenta a deflexão da chapa, fazendo com que o efeito dessa distorção seja maior (AWS, 1991). A Figura 2.24 ilustra a distorção devido à instabilidade.

Figura 2.24 – Distorção devido à instabilidade (MASUBUCHI, 1980).

Taniguchi e Masubuchi (1972) compararam a distorção angular no processo de soldagem do alumínio e do aço, em juntas livres e com grau de restrição, chegando às principais conclusões: as distorções angulares no alumínio são maiores que no aço, desde que elas sejam comparadas tendo o peso do metal de solda como parâmetro; quando se toma o tamanho do filete como parâmetro, geralmente a distorção ocorrida no aço é maior do que no alumínio, tanto para juntas livres quanto para juntas restringidas; para soldagem com juntas livres, a máxima distorção angular ocorreu em espessuras variando de 6 a 8 mm para o alumínio, e de 8,5 a 9,5 mm para o aço; e a ocorrência da máxima distorção angular no alumínio foi em juntas mais finas enquanto que, para o aço, aconteceu o contrário.

Camilleri e Gray (2005) investigaram deformações em chapas finas de aço devido à soldagem com arame tubular. Estes autores melhoraram a eficiência computacional para simulação da soldagem no contexto de previsão das deformações. Desenvolveram um modelo simplificado de elementos finitos, baseado num modelo térmico bidimensional e termoelastoplástico. Estes autores observaram que as deformações angulares causadas pela soldagem foram coerentes com os dados obtidos por simulação. Destacam ainda que, para obter resultados com precisão, é importante conhecer as deformações iniciais da chapa e a influência das condições de fixação e do peso próprio do material.

Withers e Bhadeshia (2001) apresentam uma síntese sobre a natureza e origem das tensões residuais. Apontam, dentre outros problemas, as deformações como sendo uma grave não-conformidade decorrente dos gradientes térmicos inerentes à soldagem, que levam à rejeição ou redução da vida útil de um componente mecânico. Estes autores enfatizam a importância do desenvolvimento de procedimentos de tratamentos térmicos pós-soldagem e de validação de modelos de elementos finitos que viabilizem a otimização dos processos de soldagem para minimizar tensões e deformações.

Segundo Deng, Liang e Murakawa (2007), a quantidade de distorção devido à soldagem, no caso, a distorção angular (ou deflexão) que ocorre paralela ao cordão de solda, foi reduzida significativamente quando a espessura da chapa foi aumentada de 9 mm para 12 mm. Os resultados simulados demonstraram que o gradiente de temperatura através da espessura é o principal fator que governa a distorção angular em juntas com soldas de filete.

42

Mazzaferro e Machado (1992) realizaram análises sobre as distorções originadas em corpos de prova compostos da liga Al-Mg 5083 O, sendo que os resultados demonstraram, principalmente, que os três tipos de distorção (contração transversal, contração longitudinal e deformação angular) aumentam com o aumento da energia de soldagem e área da seção transversal do chanfro.

Santos (2009), soldando corpos de prova compostos da liga AA 5052 H34 e alternando as variáveis de pulsação do arco, concluiu que, em termos de distorção absoluta, o número de pulsos por segundo (PPS) é a variável que mais influencia na distorção angular, seguida da largura do pulso (LP), corrente de pico (Ip) e corrente de base (Ib), mantendo a mesma energia de soldagem para todos os casos.

CAPÍTULO 3

MATERIAIS E MÉTODOS

3.1 – Materiais e equipamentos utilizados

Os métodos e procedimentos utilizados são mostrados no item 3.2, após a descrição dos materiais e equipamentos.

3.1.1 – Célula de soldagem

A Figura 3.1 mostra esquematicamente a célula de soldagem utilizada, e na sequência do trabalho serão destacados os seus principais equipamentos, sendo os mesmos mostrados de maneira exemplificada no item 2.2.1 da revisão da literatura.

Figura 3.1 – Esquema da célula de soldagem robotizada utilizada.

A fonte de soldagem é multiprocessos, alimentação de corrente contínua (CC) de inversão primária.

Possui 24 programas pré-estabelecidos de fábrica para uso com o modo GMAW pulsado. Cada programação foi desenvolvida em torno de uma combinação particular de arame/gás. Para aplicações de soldagem na qual nenhuma das 24 programações proporcione um resultado adequado, qualquer uma dessas programações pode ser alterada para se adequar à aplicação (THERMADYNE,

1998). Utilizou-se o programa no modo padrão 7 (STD), como pode ser visto na Tabela 3.1, sendo que apenas esses parâmetros são fornecidos pelo manual.

Programação STD	Tipo de arame	Diâmetro do arame (mm)	T _p (ms)	I _p (A)	V _b (V)	Mistura de gás
7	Alumínio	1,2	1,4	27 5	17	100% Ar

Tabela 3.1 – Parâmetros utilizados na fonte de soldagem no modo padrão 7 (Thermadyne, 1998).

O visor digital da fonte não mostra o número real de pulsos por segundo, mas sim um número de referência. A faixa do medidor é de 0 a 440. A fonte produz aproximadamente 30 pulsos por segundo na posição 0, e aproximadamente 300 pulsos por segundo na posição 440 (THERMADYNE, 1998). O programa utilizado no presente trabalho indicou no visor o número 225, que corresponde a aproximadamente 155 pulsos por segundo.

O manipulador utilizado possui 6 graus de liberdade (eixos), denominados eixos S, L, U, R, B e T, utilizado especificamente para processos de soldagem, sendo que sua configuração é do tipo articulada.

O cabeçote de alimentação pode tracionar o arame de duas maneiras: em barricas ou carretéis. Utilizou-se carretel, com um suporte de fixação adaptado próximo ao cabeçote, como pode ser visualizado na Figura 3.2 (a). O cabeçote em questão está configurado com quatro roldanas com canais em "U" ideais para trabalho com arame de alumínio.

Figura 3.2 – Robô de soldagem utilizado: (a) disposição dos equipamentos para a soldagem; e (b) ilustração dos graus de liberdade (Adaptado de MOTOMAN, 1995).

A tocha de soldagem é refrigerada a água e com conduite de teflon, difusor de gás, bicos de contato CuCrZr, além do bocal cônico de diâmetro 15,5 mm.

Na frente da célula se realiza a carga e descarga das peças através de mesa giratória de duas posições. Durante a soldagem na produção, utiliza-se essa mesa para que, enquanto o robô solde uma peça dentro da célula de soldagem, o operador, no lado de fora, monte as peças no gabarito para a soldagem da próxima peça. Ao fim do processo, o programa gira a mesa para descarga da peça soldada e início da soldagem da peça que foi preparada. Desta maneira, se consegue reduzir o tempo de preparação. Utilizou-se apenas uma posição da mesa no presente trabalho, que pode ser visualizada na Figura 3.2 (a).

Durante a regulagem dos parâmetros de soldagem, utilizou-se um multímetro calibrado para verificar se os valores dos parâmetros nas saídas nos terminais da fonte de soldagem estavam corretos. As leituras encontradas foram satisfatórias com o visor digital da fonte e serviram para elaborar a reta de calibração do robô.

3.1.2 – Gabarito de soldagem

Para a realização da soldagem das placas de teste (PTs), foi necessário fabricar um gabarito simples, de forma que o mesmo possibilitasse a manutenção da posição relativa entre as placas de teste e as coordenadas previamente definidas no programa de soldagem utilizado. O gabarito mostrado na Figura 3.3 foi elaborado de modo a deixar apenas duas pequenas áreas de contato com a PT (placa de teste) e apenas dois elementos de fixação próximos a borda de umas das chapas da PT, influenciando o menos possível na distorção.

Figura 3.3 – Gabarito de soldagem utilizado: (a) fixado na mesa e com a placa de teste montada; e (b) apenas fixado na mesa.

3.1.3 – Consumíveis de soldagem

Utilizou-se arame de soldagem maciço de diâmetro 1,2 mm fornecido em carretel de 7 kg, com especificação AWS ER5356. Um único carretel foi suficiente para soldagem de todas as PTs.

Como gás de proteção, utilizou-se argônio puro em um cilindro, numa vazão de 13 l/min em todos os ensaios. Medições de vazão foram realizadas entre as soldagens das PTs por um bibimetro no bocal da tocha para que se pudesse compensar a perda de carga do cilindro até a saída no bocal.

3.1.4 – Material base e placas de teste

O trabalho foi realizado em PTs constituídas da liga AA 5052 H34, compostas de 02 chapas de 400 x 180 x 4,75 mm. A Figura 3.4 mostra a qualidade superficial obtida nas chapas após corte e fresamento (junta chanfrada). As Figuras 3.5 e 3.6 mostram as dimensões das chapas que formaram as PTs e dos dois tipos de juntas testadas no trabalho.

As PTs foram montadas tendo as chapas ponteadas 4 vezes, sendo dois pontos nas extremidades e dois pontos distanciados simetricamente entre si, na parte de baixo.

As dimensões das PTs foram baseadas na Norma AWS D1.2 (2003) no que diz respeito a qualificação do procedimento de soldagem para a aplicação prática, correspondente ao processo que está sendo estudado. Já as dimensões dos dois tipos de juntas foram baseadas na literatura.

Figura 3.4 – Qualidade superficial obtida: (a) chapa sem chanfro; e (b) chapa chanfrada por fresamento em 30°.

Figura 3.5 – Dimensões da junta sem chanfro (junta 1).

Figura 3.6 – Dimensões da junta com chanfro em 60° (junta 2).

3.1.5 – Equipamento de medição tridimensional

A caracterização da distorção angular foi realizada por uma máquina de medição tridimensional portátil de braço articulado, com alcance de medição de 3000 mm, como pode ser verificado na Figura 3.7. Utilizou-se ponta seca para melhorar o contato com os pontos traçados nas PTs.

A aquisição das medições dos pontos é feita automaticamente pelo software desenvolvido pelo próprio fabricante do equipamento e instalado no computador.

Figura 3.7 - Máquina de medição tridimensional utilizada (Romer).

3.1.6 – Equipamento de ensaio de tração

Para os ensaios de tração, foi utilizada uma máquina com célula de carga de 15.000 kgf e velocidade de ensaio de 5 mm/min, conforme mostra a Figura 3.8.

Figura 3.8 – Máquina de tração utilizada (Kratos).

3.2 – Métodos experimentais

Foram soldadas 24 PTs e 14 PTRs, de acordo com as condições mostradas na Tabela 3.2.

A abreviação adotada PTT refere-se às <u>placas de teste</u> montadas a partir das chapas cortadas no sentido <u>transversal</u> de laminação, enquanto PTL refere-se às <u>placas de teste</u> montadas a partir das chapas cortadas no sentido <u>longitudinal</u>.

As PTs identificadas como PTTR e PTLR se referem, respectivamente, às <u>placas de testes reservas</u> montadas a partir das chapas cortadas no sentido <u>transversal</u> e <u>longitudinal</u> de laminação, caso fosse necessária a substituição de alguma PT por um possível imprevisto nos testes.

Foram definidos dois tipos de juntas, denominadas junta 1 (sem chanfro) e junta 2 (chanfro 60°), conforme já mostrado. Para cada tipo de junta, foram escolhidos três tipos de tecimentos, normalmente utilizados no chão de fábrica, sendo: (1) sem tecimento; (2) tecimento "Zig-Zag"; e (3) tecimento "Vai-Vem". Para

cada tipo de tecimento foram montadas quatro tipos de PTs, duas com chapas retiradas no sentido transversal de laminação, e duas com chapas retiradas no sentido longitudinal.

3.2.1 – Identificação do sentido de laminação

O sentido de laminação das chapas foi informado pelo fornecedor do material base. As Figuras de 3.9 e 3.10 mostram a maneira como as PTs foram cortadas por guilhotina, em relação ao sentido de laminação.

Figura 3.9 – Corte das PTs no sentido transversal de laminação.

Figura 3.10 – Corte das PTs no sentido longitudinal de laminação.

3.2.2 – Avaliação da composição química

Para avaliação da composição química do material base, utilizou-se análises feitas por Espectrometria, no laboratório da fundição da Máquinas Agrícolas Jacto S/A. A Tabela 3.3 mostra a composição química obtida.

Tabela 3.3 – Composição química (em %) das chapas utilizadas.								
AI	Mg	Si	Fe	Zn	Cu	Pb	Mn	Cr
97,181	2,340	0,032	0,220	0,003	0,014	0,006	0,038	0,166

Analisando-se os resultados de Espectrometria, pode-se constatar que o material base usado neste trabalho encontra-se dentro das especificações da norma ASTM B209M-04, composição essa mostrada no item 2.1.1 na revisão da literatura.

3.2.3 – Calibração do controlador e fonte de soldagem

Foi realizada uma calibração prévia nos parâmetros de soldagem antes dos testes, para se obter a correta relação entre o argumento programado no "*Teach-Pendant*" e a corrente de soldagem média na saída da fonte, de acordo com a recomendação do manual do controlador do robô. A reta obtida pode ser vista na Figura 3.11.

Através do software *Excel 2007*, utilizando-se a ferramenta de Análise de Dados *Regressão*, foi analisada a tendência de comportamento das duas variáveis, como verificado na Tabela 3.4.

Segundo Levine, Berenson e Stephan (2000), a análise de regressão é utilizada principalmente com o objetivo de previsão. O propósito do método é o desenvolvimento de um modelo estatístico que possa ser utilizado para prever os valores de uma variável dependente ou de resposta, com base nos valores de pelo menos uma variável independente ou explicativa.

Obteve-se um *coeficiente de correlação linear de Pearson (r)* de 0,98444, ou seja, forte correlação linear positiva entre as variáveis. Somado a isso, como o valor do *F de significação* foi de 0,00006 e os *valores-P* foram de 0,00715 e 0,00006, ambos menores que 0,05, conclui-se que esse modelo é significativo estatisticamente em representar a correlação linear entre as variáveis.

Um bom *coeficiente de determinação* (r^2) foi obtido, sendo de 0,96913, ou 97%, mostrando a boa qualidade do modelo.

Figura 3.11 – Reta gerada na calibração, relacionando os valores de argumento programados no controlador com os valores de corrente média na saída da fonte.

Tabela 3.4 – Dados resumidos de redressão linear (Ardumento X Correr	ente Média	Corrent	X C	aumento)	r (Ar	linear	regressão	de	resumidos	Dados	3.4 -	Tabela
--	------------	---------	-----	-----------	-------	--------	-----------	----	-----------	-------	-------	--------

	Coeficientes	Erro Daarao	Statt	valor-P	95% Interiore
		- I.*		1 0	050/ - 6 -
Total	6	2870,85714			
Residuo	5	88,62634	17,72527		
Regressão	1	2782,23080	2782,23080	156,96411	0,0000
	gl	SQ	MQ	F	F de significação
ANOVA					
Observações	7				
Erro padrão	4,21014				
R-quadrado ajustado	0,96295				
R-Quadrado	0,96913				
R múltiplo	0,98444				
Estatistica de regressa	0				

3.2.4 – Definição dos parâmetros de soldagem

Foram realizados testes iniciais, com o mesmo material base e espessura, no entanto, utilizando-se chapas de menores dimensões, com o intuito de se definir os parâmetros ideais para a soldagem final das PTs, sempre considerando como parâmetro de comparação a mesma energia de soldagem.

A limpeza das PTs foi realizada através de escovamento em toda a região da junta de solda e na sequência realizada a soldagem em passe único.

Na Tabela 3.5 são mostrados os principais parâmetros utilizados para a realização experimental desse trabalho. A energia de soldagem foi de 349 J/mm, calculada através da Equação 2.1.

Devido não se ter um sistema de aquisição de dados no local da soldagem, não foi possível utilizar a Equação 2.2, também mostrada na revisão da literatura, que seria a forma correta no cálculo da energia de soldagem para arco pulsado.

rabeia 5.5 – riesumo dos parametros de soldagem utilizados.						
Resumo dos parâmetros de soldagem utilizados						
Corrente média	140 A (argumento 2,4)					
Tensão média	20,4 V					
Velocidade de soldagem	49 cm/min (8,2 mm/s)					
Distância do bocal até a peça	13 mm					
Ângulo da tocha	90°					
Vazão de gás (argônio)	13 l/min					
Energia de soldagem	349 J/mm					

Tabela 3.5 – Resumo dos parâmetros de soldagem utilizados.

Tanto no tecimento tipo "Vai-Vem" quanto no "Zig-Zag", utilizou-se uma amplitude de movimento de 2,5 mm e uma frequência de 4 Hz para a realização do cordão de solda.

3.2.5 – Definição da medição tridimensional e análise estatística

Para a medição tridimensional, os pontos foram demarcados 15 mm um em relação ao outro, ao longo do perímetro das PTs. Para facilitar a análise dos dados, foram definidas três vistas, conforme descrito abaixo. A Figura 3.12 mostra a esquematização do método.

 Vista 1 – perpendicular ao cordão de solda, ao longo da largura da PT, onde se inicia o processo (visualização da distorção angular transversal no início da soldagem);

 Vista 2 – paralela ao cordão de solda, ao longo do comprimento da PT (visualização da flexão longitudinal);

 Vista 3 – perpendicular ao cordão de solda, ao longo da largura da PT, onde se finaliza o processo (visualização da distorção angular transversal no final da soldagem), gerando um total de 67 pontos.

Figura 3.12 – Esquematização das vistas e sequência de medição dos pontos.

Os pontos foram traçados com o auxílio de um traçador de altura, como pode ser visto no detalhe da Figura 3.13. O gabarito foi fixado por grampos em um desempeno no momento da medição. A PT foi apoiada na sua extremidade oposta, para evitar erros ao colocar a ponta seca do braço tridimensional no ponto a ser medido, pois essa extremidade da PT fica livre devido o conceito adotado no gabarito, podendo gerar incerteza de medição ao se coletar o ponto.

Figura 3.13 – Montagem para medição dos pontos.

Através do braço 3D, foi medida a altura destes pontos em relação a um plano padrão tirado no gabarito nas duas bases de apoio das PTs, com o intuito de se obter a distorção real que as PTs sofreram, sendo esse o nivelamento adotado para todas as medições. Ou seja, considerou-se apenas a coordenada cartesiana Z, obtida pela medição do ponto em relação ao plano padrão.

A medição dos pontos foi realizada antes ($Z_{Inicial_Ponto}$) e após a soldagem (Z_{Final_Ponto}), gerando assim a quantificação das distorções angulares reais, assim como mostrado na Equação 3.1, pois as PTs já apresentavam deformações antes da soldagem geradas principalmente pelo corte por guilhotina, pelo próprio processo de fabricação das chapas e pelo ponteamento. O Apêndice A mostra a "nuvem de pontos" obtida em todas as medições para o tratamento desses dados.

$$\Delta Z_{Ponto} = Z_{Final_Ponto} - Z_{Inicial_Ponto}$$
(3.1)

Tendo esses valores coletados e calculados, gerou-se um gráfico para cada uma das três vistas (mostradas na Figura 3.12) em cada uma das PTs, facilitando a visualização e interpretação das distorções.

Na sequência foi calculada a amplitude da distorção para cada uma das vistas gráficas em cada uma das PTs, conforme a Equação 3.2.

$$Amplitude_{Vista} = \left| \Delta Z_{Ponto_max} - \Delta Z_{Ponto_min} \right|$$
(3.2)

Comparou-se então estatisticamente as amplitudes das distorções, primeiramente de maneira individual na junta 1 e 2, finalizando na sequência junta 1 X junta 2. O software *Excel 2007* foi utilizado para tal finalidade, em especifico as ferramentas de Análise de Dados *Anova fator único* e *fator duplo com repetição*.

Segundo Levine, Berenson e Stephan (2000), o termo análise de variância (ou *Anova*) parece ser um nome mal aplicado, uma vez que o objetivo é analisar diferenças entre as médias aritméticas. No entanto, a partir de uma análise na variação dos dados, entre ou dentro dos grupos em estudo, pode-se tirar conclusões sobre possíveis diferenças nas médias dos grupos.

Como premissas para a o teste de hipóteses, deve-se definir as Hipóteses (H_o *e* H_1) e o Nível se Significância (α). Tradicionalmente, os pesquisadores têm

selecionado os níveis de α em 0,05 (5%) ou menos. O teste de hipóteses consiste em verificar se as médias dos resultados dentro do planejamento são estatisticamente iguais ou diferentes, bem como verificar se há interação entre essas variáveis.

Para avaliar as distorções, nos dois tipos de juntas, foram consideradas duas variáveis de influência: o tipo de tecimento e a direção de soldagem em relação ao sentido de laminação da PT. A variável de resposta analisada foi a distorção na PT, quantificada através das amplitudes das distorções em cada vista.

3.2.6 – Ensaios mecânicos

A Figura 3.14 mostra como foram extraídos os corpos de prova para ensaio de tração e para realização de análise macrografica. Para cada PT soldada, foram extraídos dois corpos de prova para ensaio de tração e dois para macrografia. O corte (linha azul) foi realizado por serra de fita.

Para a revelação da macrografia, foi utilizado o reagente de Tucker (ácido fluorídrico 15 ml, clorídrico 45 ml, nítrico 15 ml e água 25 ml), na temperatura ambiente e ataque por imersão. O dimensionamento do corpo de prova para ensaio de tração, baseado na norma ANSI/AWS D1.2, e o dimensionamento adotado no corpo de prova para macrografia, são mostrados na Figura 3.15.

Figura 3.14 – Dimensionamento de corte dos corpos de prova para ensaio de tração e macrografia.

Figura 3.15 – Dimensionamento dos corpos de prova para ensaio de tração e macrografia.

CAPÍTULO 4

RESULTADOS E DISCUSSÕES

4.1 – Distorções angulares transversais e flexões longitudinais

Duas foram as formas como as distorções angulares apareceram em uma mesma PT: transversal "perfil parabólico com concavidade para baixo" e longitudinal "perfil parabólico com concavidade para cima" (Figuras 4.1 e 4.2); ou transversal "perfil parabólico com concavidade para cima" e longitudinal "perfil parabólico com concavidade para cima" e longitudinal "perfil parabólico com concavidade para cima" e longitudinal "perfil parabólico com concavidade para cima" (Figuras 4.1 e 4.2); ou transversal "perfil parabólico com concavidade para cima" e longitudinal "perfil parabólico com

Figura 4.1 – Distorção transversal "perfil parabólico com concavidade para baixo".

Figura 4.2 – Distorção longitudinal "perfil parabólico com concavidade para cima".

Figura 4.3 – Distorção transversal "perfil parabólico com concavidade para cima".

Figura 4.4 - Distorção longitudinal "perfil parabólico com concavidade para baixo".

O perfil do cordão de solda foi o fator determinante para as formas das distorções, conforme revelado pelas macrografias.

As placas de teste com penetração excessiva de solda como característica principal (maior parte da solda numa posição abaixo do eixo neutro, no sentido da espessura), apresentaram as distorções mostradas nas Figuras 4.1 e 4.2. Esse tipo de distorção só foi verificado em algumas PTs da junta 1. A Figura 4.5 (a) e (b) mostra, respectivamente, uma macrografia realizada na PTLR2 e PTL3.

Já as PTs com penetração mais uniforme e regular (maior parte da solda numa posição acima do eixo neutro, no sentido da espessura), apresentaram as distorções mostradas nas Figuras 4.3 e 4.4. A Figura 4.6 (a) e (b) mostra, respectivamente, uma macrografia realizada na PTT10 e PTL8.

Figura 4.5 – Macrografias realizadas no: (a) PTLR2; e b) PTL3.

Figura 4.6 – Macrografias realizadas no: (a) PTT10; e (b) PTL8.

4.2 – Placas de teste sem chanfro (junta 1)

As PTs sem chanfro apresentaram os dois tipos de formas de distorções transversais e longitudinais:

- 11 PTs apresentaram transversal "perfil parabólico com concavidade para baixo" e longitudinal "perfil parabólico com concavidade para cima" (Figuras 4.1 e 4.2).
- 8 PTs apresentaram transversal "perfil parabólico com concavidade para cima" e longitudinal "perfil parabólico com concavidade para baixo" (Figuras 4.3 e 4.4).

A dificuldade para manutenção de um cordão com características mais regulares de penetração no decorrer da soldagem foi maior para esse tipo de junta, gerando as duas formas de distorções descritas no parágrafo anterior.

Evidenciou-se também variação dimensional rotacional nas PTs da junta 1, durante a fase de testes, idêntica à mostrada na Figura 2.22 (a) na revisão da literatura. A abertura de 1,4 mm entre as chapas se mostrou apropriada para evitar esse tipo de distorção durante a soldagem das PTs, além do ponteamento realizado.

4.2.1 – Sem tecimento

As Figuras de 4.7 a 4.9 mostram os gráficos das distorções nas três vistas para a condição sem tecimento.

Figura 4.7 – Distorção vista 1, PT sem chanfro (junta 1) e sem tecimento.

Figura 4.8 – Distorção vista 2, PT sem chanfro (junta 1) e sem tecimento.

Figura 4.9 – Distorção vista 3, PT sem chanfro (junta 1) e sem tecimento.

Verificou-se que placas de teste PTT2 e PTTR2 tiveram distorções com flexões em sentido contrário às demais.

A Tabela 4.1 mostra os valores das amplitudes das distorções entre PTTs e PTLs na condição sem tecimento. Também foi salientado em negrito os valores das maiores e menores amplitudes encontradas.

	Sem tecimento - Junta sem chanfro										
PTT		ΔZ _{Ponto_max} (mm)	ΔZ _{Ponto_min} (mm)	Amplitude (mm)		ΔZ Ponto_min (MM)	ΔZ _{Ponto_max} (mm)	P	TL		
	Vista 1	1,648	-5,660	7,308	5,119	-2,858	2,261	Vista 1			
PTT1	Vista 2	-2,127	-6,449	4,322	2,678	-5,536	-2,858	Vista 2	PTL1		
	Vista 3	2,005	-2,127	4,132	5,616	-3,316	2,300	Vista 3			
	Vista 1	6,286	-1,964	8,250	6,048	-2,827	3,221	Vista 1			
PTT2	Vista 2	11,449	6,771	4,678	3,995	-6,822	-2,827	Vista 2	PTL2		
	Vista 3	9,963	-1,834	11,797	6,966	-3,966	3,000	Vista 3			
	Vista 1	11,629	-2,231	13,860	7,986	-4,884	3,102	Vista 1			
PTTR2	Vista 2	16,522	11,629	4,893	4,699	-7,504	-2,805	Vista 2	PTLR2		
	Vista 3	11,899	-3,480	15,379	6,324	-2,805	3,519	Vista 3			

Tabela 4.1 – Amplitudes das distorções entre PTTs e PTLs na condição sem tecimento, junta 1.

A Tabela 4.2 mostra a saída dos resultados gerada pelo Excel para análise das amplitudes das distorções entre as PTTs e PTLs na condição sem tecimento, utilizando a ferramenta *Anova: fator único*.

As hipóteses adotadas, para análise individual de cada tipo de tecimento, foram:

• H_{02} ($\mu_{PTT} = \mu_{PTL}$) – O sentido de laminação da chapa em relação ao cordão de solda não é uma variável de influência estatisticamente significativa nas médias das amplitudes das distorções.

• H_{12} ($\mu_{PTT} \neq \mu_{PTL}$) – O sentido de laminação da chapa em relação ao cordão de solda é uma variável de influência estatisticamente significativa nas médias das amplitudes das distorções.

Segundo Costa Neto (2002), quando F < F crítico e valor-P > 0,05, escolhe-se H₀. Quando F > F crítico e valor-P < 0,05, escolhe-se H₁. O nível de significância adotado, para essa análise e de todas as outras, foi de 0,05 (5 %).

RESUMO						
Grupo	Contagem	Soma	Média	Variância	Desvio Padrão	
Amplitude PTT (mm)	9	74,6190	8,2910	19,0205	4,3612	
Amplitude PTL (mm)	9	49,4310	5,4923	2,5421	1,5944	
ANOVA Fonte da variação	sq	gl	MQ	F	valor-P	F crítico
Entre grupos	35,2464	1	35,2464	3,2692	0,0894	4,4940
Dentro dos grupos	172,5010	16	10,7813			
Total	207,7474	17				

Tabela 4.2 – Anova: fator único. Saída de dados para análise das amplitudes das distorções entre PTTs e PTLs na condição sem tecimento, junta 1.

Verificou-se na Tabela 4.2 que o valor de *F* (3,2692) é menor que *F crítico* (4,4940), logo se pode admitir que o sentido de laminação da chapa em relação ao cordão de solda não é uma variável de influência estatisticamente significativa nas médias das amplitudes das distorções (H_{02}) na condição sem tecimento.

4.2.2 – Tecimento "Zig-Zag"

As Figuras de 4.10 a 4.12 mostram os gráficos das distorções nas três vistas para o tecimento "Zig-Zag".

Figura 4.10 – Distorção vista 1, PT sem chanfro (junta 1) e tecimento "Zig-Zag".

Figura 4.11 – Distorção vista 2, PT sem chanfro (junta 1) e tecimento "Zig-Zag".

Figura 4.12 – Distorção vista 3, PT sem chanfro (junta 1) e tecimento "Zig-Zag".

Verificou-se que a placa de teste PTL3 teve distorções com flexões em sentido contrário às demais.

A Tabela 4.3 mostra os valores das amplitudes das distorções entre PTTs e PTLs no tecimento "Zig-Zag". Também foi salientado em negrito os valores das maiores e menores amplitudes das distorções encontradas.

	Tecimento "Zig-Zag" - Junta sem chanfro										
PTT		ΔZ _{Ponto_max} (mm)	ΔZ _{Ponto_min} (mm)	Amplitu	de (mm)	ΔZ _{Ponto_min} (mm)	ΔZ Ponto_max (mm)	P	TL		
	Vista 1	4,295	-2,639	6,934	3,692	-2,452	1,240	Vista 1			
PTT3	Vista 2	10,386	4,191	6,195	1,931	-4,383	-2,452	Vista 2	PTL3		
	Vista 3	4,191	-3,323	7,514	4,490	-4,243	0,247	Vista 3			
	Vista 1	9,438	-1,784	11,222	8,575	-1,507	7,068	Vista 1			
PTT4	Vista 2	13,533	9,408	4,125	3,740	5,374	9,114	Vista 2	PTL4		
	Vista 3	9,408	-2,042	11,450	7,372	-1,998	5,374	Vista 3			
	Vista 1	12,458	-2,161	14,619	10,302	-2,199	8,103	Vista 1			
PTTR3	Vista 2	13,963	7,092	6 <mark>,</mark> 871	6,384	8,103	14,487	Vista 2	PTLR4		
	Vista 3	7,092	-3,742	10,834	13,322	-2,426	10,896	Vista 3			

Tabela 4.3 – Amplitudes das distorções entre PTTs e PTLs no tecimento "Zig-Zag", junta 1.

A Tabela 4.4 mostra a saída dos resultados gerada pelo Excel para análise das amplitudes das distorções entre os PTTs e PTLs no tecimento "Zig-Zag".

Tabela 4.4 – Anova: fator único. Saída de dados para análise das amplitudes das distorções entre PTTs e PTLs no tecimento "Zig-Zag", junta 1.

RESUMO						
Grupo	Contagem	Soma	Média	Variância	Desvio Padrão	
Amplitude PTT (mm)	9	79,7640	8,8627	11,0437	3,3232	
Amplitude PTL (mm)	9	59,8080	6,6453	13,2878	3,6452	
ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	22,1246	1	22,1246	1,8186	0,1963	4,4940
Dentro dos grupos	194,6522	16	12,1658			
Total	216,7767	17				

Verificou-se na Tabela 4.4 que o valor de *F* (1,8186) é menor que *F crítico* (4,4940), logo se pode admitir que o sentido de laminação da chapa em relação ao cordão de solda não é uma variável de influência estatisticamente significativa nas médias das amplitudes das distorções (H_{02}) no tecimento "Zig-Zag".

4.2.3 – Tecimento "Vai-Vem"

As Figuras de 4.13 a 4.15 mostram os gráficos das distorções nas três vistas para o tecimento "Vai-Vem".

Figura 4.13 – Distorção vista 1, PT sem chanfro (junta 1) e tecimento "Vai-Vem".

Figura 4.14 - Distorção vista 2, PT sem chanfro (junta 1) e tecimento "Vai-Vem".

Figura 4.15 - Distorção vista 3, PT sem chanfro (junta 1) e tecimento "Vai-Vem".

Verificou-se que a placa de teste PTTR1 teve distorções com flexões em sentido contrário às demais.

A Tabela 4.5 mostra os valores das amplitudes das distorções entre PTTs e PTLs no tecimento "Vai-Vem". Também foi salientado em negrito os valores das maiores e menores amplitudes das distorções encontradas. Como pode ser observado na tabela, o PTL6 foi desconsiderado nas análises de distorção devido o arame ter colado no bico de contato durante a soldagem, interrompendo o arco, sendo que o cordão só foi completado após troca do bico.

	Tecimento "Vai-Vern" - Junta sem chanfro												
PTT		ΔZ _{Ponto_max} (mm)	ΔZ _{Ponto_min} (mm)	Amplitude (mm)		ΔZ _{Ponto_min} (mm)	ΔZ _{Ponto_max} (mm)	PTL					
	Vista 1	2,756	-4,371	7,428	6,083	-3,327	2,756	Vista 1					
PTT5	Vista 2	-4,371	-8,903	4,532	3,591	-6,918	-3,327	Vista 2	PTL5				
	Vista 3	1,964	-5,704	7,668	6,851	-4,264	2,587	Vista 3					
	Vista 1	3,531	-5,205	8,736	7,695	-4,192	3,503	Vista 1	PTLR1				
PTT6	Vista 2	-5,157	-9,629	4,472	4,718	-8,910	-4,192	Vista 2					
	Vista 3	3,117	-5,157	8,274	8,742	-6,458	2,284	Vista 3					
	Vista 1	10,882	-2,601	13,483	5,356	-2,634	2,722	Vista 1	PTLR3				
PTTR1	Vista 2	16,545	10,882	5,663	3,099	-5,478	-2,379	Vista 2					
	Vista 3	12,216	-3,144	15,360	4,633	-2,379	2,254	Vista 3					

Tabela 4.5 - Amplitudes das distorções entre PTTs e PTLs no tecimento "Vai-Vem", junta 1

A Tabela 4.6 mostra a saída dos resultados gerada pelo Excel para análise das amplitudes das distorções entre os PTTs e PTLs no tecimento "Vai-Vem".

RESUMO						
Grupo	Contagem	Soma	Média	Variância	Desvio Padrão	
Amplitude PTT (mm)	9	75,6160	8,4018	14,2212	3,7711	
Amplitude PTL (mm)	9	50,7680	5,6409	3,5135	1,8744	
ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	34,3013	1	34,3013	3,8683	0,0668	4,4940
Dentro dos grupos	141,8777	16	8,8674			
Total	176,1790	17				

Tabela 4.6 – Anova: fator único. Saída de dados para análise das amplitudes das distorções entre PTTs e PTLs no tecimento "Vai-Vem", junta 1.

Verificou-se na Tabela 4.6 que o valor de *F* (3,8683) é menor que *F crítico* (4,4940), logo se pode admitir que o sentido de laminação da chapa em relação ao cordão de solda não é uma variável de influência estatisticamente significativa nas médias das amplitudes das distorções (H_{02}) no tecimento "Vai-Vem".

4.2.4 – Análise global das placas de teste sem chanfro (junta 1)

Para análise global das amplitudes das distorções encontradas nas PTs com junta sem chanfro, utilizou-se a ferramenta *Anova: fator duplo com repetição*. A construção das Hipóteses para esse caso deve levar em consideração a possível *interação* entre os três tipos de tecimento e os dois sentidos de laminação das chapas em relação ao cordão de solda, agrupados de maneira global.

As hipóteses adotadas para esse tipo de análise foram:

* Interações das variáveis:

 H₀ – As interações das variáveis não geram influência estatisticamente significativa nas médias das amplitudes das distorções.

 H₁ – As interações das variáveis geram influência estatisticamente significativa nas médias das amplitudes das distorções.

* Tipos de tecimento:

 H₀₁ – O tipo de tecimento não é uma variável de influência estatisticamente significativa nas médias das amplitudes das distorções.

 H₁₁ – O tipo de tecimento é uma variável de influência estatisticamente significativa nas médias das amplitudes das distorções. * Sentido de laminação da chapa em relação ao cordão de solda:

 H₀₂ – O sentido de laminação da chapa em relação ao cordão de solda não é uma variável de influência estatisticamente significativa nas médias das amplitudes das distorções.

 H₁₂ – O sentido de laminação da chapa em relação ao cordão de solda é uma variável de influência estatisticamente significativa nas médias das amplitudes das distorções.

A Tabela 4.7 mostra as amplitudes das distorções para as PTs da junta sem chanfro (junta 1) de maneira global.

Junta sem c	hanfro (ju	nta 1)
Tipo de	Amplitu	de (mm)
tecimento	PTT	PTL
	7,308	5,119
	4,322	2,678
	4,132	5,616
	8,250	6,048
Sem tecimento	4,678	3, <mark>99</mark> 5
	11,797	6,966
	13,860	7,986
	4,893	4,699
	15,379	6,324
	6,934	3,692
	6, 19 5	1,931
	7,514	4,490
	11,222	8,575
"Zig-Zag"	4,125	3,740
	11,450	7,372
	14,619	10,302
	6,871	6,384
	10,834	13,322
	7,428	6,083
	4,532	3,591
	7,668	6,851
	8,736	7,695
"Vai-Vem"	4,472	4,718
	8,274	8,742
	13,483	5,356
	5,663	3,099
	15,360	4,633

Tabela 4.7 – Amplitudes das distorções para as PTs da junta sem chanfro (junta 1).

A Tabela 4.8 mostra a saída dos resultados gerada pelo Excel para análise das amplitudes das distorções nas PTs da junta1.

RESUMO	РТТ	PTL	Total			
Sem tecimento						
Contagem	9	9	18			
Soma	74,6190	49,4310	124,0500			
Média	8,2910	5,4923	6,8917			
Variância	19,0205	2,5421	12,2204			
Tecimento "Zig-Zag"						
Contagem	9	9	18			
Soma	79,7640	59,8080	139,5720			
Média	8,8627	6,6453	7,7540			
Variância	11,0437	13,2878	12,7516			
Tecimento "Vai-Vem"						
Contagem	9	9	18			
Soma	75,6160	50,7680	126,3840			
Média	8,4018	5,6409	7,0213			
Variância	14,2212	3,5135	10,3635			
Total						
Contagem	27	27				
Soma	229,9990	160,0070				
Média	8,5185	5,9262				
Variância	13,6899	6,2242				
Desvio Padrão	3,7000	2,4948				
ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Tecimento	7,7834	2	3,8917	0,3670	0,6948	3,1907
PTT / PTL	90,7200	1	90,7200	8,5546	0,0052	4,0427
Interações	0,9522	2	0,4761	0,0449	0,9561	3,1907
Dentro	509,0308	48	10,6048			
Total	608,4865	53				

Tabela 4.8 – Anova: fator duplo com repetição. Saída de dados para a análise de variância global dos resultados das amplitudes das distorções nas PTs com junta sem chanfro (junta 1).

Verificou-se na Tabela 4.8 que:

- Para as interações das variáveis, o valor de F (0,0449) é menor que F crítico (3,1907), logo as interações das variáveis não geram influência estatisticamente significativa nas médias das amplitudes das distorções nas PTs da junta 1 (H₀);
- Para os tipos de tecimento, o valor de F (0,3670) é menor que F crítico (3,1907), logo o tipo de tecimento não é uma variável de influência estatisticamente significativa nas médias das amplitudes das distorções nas PTs da junta 1 (H₀₁);
- Para o sentido de laminação da chapa em relação ao cordão de solda, o valor de F (8,5546) é maior que F crítico (4,0427), logo o sentido de laminação da chapa em relação ao cordão de solda é uma variável de influência estatisticamente significativa nas médias das amplitudes das distorções nas PTs da junta 1 (H₁₂).

Porém a aceitação da hipótese H_{12} não deve ser interpretada rigorosamente, pois o principal motivo que levou a esse resultado foi a grande dispersão na medição dos pontos (ΔZ_{ponto}), gerada pelas duas formas das distorções, tanto transversais quanto longitudinais, que foram encontradas nas PTs da junta 1.

Adotou-se as amplitudes das distorções em cada vista das PTs como forma de quantificá-las, visando diminuir a influência de possível dispersão na medição dos pontos gerada pelas diferentes formas das distorções.

Verifica-se também que, mesmo tendo ocorrido o descrito acima, as PTTs sempre mantiveram as médias das amplitudes das distorções maiores que as PTLs (tendência), assim como mostrado na Tabela 4.8.

Foram realizados ensaios de tração em corpos de prova retirados no metal base, transversal e longitudinalmente ao sentido de laminação da chapa, para analisar se o limite de escoamento teria alguma influência na tendência encontrada, porém nenhuma diferença foi verificada. A Tabela 4.9 mostra os limites de escoamento obtidos nos ensaios de tração.

Amontra	Corpo de prova	Corpo de prova		
Alliosua	longitudinal	transversal		
1	182,1	195,0		
2	192,3	185,9		
3	191,8	195,6		
4	184,2	196,8		
5	195,5	189,5		
6	193,7	188,4		
7	186,4	184,0		
Média (MPa)	189,4	<u>190,7</u>		
Desvio padrão (MPa)	5,2	5,1		

Tabela 4.9 - Limite de escoamento, em MPa, dos corpos de prova retirados do metal base.

4.3 – Placas de teste com chanfro 60° (junta 2)

As placas de teste com chanfro 60° (junta 2) apresentaram apenas uma forma de distorção transversal e longitudinal:

 As 19 PTs apresentaram distorção angular transversal "perfil parabólico com concavidade para cima" e longitudinal "perfil parabólico com concavidade para baixo" (Figuras 4.3 e 4.4). Isso mostra que a distorção nesse tipo de junta sempre manteve uma mesma tendência, devido à maior parte da solda ter se mantido regular na parte superior da linha neutra no sentido da espessura, sendo que nesse aspecto o próprio formato da junta chanfrada facilita. Além disso, a dificuldade para manutenção de um cordão com melhores características de penetração no decorrer da soldagem foi menor.

4.3.1 – Sem tecimento

As Figuras de 4.16 a 4.18 mostram os gráficos das distorções nas três vistas para a condição sem tecimento.

Figura 4.16 - Distorção vista 1, PT chanfro 60° (junta 2) e sem tecimento.

Figura 4.17 – Distorção vista 2, PT chanfro 60° (junta 2) e sem tecimento.

Figura 4.18 – Distorção vista 3, PT chanfro 60° (junta 2) e sem tecimento.

A Tabela 4.10 mostra os valores das amplitudes das distorções entre PTTs e PTLs na condição sem tecimento. Também foi salientado em negrito os valores das maiores e menores amplitudes das distorções encontradas.

	Sem tecimento - Junta chantro 60°											
PTT		ΔZ _{Ponto_max} (mm)	ΔZ _{Ponto_min} (mm)	Amplitu	de (mm)	ΔZ Ponto_min (mm)	ΔZ Ponto_max (mm)	P	TL			
	Vista 1	11,172	-2,641	13,813	10,229	-1,958	8,271	Vista 1				
PTT7	Vista 2	15,192	8,538	6,654	5,050	7,762	12,812	Vista 2	PTL7			
	Vista 3	8,538	-4,903	13,441	10,880	-3,118	7,762	Vista 3				
	Vista 1	10,492	-2,620	13,112	10,608	-2,305	8,303	Vista 1	PTL8			
PTT8	Vista 2	15,316	8,876	6,440	6,3 <mark>9</mark> 2	8,303	14,695	Vista 2				
	Vista 3	10,267	-3,315	13,582	14,736	-2,814	11,922	Vista 3				
	-	-	-	-	11,808	-2,327	9,481	Vista 1				
-	-	-	-	-	5,366	9,481	14,847	Vista 2	PTLR5			
	-	-	-	-	13,756	-3,031	10,725	Vista 3				

Tabela 4.10 – Amplitudes das distorções entre PTTs e PTLs na condição sem tecimento, junta 2.

A Tabela 4.11 mostra a saída dos resultados gerada pelo Excel para análise das amplitudes das distorções entre as PTTs e PTLs na condição sem tecimento.

Verificou-se que o valor de F(0,4844) é menor que F crítico (4,6672), logo se pode admitir que o sentido de laminação da chapa em relação ao cordão de solda não é uma variável de influência estatisticamente significativa nas médias das amplitudes das distorções (H₀₂) na condição sem tecimento.

 Tabela 4.11 – Anova: fator único. Saída de dados para análise das amplitudes das distorções entre

 PTTs e PTLs na condição sem tecimento, junta 2.

RESUMO						
Grupo	Contagem	Soma	Média	Variância	Desvio Padrão	
Amplitude PTT (mm)	6	67,0420	11,1737	12,8998	3,5916	
Amplitude PTL (mm)	9	88,8250	9,8694	12,4804	3,5328	
ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crític
Entre grupos	6,1236	1	6,1236	0,4844	0,4987	4,66
Dentro dos grupos	164,3424	13	12,6417			
Total	170,4660	14				

4.3.2 – Tecimento "Zig-Zag"

As Figuras de 4.19 a 4.21 mostram os gráficos das distorções nas três vistas para o tecimento "Zig-Zag".

Figura 4.19 – Distorção vista 1, PT chanfro 60° (junta 2) e tecimento "Zig-Zag".

Figura 4.20 - Distorção vista 2, PT chanfro 60° (junta 2) e tecimento "Zig-Zag".

Figura 4.21 - Distorção vista 3, PT chanfro 60° (junta 2) e tecimento "Zig-Zag".

A Tabela 4.12 mostra os valores das amplitudes das distorções entre PTTs e PTLs no tecimento "Zig-Zag". Também foi salientado em negrito os valores das maiores e menores amplitudes das distorções encontradas.

	Tecimento "Zig-Zag" - Junta chanfro 60°										
PTT		ΔZ _{Ponto_max} (mm)	ΔZ _{Ponto_min} (mm)	Amplitude (mm)		litude (mm) AZ _{Ponto_min} (mm)		P	PTL		
	Vista 1	9,777	-2,290	12,067	13,661	-2,616	11,045	Vista 1			
PTT9	Vista 2	14,729	9,777	4,952	5,423	11,045	16,468	Vista 2	PTL9		
	Vista 3	11,224	-3,669	14,893	15,828	-3,194	12,634	Vista 3			
	Vista 1	9,859	-2,473	12,332	12,679	-2,314	10,365	Vista 1			
PTT10	Vista 2	14,383	9,859	4,524	4,827	10,365	15,192	Vista 2	PTL10		
	Vista 3	10,385	-3,798	14,183	14,850	-2,523	12,327	Vista 3			
	Vista 1	10,988	-2,381	13,369	9,229	-1,571	7,658	Vista 1			
PTTR4	Vista 2	16,933	10,988	5,945	5,526	5,047	10,573	Vista 2	PTLR7		
	Vista 3	12,365	-3,338	15,703	8,012	-2,965	5,047	Vista 3			
	Vista 1	2,958	-2,703	5,661	-	-	-	-			
PTTR6	Vista 2	11,660	2,958	8,702	-	-	-	-	-		
	Vista 3	10,264	-2,065	12,329	-	-	-	-			
	Vista 1	10,110	-2,195	12,305	-	-	-	-			
PTTR5	Vista 2	16,579	10,110	6,469	-	-	-	-	-		
	Vista 3	14,107	-2,711	16,818	-	-	-	-			

Tabela 4.12 – Amplitudes das distorções entre PTTs e PTLs no tecimento "Zig-Zag", junta 2.

A Tabela 4.13 mostra a saída dos resultados gerada pelo Excel para análise das amplitudes das distorções entre as PTTs e PTLs no tecimento "Zig-Zag".

Verificou-se que o valor de F(0,1782) é menor que F crítico (4,3009), logo se pode admitir que o sentido de laminação da chapa em relação ao cordão de solda

não é uma variável de influência estatisticamente significativa nas médias das amplitudes das distorções (H₀₂) no tecimento "Zig-Zag".

RESUMO						
Grupo	Contagem	Soma	Média	Variância	Desvio Padrão	
Amplitude PTT (mm)	15	160,2520	10,6835	17,8665	4,2269	
Amplitude PTL (mm)	9	89,3680	9,9298	18,0338	4,2466	
ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crític
Entre grupos	3,1953	1	3,1953	0,1782	0,6770	4,300
Dentro dos grupos	394,4019	22	17,9274			

Tabela 4.13 – Anova: fator único. Saída de dados para análise das amplitudes das distorções entre PTTs e PTLs no tecimento "Zig-Zag", junta 2.

4.3.3 - Tecimento "Vai-Vem"

As Figuras de 4.22 a 4.24 mostram os gráficos das distorções nas três vistas para o tecimento "Vai-Vem".

Figura 4.22 - Distorção vista 1, PT chanfro 60° (junta 2) e tecimento "Vai-Vem".

Figura 4.23 - Distorção vista 2, PT chanfro 60° (junta 2) e tecimento "Vai-Vem".

Figura 4.24 - Distorção vista 3, PT chanfro 60° (junta 2) e tecimento "Vai-Vem".

A Tabela 4.14 mostra os valores das amplitudes das distorções entre PTTs e PTLs no tecimento "Vai-Vem". Também foi salientado em negrito os valores das maiores e menores amplitudes das distorções encontradas. Como pode ser observado, o PTL11 e o PTLR6 foram desconsiderados nas análises de distorção devido o arame ter colado no bico de contato no momento da soldagem, interrompendo o arco, sendo que o cordão só foi completado após troca do bico e limpeza do conduíte da tocha.

Tecimento "Vai-Vem" - Junta chanfro 60°									
P	п	ΔZ _{Ponto_max} (mm)	ΔZ _{Ponto_min} (mm)	Amplitud	le (mm)	ΔZ Ponto_min (mm)	ΔZ _{Ponto_max} (mm)	Р	TL
	Vista 1	9,817	-2,292	12,109	9,369	-2,015	7,354	Vista 1	
PTT11	Vista 2	14,166	9,817	4,349	6,941	7,354	14,295	Vista 2	PTLR8
	Vista 3	9,854	-3,774	13,628	14,639	-2,413	12,226	Vista 3	
	Vista 1	9,196	-2,502	11,698	11,169	-1,817	9,352	Vista 1	
PTT12	Vista 2	15,878	9,196	6,682	6,777	9,352	16,129	Vista 2	PTL12
	Vista 3	12,857	-2,958	15,815	16,506	-2,248	14,258	Vista 3	

Tabela 4.14 - Amplitudes das distorções entre PTTs e PTLs no tecimento "Vai-Vem", junta 2.

A Tabela 4.15 mostra a saída dos resultados gerada pelo Excel para análise das amplitudes das distorções entre os PTTs e PTLs no tecimento "Vai-Vem".

Tabela 4.15 – Anova: fator único. Saída de dados para análise das amplitudes das distorções entre PTTs e PTLs no tecimento "Vai-Vem", junta 2.

RESUMO						
Grupo	Contagem	Soma	Média	Variância	Desvio Padrão	
Amplitude PTT (mm)	6	64,2810	10,7135	18,8392	4,3404	
Amplitude PTL (mm)	6	65,4010	10,9002	16,0993	4,0124	
ANOVA Fonte da variação	SQ	al	MQ	F	valor-P	F crítico
Entre grupos	0,1045	1	0,1045	0,0060	0,9399	4,9646
Dentro dos grupos	174,6926	10	17,4693			-
Total	174,7971	11				

Verificou-se que o valor de F(0,0060) é menor que F crítico (4,9646), logo se pode admitir que o sentido de laminação da chapa em relação ao cordão de solda não é uma variável de influência estatisticamente significativa nas médias das amplitudes das distorções (H₀₂) no tecimento "Vai-Vem".

4.3.4 – Análise global das placas de teste com chanfro 60° (junta 2)

As hipóteses adotadas para esse tipo de análise foram as mesmas adotadas para a junta 1.

A Tabela 4.16 mostra as amplitudes das distorções para as PTs da junta com chanfro 60° (junta 2) de maneira global. Para que seja possível utilizar a ferramenta *Anova: fator duplo com repetição*, ao se analisar globalmente a junta 2, as amostras devem possuir números iguais de elementos, por isso as placas de teste reservas PTLR5 (sem tecimento) e PTTR4, PTTR5, PTTR6 e PTLR7 (tecimento Zig-Zag)

foram desconsideradas, apesar de não se ter verificado nenhuma irregularidade na soldagem das mesmas.

Para comprovar se as placas de teste desconsideradas (apesar de serem as reservas) teriam exercido alguma influência no resultado se tivessem sido considerados, foi feita uma simulação com todos os valores das amplitudes das distorções de todas as PTTs e PTLs da junta 2, sem considerar os blocos dos tipos de tecimento, utilizando *Anova: fator único*. Nenhuma alteração significativa no resultado da Tabela 4.17 foi observada.

Junta chanfro 60° (junta 2)					
Tipo de	Amplitude (mm)				
tecimento	PTT	PTL			
	13,813	10,229			
	6,654	5,050			
Som tocimonto	0 13,441 13,112 6,440	10,880			
Sem tecimento	13,112	10,608			
	6,440	6,392			
	13,582	14,736			
	12,067	13,661			
	4,952	5,423			
"Tig Tag"	14,893	15,828			
ziy-zay	12,332	12,679			
	4,524	4,827			
	14,183	14,850			
	12,109	9,369			
	4,349	6,941			
"Vai-Vem"	13,628	14,639			
	11,698	11,169			
	6,682	6,777			
	15,815	16,506			

Tabela 4.16 – Amplitudes das distorções para as PTs da junta com chanfro 60° (junta 2).

A Tabela 4.17 mostra a saída dos resultados gerada pelo Excel para análise global das amplitudes das distorções nas PTs da junta 2. Nela foi possível verificar: Para as interações das variáveis, o valor de *F* (0,2371) é menor que *F crítico* (3,3158), logo as interações das variáveis não geram influência estatisticamente significativa nas médias das amplitudes das distorções nas PTs da junta 2 (H₀);

 Para os tipos de tecimento, o valor de F (0,0405) é menor que F crítico (3,3158), logo o tipo de tecimento não é uma variável de influência estatisticamente significativa nas médias das amplitudes das distorções nas PTs da junta 2 (H₀₁); Para o sentido de laminação da chapa em relação ao cordão de solda, o valor de *F* (0,0220) é menor que *F crítico* (4,1709), logo se pode admitir que o sentido de laminação da chapa em relação ao cordão de solda não é uma variável de influência estatisticamente significativa nas médias das amplitudes das distorções nas PTs da junta 2 (H₀₂).

Tabela 4.17 - Anova: fato	or duplo com repetição	. Saída de dado	os para a análise o	de variância global
dos resultados das am	plitudes das distorçõe	s nas PTs com	junta chanfrada e	m 60° (junta 2).

RESUMO	РТТ	PTL	Total			
Sem tecimento						
Contagem	6	6	12			
Soma	67,0420	57,8950	124,9370			
Média	11,1737	9,6492	10,4114			
Variância	12,8998	12,0816	11,9890			
Tecimento "Zig-Zag"				_		
Contagem	6	6	12			
Soma	62,9510	67,2680	130,2190			
Média	10,4918	11,2113	10,8516			
Variância	21,0334	23,3946	20,3357			
Tecimento "Vai-Vem"						
Contagem	6	6	12			
Soma	64,2810	65,4010	129,6820			
Média	10,7135	10,9002	10,8068			
Variância	18,8392	16,0993	15,8906			
Total						
Contagem	18	18				
Soma	194,2740	190,5640				
Média	10,7930	10,5869				
Variância	15,6067	15,6519				
Desvio Padrão	3,9505	3,9562				
ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Tecimento	1,4084	2	0,7042	0,0405	0,9604	3,3158
PTT / PTL	0,3823	1	0,3823	0,0220	0,8831	4,1709
Interações	8,2475	2	4,1238	0,2371	0,7904	3,3158
Dentro	521,7396	30	17,3913			
Total	531,7779	35				

4.4 – Comparação das distorções das placas de teste da junta 1 X junta 2

As hipóteses adotadas para esse tipo de análise foram as mesmas adotadas para os itens 4.2.4 e 4.3.4.

A Tabela 4.18 mostra as amplitudes das distorções para as PTs da junta 1 e junta 2 de maneira global. Para que seja possível utilizar a ferramenta *Anova: fator duplo com repetição*, ao se analisar globalmente as juntas, as amostras devem

possuir números iguais de elementos, por isso todas as placas de teste reservas (PTTR e PTLR) foram desconsideradas, apesar de não se ter verificado nenhuma irregularidade na soldagem das mesmas, com exceção das PTL6 e PTL11 que foram substituídas pelas PTLR3 e PTLR8, motivo esse já salientado anteriormente.

Para comprovar se as placas de teste desconsideradas (apesar de serem as reservas) teriam exercido alguma influência no resultado se tivessem sido considerados, foi realizada uma simulação com todos os valores das amplitudes das distorções de todas as PTTs e PTLs da junta 1 e junta 2, sem considerar os blocos dos tipos de tecimento, utilizando *Anova: fator único*. Nenhuma alteração significativa no resultado da Tabela 4.19 foi observada.

Amplitudes das distorções (mm)								
Tipo de	Junta sem ch	anfro (junta 1)	Junta chanfro 60° (junta 2)					
Tecimento	PTT	PTL	PTT	PTL				
	7,308	5,119	13,813	10,229				
	4,322	2,678	6,654	5,050				
Som tocimonto	4,132	5,616	13,441	10,880				
Semilecimento	8,250	6,048	13,112	10,608				
	4,678	3,995	6,440	6,392				
	11,797	6,966	13,582	14,736				
	6,934	3,692	12,067	13,661				
	6,195	1,931	4,952	5,423				
"7ia 7aa"	7,514	4,490	14,893	15,828				
ziy-zay	11,222	8,575	12,332	12,679				
	4,125	3,740	4,524	4,827				
	11,450	7,372	14,183	14,850				
	7,428	6,083	12,109	9,369				
	4,532	3,591	4,349	6,941				
"Vai Vom"	7,668	6,851	13,628	14,639				
va-vem	8,736	7,695	11,698	11,169				
	4,472	4,718	6,682	6,777				
	8,274	8,742	15,815	16,506				

Tabela 4.18 – Am	olitudes das	distorções	das PTs da	junta 1 e	junta 2

A Tabela 4.19 mostra a saída dos resultados gerada pelo Excel para análise global das amplitudes das distorções nas PTs da junta 1 e 2. Nela se verificou:

Para as interações das variáveis, o valor de F (0,2456) é menor que F crítico (2,2541), logo as interações das variáveis não geram influência estatisticamente significativa nas médias das amplitudes das distorções nas PTs da junta 1 e junta 2 (H₀);

Para os tipos de tecimento, o valor de F (0,1790) é menor que F crítico (3,1504),
 logo o tipo de tecimento não é uma variável de influência estatisticamente

significativa nas médias das amplitudes das distorções nas PTs da junta 1 e junta 2 (H₀₁).

Para o sentido de laminação da chapa em relação ao cordão de solda, o valor de *F* (10,8678) é maior que *F crítico* (2,7581), logo o sentido de laminação da chapa em relação ao cordão de solda é uma variável de influência estatisticamente significativa nas médias das amplitudes das distorções nas PTs da junta 1 e junta 2 (H₁₂).

		Junta 1		Junta 2		
RESUMO	РТТ	PTL	РТТ	PTL	Total	
Sem tecimento						
Contagem	6	6	6	6	24	
Soma	40,4870	30,4220	67,0420	57,8950	195,8460	
Média	6,7478	5,0703	11,1737	9,6492	8,1603	
Variância	9,0152	2,3458	12,8998	12,0816	13,8588	
Tecimento "Zig-Zag"						
Contagem	6	6	6	6	24	
Soma	47,4400	29,8000	62,9510	67,2680	207,4590	
Média	7,9067	4,9667	10,4918	11,2113	8,6441	
Variância	8,3755	6,2755	21,0334	23,3946	19,1230	
Tecimento "Vai-Vem"						
Contagem	6	6	6	6	24	
Soma	41,1100	37,6800	64,2810	65,4010	208,4720	
Média	6,8517	6,2800	10,7135	10,9002	8,6863	
Variância	3,5232	3,6198	18,8392	16,0993	13,8874	
Total						
Contagem	18	18	18	18		
Soma	129,0370	97,9020	194,2740	190,5640		
Média	7,1687	5,4390	10,7930	10,5869		
Variância	6,4413	3,9767	15,6067	15,6519		
Desvio Padrão	2,5380	1,9942	3,9505	3,9562		
ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crític
Tecimento	4,1014	2	2,0507	0,1790	0,8366	3,150
PTT / PTL	373,5889	3	124,5296	10,8678	0,0000	2,758
Interações	16,8857	6	2,8143	0,2456	0,9592	2,254
Dentro	687,5150	60	11,4586			

Tabela 4.19 – Anova: fator duplo com repetição. Saída de dados para a análise de variância global dos resultados das amplitudes das distorções das PTs nas juntas 1 e 2.

O resultado já era esperado, uma vez que já havia sido verificada estatisticamente diferença nas amplitudes das distorções entre os PTTs e PTLs da junta 1 quando a análise foi feita de maneira global.

Como não se verificou na junta 2 a mesma tendência encontrada na junta 1, é possível afirmar que a dispersão de dados gerada pelas diferentes formas das distorções na junta 1 foi o fator determinante para o resultado encontrado, e não

especificamente o sentido de laminação da chapa em relação ao cordão de solda. Uma maneira de se analisar se houve alguma variação na energia de soldagem que pudesse ter causado a dispersão encontrada na junta 1 seria avaliar o volume da solda depositada e o tamanho da ZAC, porém nenhuma análise microestrutural foi realizada no presente trabalho, pois o objetivo principal era analisar de maneira macro se as variáveis escolhidas influenciariam nas distorções angulares.

Fraga (2009) utilizou das técnicas de Difração de Raios X (DRX) e de Elétrons Retroespalhados - EBSD (*Electron Backscatter Diffraction*) para mensurar a existência de textura de deformação em seu estudo. A presença da textura tipo *Brass* foi o parâmetro responsável pela influência da direção de soldagem sobre as distorções, sendo que o sentido de laminação das chapas foi uma variável de influência estatisticamente significativa sobre a quantidade de distorções causadas pela soldagem. A realização da soldagem na direção paralela ao sentido de laminação da chapa provocou maior distorção do material, quando comparada à soldagem com o cordão perpendicular ao sentido de laminação.

Na Tabela 4.19 ficou evidente também que as médias das amplitudes das distorções das PTs da junta 2 foram maiores que na junta 1. Como se utilizou a mesma energia de soldagem para todos os casos, isso se deve ao fato da zona fundida (ZF) ter sido menor nas placas de teste da junta com chanfro em 60°, onde a maior parte da solda se depositou acima do eixo neutro no sentido da espessura devido à própria geometria da junta chanfrada, enquanto que as placas de teste da junta sem chanfro apresentaram uma ZF maior gerada pela distribuição mais homogênea da solda em toda a espessura devido à própria geometria da junta sem chanfro. Nas Figuras 4.5 e 4.6 é possível verificar o descrito.

4.5 – Ensaios de tração nas placas de teste da junta 1 X junta 2

A título de ilustração, as Figuras 4.25 e 4.26 mostram, respectivamente, um corpo de prova de tração antes e após os ensaios.

Conforme AWS D1.2 (2003), o limite de resistência a tração mínimo para a junta soldada deve ser de 170 MPa. Já para o metal base, segundo ASTM B209M (2001), deve ser de 235 MPa.

86

Figura 4.25 – CP para ensaio de tração, antes dos ensaios.

Figura 4.26 – CP para ensaio de tração após ensaios, rupturas ocorreram na ZTA.

Ensaio	Ensaio de Tração - junta 1 (sem chanfro)			Ensaio de Tração - junta 2 (chanfro 60		
Número do CP	Tensão de ruptura	Tensão de ruptura (MPa)	Número do CP	Tensão de ruptura (kg/mm2)	Tensão de ruptura (MPa)	
1	18.0	176.9	25	18.8	184.0	
- 1	17.7	170,5	20	10,0	179 5	
2	19.7	102 /	20	17.4	170,5	
<u> </u>	10,7	103,4	21	17,4	170,4	
<u>4</u> 5	17,4	170,7	20	10,0	104,4	
<u>0</u>	10,0	176,0	29	10.2	173,5	
7	10,0	1/0,1	21	10,3	175,0	
<u>/</u>	10,4	100,3	<u>31</u> 22	10,5	101,0	
0	19,1	107,1	<u>32</u>	10,7	103,2	
<u>9</u>	19,0	100,2	24	11,4	171,0	
10	10,0	104,7	<u>34</u> 95	10,0	102,0	
11	10,1	1//,0	<u>30</u> 26	10,4	100,0	
12	20,3	199,5	<u>30</u> 27	18,1	1//,5	
<u>13</u>	18,4	180,4	<u>37</u>	17,5	1/1,4	
<u>14</u>	19,4	189,9	38	17,6	172,2	
<u>15</u>	18,3	179,1	39	19,4	190,4	
<u>10</u>	18,2	178,3	<u>40</u>	19,5	191,3	
<u>1/</u>	1/,/	1/3,6	<u>41</u>	17,8	1/4,/	
<u>18</u>	18,6	182,8	<u>42</u>	17,6	1/2,5	
<u>19</u>	17,6	1/2,2	<u>43</u>	19,3	189,3	
<u>20</u>	1/,4	1/0,/	44	18,0	1/6,4	
21	18,5	181,7	<u>45</u>	17,9	1/5,4	
22	18,3	1/9,1	<u>46</u>	13,3	130,4	
23	15,2	148,9	<u>41</u>	19,9	194,8	
<u>24</u>	19,3	189,2	<u>48</u>	17,5	1/2,0	
<u>49</u>	19,4	190,4	<u>63</u>	18,0	1/6,/	
<u>50</u>	18,6	182,2	<u>64</u>	20,2	198,2	
<u>51</u>	19,2	188,4	<u>65</u>	18,9	185,0	
<u>52</u>	18,7	183,4	<u>66</u>	17,5	172,0	
<u>53</u>	18,3	179,4	<u>67</u>	19,9	195,0	
<u>54</u>	18,0	176,5	<u>68</u>	17,6	172,6	
<u>55</u>	18,3	179,8	<u>69</u>	19,0	186,2	
<u>56</u>	18,2	178,9	<u>70</u>	17,9	175,7	
<u>57</u>	17,8	174,3	<u>71</u>	17,4	171,1	
<u>58</u>	19,2	187,8	<u>72</u>	18,3	179,2	
<u>59</u>	18,0	176,9	<u>73</u>	18,2	178,9	
<u>60</u>	18,4	180,1	<u>74</u>	14,4	141,3	
<u>61</u>	18,3	179,7	<u>75</u>	17,7	173,2	
<u>62</u>	18,7	183,1	<u>76</u>	18,7	183,7	
M	lédia (MPa)	180,0	M	lédia (MPa)	177,5	
Desvi	o padrão (MPa)	8,0	Desvi	o padrão (MPa)	12,5	

Tabela 4.20 – Limites de resistência obtidos para os CPs das juntas 1 e 2.

Na Tabela 4.20 pode-se verificar os resultados obtidos nos ensaios de tração nos CPs retirados das juntas 1 e 2. Percebe-se uma homogeneidade nos limites de resistência a tração obtidos para os dois tipos de junta.

Apenas 3 CPs romperam abaixo de 170 MPa, justamente os que apresentaram problemas durante a soldagem, conforme já detalhado anteriormente no trabalho. Todos os CPs que romperam acima de 170 MPa apresentaram características de fratura dúctil, com ruptura na ZTA. Os CPs que romperam abaixo de 170 MPa mostraram ruptura iniciada na ZTA e propagada para o centro da junta, com características dúctil/frágil, gerada principalmente por falta de fusão na raiz e porosidades.

Conforme mostrado na revisão da literatura e com os resultados obtidos, percebe-se que realmente o encruamento tende a diminuir com o aquecimento do material, ou seja, ligas de alumínio trabalháveis não-tratáveis termicamente têm suas propriedades mecânicas diminuídas quando submetidas à soldagem, sendo a ZTA a região mais crítica em termos de resistência mecânica.

CAPÍTULO 5

CONCLUSÕES

Dentro das condições testadas no presente trabalho, foi possível concluir:

 O tecimento não foi uma variável de influência estatisticamente significativa nas distorções. Isso mostra que em situações de soldagem automáticas, ou mesmo semi-automáticas, as variações na técnica de tecimento utilizadas pelo programador de robô ou soldador, normalmente utilizadas no chão de fábrica, não implicam em problemas de qualidade dimensionais na montagem dos conjuntos finais.

 O sentido de laminação da chapa em relação ao cordão de solda não foi uma variável de influência estatisticamente significativa nas distorções, levando-se em consideração a dispersão de dados gerada pelas diferentes formas das distorções encontradas e a não realização de análises microestruturais.

 O perfil do cordão de solda em relação à linha neutra da junta no sentido da espessura da chapa foi o fator determinante para as formas das distorções angulares transversais e longitudinais, ou seja, pela formação do perfil parabólico para cima e para baixo.

 A junta chanfrada em 60° apresentou maiores distorções angulares se comparada a junta sem chanfro, principalmente pela diferença entre ambas quanto à zona fundida e a quantidade de solda em relação à linha neutra da junta no sentido da espessura chapa.

 A junta sem chanfro apresentou variação dimensional rotacional (distorção rotacional) mostrando que esse tipo de junta é propício a esse problema, se não adotadas as medidas corretas no processo.

 A aplicação prática do processo de soldagem GMAW-P robotizado em liga de alumínio na indústria metal-mecânica é viável tecnicamente, tendo boa versatilidade.

CAPÍTULO 6

SUGESTÕES PARA TRABALHOS FUTUROS

Com base nas dificuldades e observações encontradas no presente trabalho, foi possível apresentar os seguintes tópicos como sugestões para estudos futuros. Esses tópicos podem ser pesquisados para contribuir com a evolução do tema aqui abordado.

 Caracterizar as diferentes condições estudadas no presente trabalho em outros tipos de juntas, posições de soldagem e ligas, realizando análises microestruturais.

 Utilizar como metodologia de fixação das placas de teste no gabarito, apenas um ponto, na linha da solda, no início ou final do cordão, melhorando a visualização gráfica das distorções e possibilitando a comparação entre distorção angular transversal X longitudinal.

 Como metodologia de quantificação das distorções, ajustar as parábolas de distorção encontradas às curvas polinomiais de segunda ordem, interpolando os pontos medidos e definindo os coeficientes de distorção.

 Utilizar tecnologias adicionais da soldagem GMAW-P robotizada, como fonte inversora que permita fácil regulagem dos parâmetros de pulso, controlador e manipulador modernos com sensores para monitoramento constante da distância do bocal até a peça.
CAPÍTULO 7

REFERÊNCIAS BIBLIOGRÁFICAS

ABAL. Guia Técnico do Alumínio – Laminação. Associação Brasileira do Alumínio, 1. ed., São Paulo, 1994.

ALCAN. Manual de Soldagem. Alcan Alumínio do Brasil S/A, 1. ed., 1993.

ALFARO, S. C. A. **Monitoração da Poça de Fusão.** Revista Soldagem e Inspeção, Associação Brasileira de Soldagem – ABS, v. 8, n. 01, p. 23-29, 2003.

ALTSHULLER, B. *A Guide to GMAW of Aluminum. Welding Journal*, v. 77, n. 6, p. 49-55, 1998.

ANDERSON, T. *Aluminium Weld HAZ Fundamentals*. *Welding Journal*, v. 84, n. 7, 2005.

ASTM. Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate. ASTM B209M – 04. American Society for Testing and Materials, 2004.

AWS. *Welding Handbook, Welding Processes*. *American Welding Society,* v. 2, 8. Ed., USA, 1991.

AWS. *Standard Welding Terms and Definitions*. *American Welding Society.* Miami, USA, 1994.

AWS. *Welding Handbook, Welding Science & Technology*. American Welding *Society*, v. 1, 9. ed., USA, 2001.

AWS. *Structural Welding Code – Aluminun. ANSI/AWS D1.2/D1.2M:2003. American Welding Society,* 4. ed., Miami, USA, 2003.

BEZERRA, A. C. Simulação Numérica da Soldagem com Aplicação à Caracterização do Comportamento Dinâmico de Estruturas Soldadas. Tese (Doutorado). Faculdade de Engenharia Mecânica, UFU, Uberlândia, 2006.

BILONI, H.; PÉREZ, T. E.; SAGGESE, M. E.; SOLARI, M. J. A. *Manual de Soldadura de Aluminio.* Proyecto Especial de Aluminio OEA – CNEA, Gerencia de Investigacion y Desarrollo, Aluar Aluminio Argentino. Buenos Aires, 1981.

BLEWETT, R. V. Técnicas Modernas para Soldagem do Alumínio. ALCAN, Rio de Janeiro, 1982.

BRACARENSE, A. Q. *Gas Metal Arc Welding*. Infosolda, p. 01-27, 2003. Disponível em: <www.infosolda.com.br/artigos/prosol18.pdf>.

BRAY, J. W. *Aluminum Mill and Engineered Wrought Products. In: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Handbook,* v. 6, p. 118-222, 1992.

CAMILLERI, D.; GRAY, T. G. F. *Computationally Efficient Welding Distortion Simulation techniques. Modelling and Simulation in Materials Science and Engineering*, v. 13, p. 1365-1382, 2005.

CAPELARI, T. V; MAZZAFERRO, J. A. E. Avaliação da Geometria de Ferramenta e Parâmetros do Processo FSW na Soldagem da Liga de Alumínio AA 5052. Revista Soldagem e Inspeção, São Paulo, Vol. 14, No. 3, p. 215-227, Jul/Set 2009.

CASTNER, H. R. Gas Metal Arc Welding Fume Generation Using Pulsed Current. Welding Journal, p. 59-68, February 1995.

CHATURVEDI, M. C.; CHEN, D. L. *Effect of Specimen Orientation and Welding on the Fracture and Fatigue Properties of 2195 Al–Li Alloy. Materials Science and Engineering A*, p. 465–469, 2004.

CORRÊA, C. A. Influência dos Parâmetros da Soldagem MIG Pulsada e Convencional na Morfologia do Cordão e na Microestrutura. 1° COBEF, p. 01-08, 2001.

COSTA, U. P. Soldagem com Processo Arame Tubular e com Alma Metálica nos Segmentos Naval, *On* e *Offshore* e de Construção. XXIX Consolda, Brasil, p. 01-16, 2003.

COSTA NETO, P. L. O. Estatística. 2ª Edição. Edgard Blücher. São Paulo, 2002.

CRAIG, E. **A Unique Mode of GMAW Transfer**. Welding Journal, p. 51-56, September 1987.

CUNHA, J. A. R. da; GRUNDMANN, J. A Influência dos Gases de Proteção nos Regimes de Transferência Metálica em Soldagem SAMG. Anais do XXI ENTS, Caxias do Sul - RS, v. 2, p. 513 – 528, 20 a 24 de junho de 1995.

DENG, D.; LIANG, W.; MURAKAWA, H. *Determination of Welding Deformation in Fillet Welded Joint by Means of Numerical Simulation and Comparison With Experimental Measurements. Journal of Materials Processing Technology*, v. 183, p. 219–225, 2007.

ENGLER, O. *Nucleation and Growth During Recrystallization of Aluminum Alloys Investigated by Local Texture Analysis*, *Materials Science Technology*, 12:859-872, 1996.

FERRARESI, V. A.; FIGUEIREDO, K. M.; ONG, T. H. *Metal Transfer in the Aluminum Gas Metal Arc Welding*. *J. Braz. Soc. Mech. Sci. & Eng.*, v. 25, n. 3, p. 229-234, 2003.

FIGUEIREDO, K. M. Mapeamento dos Modos de Transferência Metálica na Soldagem MIG de Alumínio. Dissertação (Mestrado em Engenharia Mecânica), UFU, Uberlândia, 2000.

FORTES, C; VAZ, C. T. Soldagem MIG/MAG. Apostila ESAB, São Paulo, 2005.

FRAGA, F. E. N. **Proposta de Modelo para Caracterizar Susceptibilidade a Distorção Devido à Soldagem em Chapas de Alumínio**. Tese (Doutorado em Engenharia Mecânica), UNICAMP, Campinas, 2009.

FUNDERBURK, R. S. *A Look at Heat Input*. *Welding Innovation*, v. 16, n. 01, p. 01-04, 1999.

GHOSH, P. K. et al. Influence of Pulse Parameters on Bead Geometry and HAZ During Bead on Plate Deposition by MIG Welding Process. Zeitschrift Fur Metallkunde, v. 82, n. 10, 1991.

GRUBIC, K.; ANDRIC, S. *Factors at Pulsed MIG Welding, Their Relationships and Effects*. *Proceedings of the International Conference on the Joining of Materials*, JOM-7, p. 360-367, 1995.

GUROVA, T.; QUARANTA, F.; ESTEFEN, S. Monitoramento do Estado das Tensões Residuais Durante a Fabricação de Navios. Laboratório de Tecnologia Submarina – COPPE, UFRJ.

HOLLIDAY, D. B. Gas-Metal Arc Welding. ASM Handbook, v. 6, p. 577-579, 1993.

HUMPHREYS, F. J.; HATERLY, M. *Recrystallization and Related Annealing Phenomena.* 2nd ed., Oxford: Elsevier, 2004. 628 p.

JÖNSSON, P.G. et al. Heat and Metal Transfer in Gas Metal Arc Welding Using Argon and Helium. Metallurgical and Materials Transactions, v. 26B, p. 383-395, April 1995.

JUNIOR, L. G.; TREMONTI, M. A. Influência dos Parâmetros de Soldagem, no Formato da Poça de Fusão, com Relação à Formação da Macro e Microestrutura. UNICAMP, 1994.

KAISER ALUMINIUM & SALES. Welding Kaiser Aluminum. California, 1978.

KIM, Y. S.; EAGAR, T. W. *Metal Transfer in Pulsed Current Gas Metal Arc Welding. Welding Research Supplement - Welding Journal*, p. 279-287, *July* 1993.

KIM, Y. S.; RHEE, S. *A Study of Heat Input Distribution on the Surface During Torch Weaving in Gas Metal Arc Welding. JSM International Journal*, v. 48, p. 144-150, 2005.

KING, C. W. R., n.t. *Transactions of Institute of Engineers and Shipbuilders in Scotland* 87: 233-255, 1944.

LEVINE, D. M.; BERENSON, M. L.; STEPHAN, D. Estatística: Teoria e Aplicações. Usando Microsoft Excel em Português. Rio de Janeiro: LTC, 2000. 811 p.

LINCOLN, J. F. *The Procedure Handbook of Arc Welding*. *The Lincoln Electric Company.* Cleveland, OH., USA, 14. ed., 2000.

LYTTLE, K. A. *Shielding Gases for Welding*. *ASM Handbook*, v. 6, p. 165-176, 1993.

LYTTLE, K. A.; STAPON, W. F. G. *Select the Best Shielding Gas Blend for the Application*. *Welding Journal*, p. 21-27, *November* 1990.

MACHADO, I. G. Soldagem & Técnicas Conexas: Processos. Porto Alegre: UFRGS, 1996. 477 p.

MARQUES, P. V.; MODENESI, P. J.; BRACARENSE, A. Q. Soldagem Fundamentos e Tecnologia. Belo Horizonte: Editora UFMG, 2005. 362 p.

MASUBUSHI, K. *Control of Distortion and Shrinkage in Welding*. *Welding Research Council Bulletin 149, New York: Welding Research Council*, 1970.

MASUBUSHI, K. *Analysis of Welded Structures – Residual Stresses, Distortion and Their Consequences*. *New York: Pergamon Press*, 1980.

MATSUI, S. *Investigation of Shrinkage, Restraint Stress, and Cracking in Arc Welding. Ph.D. diss., Osaka University*, 1964.

MAZZAFERRO, J. A. E.; MACHADO, I. G. Método Computacional para Previsão de Distorções em Chapas de Alumínio Soldadas a Topo pelo Processo MIG. Soldagem & Materiais, São Paulo, n. 4, p. 36-41, 1992.

MIRANDA, H. C.; FERRARESI, V. A. **Proposta de Controle Automático da Transferência Metálica no Processo MIG/MAG**. In: Anais do III Seminário do Curso de Pós-Graduação em Engenharia Mecânica, Universidade Federal de Uberlândia, 08 a 12 de Novembro de 1999, pp. 53-56.

MIYAHARA, V. T. P. Avaliação das Propriedades Mecânicas e da Microestrutura de Aços Dissimilares ABNT 8620 e ABNT 6655 LN 28 Soldados com Arco Pulsado com Diferentes Temperaturas de Pré-Aquecimento e Tipos de Tecimento. Dissertação (Mestrado em Engenharia Mecânica), UNESP, Bauru, 2008.

MODENESI, P. J. Efeitos Mecânicos do Ciclo Térmico, UFMG, Maio 2008.

MODENESI, P. J. Técnica Operatória da Soldagem SMAW, UFMG, 2004.

MONTGOMERY, D. C., RUNGER, G. C. Applied Statistics and Probability for Engineers. *New York, Ed. John Wiley and Sons*, 1996.

MOTOMAN. Robot Arc Welding Manual. p. 11, 1995.

NORRISH, J. *Advanced Welding Process*. *Institute of Physics Publishing, Bristol, Philadelphia and New York*, p. 131-173, 1992.

NORRISH, J.; RICHARDSON, I. F. *Metal Transfer Mechanisms*. *Welding & Metal Fabrication*, p. 17-22, *January e February* 1988.

OKUMURA, T.; TANIGUCHI, C. **Engenharia de Soldagem e Aplicações**. Rio de Janeiro: LTC, 1982. 461 p.

PADILHA, A. F.; SICILIANO JR., F. Encruamento, Recristalização, Crescimento de Grão e Textura. São Paulo: ABM, 3. ed., p. 181-216, 1995.

PANDEY, S. et al. *Metal Transfer and V-I Transients in GMAW of Aluminum*. *Proceedings of the 4th International Conference*, Gatlinburg, Tennessee, p. 385-397, *June* 1995.

PIERRE, E.R. *Shielding Gases for Welding*, *Welding Design & Fabrication*, p. 63-65, *March* 1987.

PÓVOA, A. A. **Seminário Técnico de Soldagem do Alumínio e suas Ligas**. Associação Brasileira do Alumínio – ABAL, 1988.

RADAJ, D. *Welding Residual Stresses and Distortion: Calculation and Measurement*. Düsseldorf: Ed. DVS-Verlag, 2003. 397 p.

RESENDE, A. A. **Uma Contribuição a Análise dos Parâmetros de Soldagem do Processo Plasma-MIG com Eletrodos Concêntricos**. Dissertação (Mestrado em Engenharia Mecânica), UFU, Uberlândia, 2009.

SADLER, H. A Look at the Fundamentals of Gas Metal Arc Welding. Welding Journal, May 1999.

SANTOS, F. J. Soldagem de Alumínio: Influência dos Parâmetros de Pulso na Distorção Angular. Dissertação (Mestrado em Engenharia Mecânica), UNESP, Bauru, 2009.

SOUZA, D.; RESENDE, A. A.; SCOTTI, A. **Um Modelo Qualitativo para Explicar a Influência da Polaridade na Taxa de Fusão no Processo MIG/MAG.** Revista Soldagem e Inspeção ABS, São Paulo, v. 14, n. 3, p. 192-198, Jul/Set 2009.

STENBACKA, N.; PERSSON, K. A. *Shielding Gases for Gas Metal Arc Welding. Welding Journal.* v. 68, n. 11, p. 41-47, *November* 1989.

TANIGUCHI, C.; MASUBUCHI, K. *Out-of-Plane Distortion Caused by Fillet Welds in Aluminum*. *Massachusetts Institute of Technology, September* 1972.

THERMADYNE. Manual do Proprietário Arc-Master 351. 1998.

TOROS, S.; OZTURK, F.; KACAR, I. *Review of Warm Forming of Aluminum– Magnesium Alloys. Journal of Materials Processing Technology*, p. 1-12, 2008.

TORRES, E. A.; RAMIREZ, A. J. União de Juntas Dissimilares Alumínio-Aço de Chapas Finas pelo Processo de Soldagem por Atrito com Pino Não Consumível (FSW). XXXVI Consolda, Recife / PE, Outubro 2010.

VIEIRA, L. A.; BRACARENSE, A. Q. **Soldagem Robotizada GMAW de Alumínio**. XXX Consolda, Rio de Janeiro, Setembro 2004.

VAIDYA, V. V. Shielding Gas Mixtures for Semiauttomatic Welds. Welding Journal. v. 81, n. 9, p. 43-48, September 2002

WAINER, E.; BRANDI, S. D.; MELLO, F. D. H. **Soldagem: Processos e Metalurgia.** São Paulo: Edgard Blucher, 1ª reimpressão 1995. 494 p.

WHITE MARTINS. Soldagem do Alumínio e Suas Ligas. Informe Técnico. 2002.

WITHERS, P. J.; BHADESHIA, H. K. D. H. *Residual stress. Part 2 – Nature and origins*. *Materials Science and Technology*, v. 17, p. 366-375, 2001.

YOUNG, B. *Shielding and Purging Gases: Making the Right Selection*, *Welding Journal*, p. 47-49, *January* 1995.

APÊNDICE A

Método utilizado na medição das placas de teste, antes e após a soldagem, para cálculos das distorções reais (ΔZ) nos pontos. Dados utilizados posteriormente para construções gráficas e cálculos das amplitudes das distorções.

• Junta sem chanfro (junta 1) e sem tecimento.

	Distância na	Distância na	Distância na	P	Π1	P	TT2	PT	TR2	PT	ru	PT	'LR2	P	rl2	PTT1	PTT2	PTTR2	PTL1	PTLR2	PTL2
Pontos	PT (mm) -	PT (mm) -	PT (mm) -	Valor inicial	Valor final	Distorção	Distorção	Distorção	Distorção	Distorção	Distorção										
	Vista 1	Vista 2	Vista 3	eixo Z (mm)	eixo Z (mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)										
1	50	-	-	3,986	5,634	4,264	2,379	4,011	1,780	4,911	6,799	4,876	7,575	4,931	7,379	1,648	-1,885	-2,231	1,888	2,699	2,448
2	65		-	3,938	5,549	4,257	2,355	4,074	1,858	4,807	6,795	4,798	7,636	4,889	7,441	1,611	-1,902	-2,216	1,988	2,838	2,552
3	80			3,847	5,448	4,203	2,239	4,099	1,904	4,083	0,734	4,004	7,300	4,792	7,424	1,001	-1,904	-2,135	2,071	2,902	2,032
4	95	-	-	3,726	5,286	4,094	2,144	4,153	2,114	4,550	6,685	4,507	7,560	4,641	7,397	1,560	-1,950	-2,039	2,135	3,053	2,756
5	110	-	-	3,637	5,131	4,002	2,076	4,111	2,280	4,424	6,558	4,359	7,403	4,507	7,352	1,494	-1,926	-1,831	2,134	3,044	2,845
0	125	-	-	3,030	4,978	3,870	2,000	4,140	2,452	4,258	0,438	4,188	7,252	4,304	7,330	1,443	-1,811	-1,088	2,180	3,004	2,970
8	155	-	-	3,350	4,008	3,679	2,010	4,063	3,028	3,812	6.073	3,555	6.767	3,963	7,211	1,278	-1,669	-1.033	2,224	3,070	3,103
9	170	-		3.098	4.216	3,449	2,090	3,927	3,469	3,553	5,744	3,422	6,392	3,683	6,904	1.118	-1.359	-0,458	2,191	2.970	3.221
10	190	-	-	2,943	3,388	3,350	2,154	3,891	3,906	3,319	5,266	3,371	5,868	3,586	6,529	0,445	-1,196	0,015	1,947	2,497	2,943
11	205	-	-	2,789	2,593	3,316	2,579	3,890	4,582	3,067	4,592	3,102	5,002	3,166	5,669	-0,196	-0,737	0,692	1,525	1,900	2,503
12	220	-	-	2,609	1,823	3,216	2,932	3,799	5,302	2,776	3,873	2,785	3,898	2,713	4,669	-0,786	-0,284	1,503	1,097	1,113	1,956
13	235	÷	-	2,431	1,182	3,101	3,448	3,757	6,188	2,509	3,101	2,513	2,950	2,233	3,725	-1,249	0,347	2,431	0,592	0,437	1,492
14	250	-	-	2,254	0,390	3,009	3,980	3,622	6,884	2,134	2,408	2,252	2,246	1,780	2,804	-1,864	0,971	3,262	0,274	-0,006	1,024
15	265	-	-	2,135	-0,348	2,827	4,414	3,468	7,931	1,831	1,663	1,966	1,360	1,215	1,748	-2,483	1,587	4,463	-0,168	-0,606	0,533
10	280	-	-	1,958	-0,940	2,593	4,897	3,447	8,895	1,419	0,913	1,097	0,298	0,095	0,040	-2,904	2,304	5,448	-0,500	-1,399	-0,055
18	310	-	-	1,730	-2.387	2,098	6.021	3,129	10,977	0.698	-0.812	1,058	-1.793	-0.278	-1.519	-3.960	3,923	7 848	-1.510	-2.851	-1.241
19	325	-	-	1.344	-3.105	1,902	6.624	3,116	12.021	0.280	-1.646	0.800	-2.727	-0.907	-2.647	-4.449	4.722	8,905	-1.926	-3.527	-1.740
20	340	-		1,155	-4.023	1.631	7.097	3.007	13,148	-0.166	-2.653	0.444	-3.702	-1.454	-3,806	-5.178	5,466	10.141	-2.487	-4,146	-2.352
21	355	5	-	1,015	-4,645	1,422	7,708	2,820	14,449	-0,655	-3,513	0,183	-4,701	-2,154	-4,981	-5,660	6,286	11,629	-2,858	-4,884	-2,827
22	-	20	-	1,181	-4,679	1,475	8,246	2,907	15,173	-0,409	-3,594	0,369	-4,899	-2,075	-5,325	-5,860	6,771	12,266	-3,185	-5,268	-3,250
23		35	-	1,468	-4,526	1,626	8,661	2,919	15,658	-0,151	-3,688	0,482	-5,228	-1,873	-5,575	-5,994	7,035	12,739	-3,537	-5,710	-3,702
24	-	50	-	1,621	-4,497	1,791	9,207	2,971	16,198	0,039	-3,800	0,592	-5,378	-1,719	-5,786	-6,118	7,416	13,227	-3,839	-5,970	-4,067
25	-	65	-	1,721	-4,526	1,875	9,899	3,092	16,837	0,160	-3,918	0,723	-5,548	-1,579	-6,102	-6,247	8,024	13,745	-4,078	-6,271	-4,523
20	-	80	-	1,870	-4,497	1,958	10,430	2,992	17,415	0,319	-4,041	0,741	-5,840	-1,400	-0,489	-0,307	8,472	14,423	-4,300	-0,587	-5,023
27		110		2 029	-4,420	2,085	11,332	3,205	18 386	0,410	-4,203	0,803	-6 193	-1,350	-6,703	-6,403	9 245	15,068	-4,015	-7.014	-5,555
29	-	125	-	2,158	-4,291	2,278	11,966	3,337	18,854	0,568	-4,439	0,954	-6,368	-1,274	-7,241	-6,449	9,688	15,517	-5,007	-7,322	-5,967
30	-	140	-	2,224	-4,195	2,329	12,403	3,369	19,219	0,651	-4,521	0,982	-6,411	-1,189	-7,441	-6,419	10,074	15,850	-5,172	-7,393	-6,252
31		155	-	2,289	-4,159	2,406	12,778	3,401	19,509	0,693	-4,593	1,049	-6,374	-1,180	-7,594	-6,448	10,372	16,108	-5,286	-7,423	-6,414
32	-	170	-	2,344	-4,006	2,448	13,126	3,400	19,733	0,732	-4,682	1,132	-6,350	-1,179	-7,751	-6,350	10,678	16,333	-5,414	-7,482	-6,572
33	-	185	-	2,368	-3,903	2,476	13,351	3,456	19,909	0,776	-4,711	1,157	-6,347	-1,170	-7,905	-6,271	10,875	16,453	-5,487	-7,504	-6,735
34	-	200	-	2,414	-3,652	2,497	13,555	3,437	19,880	0,790	-4,716	1,233	-6,153	-1,165	-7,928	-6,066	11,058	16,443	-5,506	-7,386	-6,763
35	-	215	-	2,427	-3,472	2,501	13,777	3,410	19,932	0,784	-4,752	1,255	-6,085	-1,141	-7,963	-5,899	11,276	16,522	-5,536	-7,340	-6,822
36		230	-	2,446	-3,247	2,523	13,837	3,452	19,843	0,763	-4,634	1,244	-5,913	-1,142	-7,911	-5,693	11,314	16,391	-5,397	-7,157	-6,769
37	-	245	-	2,444	-2,994	2,483	13,892	3,357	19,705	0,738	-4,670	1,235	-5,609	-1,144	-7,927	-5,438	11,409	16,348	-5,408	-6,844	-6,/83
30		200		2,445	-2,740	2,473	13,922	3,308	19,321	0,721	-4,304	1,2/1	-5,334	-1,100	-7,023	-5,191	11,449	15,752	-5,225	-0,005	-6,403
40	-	290	-	2,369	-2.229	2,396	13,639	3,286	18,518	0,683	-4,313	1,237	-4.688	-1.205	-7.376	-4,598	11,243	15,232	-4,996	-5.905	-6.171
41	-	305	-	2,308	-1,931	2,322	13,563	3,083	18,183	0,625	-4,240	1,196	-4,266	-1,279	-7,161	-4,239	11,241	15,100	-4,865	-5,462	-5,882
42	-	320	-	2,255	-1,753	2,295	13,220	3,020	17,649	0,554	-4,031	1,204	-3,832	-1,311	-6,970	-4,008	10,925	14,629	-4,585	-5,036	-5,659
43	-	335	-	2,183	-1,452	2,192	13,009	2,910	17,021	0,446	-3,882	1,169	-3,360	-1,340	-6,773	-3,635	10,817	14,111	-4,328	-4,529	-5,433
44		350	-	2,056	-1,168	2,113	12,725	2,820	16,431	0,396	-3,709	1,108	-2,982	-1,452	-6,534	-3,224	10,612	13,611	-4,105	-4,090	-5,082
45	-	305	-	1,930	-0,930	1,973	12,413	2,720	15,837	0,277	-3,397	1,049	-2,503	-1,547	-0,120	-2,8/2	10,440	13,117	-3,874	-3,012	-4,573
40	1.0	395	355	1,590	-0.537	1,823	11,786	2,502	14,401	-0.137	-3,453	0,739	-2.066	-1.721	-5.687	-2,127	9,963	11,899	-3.316	-2,805	-3,966
48	-	-	340	1,970	0,241	1,923	10,976	2,822	13,250	0,360	-2,512	1,398	-0,843	-1,065	-4,358	-1,729	9,053	10,428	-2,872	-2,241	-3,293
49	-	-	325	2,323	0,946	2,134	10,213	3,038	12,027	0,770	1,461	1,772	0,482	-0,543	-3,234	-1,377	8,079	8,989	-2,231	-1,290	-2,691
50		-	310	2,553	1,637	2,317	9,549	3,148	10,992	1,172	-0,670	2,253	1,685	-0,058	-2,166	-0,916	7,232	7,844	-1,842	-0,568	-2,108
51	-	-	295	2,782	2,190	2,562	8,909	3,322	9,590	1,443	0,269	2,613	2,512	0,458	-0,914	-0,592	6,347	6,268	-1,174	-0,101	-1,372
52	-	-	280	2,998	2,729	2,738	8,238	3,413	8,308	1,891	1,070	2,897	3,404	0,918	0,097	-0,269	5,500	4,895	-0,821	0,507	-0,821
53	-	-	265	3,162	3,316	2,943	7,603	3,470	7,056	2,311	1,850	3,288	4,389	1,452	1,214	0,154	4,660	3,586	-0,461	1,101	-0,238
55	-	-	235	3,465	4.072	3,318	6,336	3,577	4,705	3.029	3,437	3,809	5,898	2,472	3.412	0.607	3,000	1.128	0,024	2.089	0,312
56	-	-	220	3,564	4,506	3,469	5,730	3,612	3,489	3,215	4,312	4,101	6,539	3,021	4,414	0,942	2,261	-0,123	1,097	2,438	1,393
57	-	-	205	3,715	4,889	3,606	5,187	3,727	2,264	3,658	5,129	4,308	7,240	3,442	5,472	1,174	1,581	-1,463	1,471	2,932	2,030
58	-	-	190	3,766	5,316	3,802	4,766	3,725	1,205	3,967	5,951	4,554	7,775	3,910	6,646	1,550	0,964	-2,520	1,984	3,221	2,736
59	-	-	170	3,841	5,652	3,933	4,305	4,325	0,970	4,192	6,464	4,669	8,188	4,218	7,154	1,811	0,372	-3,355	2,272	3,519	2,936
60	-	-	155	4,049	5,921	4,044	3,707	4,527	1,085	4,319	6,619	4,886	8,333	4,382	7,341	1,872	-0,337	-3,442	2,300	3,447	2,959
61	-	-	140	4,362	6,326	4,184	3,320	4,645	1,168	4,596	6,760	5,022	8,403	4,505	7,505	1,964	-0,864	-3,477	2,164	3,381	3,000
63			110	4,431	6,430	4,204	3,102	4,085	1,200	4,780	6 989	5,265	8,404	4,099	7,589	2,005	-1,102	-3,480	2,001	3,297	2,890
64		-	95	4,699	6,535	4,403	2,911	4,737	1,399	5,004	7,032	5,340	8,442	4,952	7,750	1,836	-1,492	-3,338	2,028	3,102	2,798
65	-	-	80	4,771	6,607	4,458	2,844	4,703	1,440	5,130	7,108	5,436	8,383	5,109	7,771	1,836	-1,614	-3,263	1,978	2,947	2,662
66	-	-	65	4,811	6,584	4,568	2,814	4,641	1,512	5,271	7,180	5,515	8,390	5,180	7,796	1,773	-1,754	-3,129	1,909	2,875	2,616
67	-	-	50	4.851	6.590	4 625	2,791	4.610	1.557	5.349	7.184	5.570	8.304	5.284	7.765	1.739	-1.834	-3.053	1.835	2 734	2.481

	Distância na	Distância na	Distância n/	a P	ттз	P7	/TR3	P	114	P	TL3	p7	rlR4	F	TL4	PTT3	PTTR3	PTT4	PTL3	PTLR4	PTL4
Pontos	PT (mm) -	PT (mm) -	PT (mm) -	Valor inicial	Valor final	Valor inicia	I Valor final	Distorção	Distorção	Distorção	Distorção	Distorção	Distorção								
	Vista 1	Vista 2	Vista 3	eixo Z (mm)	eixo Z (mm)	eixo Z (mm)	eixo Z (mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)								
2	65	<u> </u>		5,179	2,575	4,219	2,058	4,088	2,329	4,713	5,213	4,854	2,095	4,741	3,234	-2,612	-2,101	-1,755	0,407	-2,195	-1,507
3	80	[]	-	5,150	2,552	4,261	2,293	3,944	2,221	4,727	5,265	4,824	2,657	4,550	3,113	-2,598	-1,968	-1,723	0,538	-2,167	-1,437
4	95	<u> </u>	<u> </u>	5,131	2,617	4,238	2,505	3,864	2,207	4,699	5,328	4,714	2,602	4,474	3,105	-2,514	-1,733	-1,657	0,629	-2,112	-1,369
5	110	<u>⊢</u> '	<u> </u>	5,132	2,729	4,205	2,737	3,794	2,213	4,679	5,328	4,640	2,595	4,360	3,145	-2,403	-1,468	-1,581	0,649	-2,045	-1,215
7	125	\vdash	+	5,1/2	2,852	4,180	3,062	3,704	2,255	4,608	5,410	4,516	2,598	4,265	3,104	-2,320	-1,118	-1,449	0,808	-1,918	-1,101
8	155	\vdash	<u>+</u>	5,311	3,276	4,005	3,957	3,535	2,540	4,492	5,599	4,197	2,676	4,073	3,525	-2,035	-0,048	-0,995	1,107	-1,521	-0,548
9	170	(1	5,470	3,698	3,943	4,578	3,416	2,963	4,410	5,650	3,983	2,686	3,969	3,777	-1,772	0,635	-0,453	1,240	-1,297	-0,192
10	190	· · 7	· · · ·	5,484	3,823	4,172	5,715	3,400	3,207	4,615	5,837	3,875	3,078	4,045	4,165	-1,661	1,543	-0,193	1,222	-0,797	0,120
11	205	<u>← '</u>	<u>+</u>	5,177	3,916	4,172	6,749	3,184	3,478	4,518	5,466	3,818	3,318	4,026	4,515	-1,261	2,577	0,294	0,948	-0,500	0,489
12	220	\vdash	+	5,324	4,18/	4,180	8 554	2,960	4 536	4,410	4,960	3,709	4 390	3,931	5,013	-1,13/	4 331	1 787	0,550	0,106	1,082
14	250	\vdash	<u>+ -</u>	5,208	5,121	4,348	9,554	2,618	5,118	4,184	4,115	3,647	5,078	3,717	6,022	-0,040	5,206	2,500	-0,069	1,431	2,305
15	265	· · ·	-	5,142	5,656	4,375	10,586	2,427	5,845	4,100	3,712	3,564	5,976	3,634	6,425	0,514	6,211	3,418	-0,388	2,412	2,791
16	280	(· _ '	-	5,154	6,279	4,338	11,761	2,273	6,552	4,007	3,295	3,498	6,622	3,365	6,957	1,125	7,423	4,279	-0,712	3,124	3,592
17	295	<u>←``</u> '	<u> </u>	5,099	6,998	4,502	12,773	2,049	7,305	3,900	2,952	3,425	7,550	3,288	7,413	1,899	8,271	5,256	-0,948	4,125	4,125
18	310	+	+	5,174	7,590	4,551	13,926	1,854	8,026	3,793	2,531	3,396	9 247	3,093	7,999	2,416	9,375	6,172	-1,262	5,168	4,906
20	340	\vdash	<u>+</u>	5,223	9.033	4,703	15,020	1,073	9,611	3,078	1,934	3,339	9,347	2,917	8,977	3,180	11,498	8.082	-1,744	7.072	6,252
21	355	5	4	5,567	9,862	4,860	17,318	1,215	10,653	3,468	1,016	3,183	11,286	2,398	9,466	4,295	12,458	9,438	-2,452	8,103	7,068
22	· · ·	20	-	5,376	10,516	4,504	17,222	1,401	11,291	3,491	1,012	3,322	12,081	2,433	9,729	5,140	12,718	9,890	-2,479	8,759	7,296
23	<u> </u>	35	<u> </u>	5,156	11,259	4,271	17,097	1,664	12,015	3,622	1,040	3,438	12,691	2,472	10,127	6,103	12,826	10,351	-2,582	9,253	7,655
24	<u>↓ · · · </u>	65	<u>+</u>	5,082	11,700	4,239	17,289	1,854	12,511	3,729	0,889	3,609	13,478	2,548	10,430	6,618	13,050	10,657	-2,840	9,869	7,882
25	\vdash	80	+	4,935	12,234	4,030	17,304	2,004	13,175	3,830	0,674	3,780	14,100	2,500	10,081	7,335	13,334	11,1/1	-2,505	10,415	8,095
27	\vdash	95	1 -	4,824	13,250	3,943	17,579	2,282	14,229	3,910	0,619	3,818	15,594	2,669	11,109	8,426	13,636	11,947	-3,291	11,776	8,440
28	<u> </u>	110		4,773	13,665	3,851	17,741	2,386	14,775	3,949	0,484	3,918	16,091	2,700	11,364	8,892	13,890	12,389	-3,465	12,173	8,664
29		125	<u> </u>	4,751	14,106	3,843	17,700	2,491	15,126	3,997	0,353	3,982	16,757	2,760	11,559	9,355	13,857	12,635	-3,644	12,775	8,799
30	<u>↓ · · </u>	140	<u> </u>	4,708	14,412	3,814	17,777	2,574	15,478	4,058	0,249	4,048	17,193	2,760	11,754	9,704	13,963	12,904	-3,809	13,145	8,994
31	<u>↓ · · · </u>	155	<u>+</u>	4,679	14,657	3,785	17,63/	2,632	15,831	4,084	0,213	4,0/6	17,608	2,799	11,839	9,978	13,852	13,199	-3,8/1	13,532	9,040
32	\vdash	185	+	4,655	15.052	3,744	17,040	2,000	16,231	4,113	0,140	4,132	18,251	2,819	11,933	10,205	13,735	13,500	-3,507	14,103	9,114
34	<u> </u>	200	-	4,655	15,008	3,700	17,314	2,738	16,271	4,169	-0,020	4,150	18,458	2,830	11,932	10,353	13,614	13,533	-4,189	14,308	9,102
35	_ · _]	215	-	4,655	14,985	3,694	17,105	2,770	16,275	4,153	-0,050	4,153	18,523	2,841	11,840	10,330	13,411	13,505	-4,203	14,370	8,999
36	<u>↓ · · ·</u>	230	<u> </u>	4,704	14,865	3,715	16,800	2,745	16,193	4,151	-0,071	4,164	18,651	2,825	11,712	10,161	13,085	13,448	-4,222	14,487	8,887
37	\vdash	245	1 :	4,701	14,704	3,716	16,449	2,734	15,993	4,159	-0,132	4,147	18,489	2,807	11,525	9.615	12,733	13,259	-4,291	14,342	8,718
39	\vdash	200	+	4,784	14,557	3,726	15,622	2,714	15,432	4,137	-0,102	4,105	18,201	2,000	10,998	9.330	11,896	12,730	-4,301	14,096	8.213
40	<u>⊢ </u> , ,	290	-	4,849	13,641	3,803	15,050	2,649	15,023	4,081	-0,210	4,036	17,929	2,763	10,643	8,792	11,247	12,374	-4,291	13,893	7,880
41	[-]	305	-	4,883	13,238	3,817	14,644	2,575	14,605	4,102	-0,281	3,998	17,641	2,708	10,299	8,355	10,827	12,030	-4,383	13,643	7,591
42	<u>↓ </u>	320	<u> </u>	4,971	12,800	3,918	14,072	2,508	14,031	4,001	-0,287	3,981	17,204	2,671	9,931	7,829	10,154	11,523	-4,288	13,223	7,260
43	<u>↓ · · · </u>	335	<u>+</u>	5,094	12,297	3,983	13,618	2,393	13,461	3,979	-0,332	3,936	16,630	2,617	9,562	7,203	9,635	11,068	-4,311	12,694	6,945
45	\vdash	365	<u>+ :</u>	5,072	11,643	4,159	12,590	2,262	12,892	3,988	-0,386	3,844	15,700	2,620	8,963	5,723	8,967	10,630	-4,324	12,314	5,994
46	(· · · ·	380	<u> </u>	5,416	10,432	4,437	11,986	1,958	11,839	3,756	-0,543	3,596	14,888	2,508	8,233	5,016	7,549	9,881	-4,299	11,292	5,725
47	· · · ·	395	355	5,743	9,934	4,608	11,700	1,645	11,053	3,548	-0,695	3,356	14,252	2,499	7,873	4,191	7,092	9,408	-4,243	10,896	5,374
48	<u> </u>	<u>↓ · · '</u>	340	5,714	9,320	4,636	10,676	2,120	10,287	4,007	-0,029	3,761	13,320	2,633	7,125	3,606	6,040	8,167	-4,036	9,559	4,492
49	\vdash	+	325	5,603	8,623	4,616	9,688	2,383	9,582	4,277	0,512	3,955	12,398	2,781	6,608	3,020	5,072	7,199	-3,765	8,443	3,827
51	\vdash	\vdash	295	5,613	7,012	4,054	7.653	2,020	7.844	4,450	1,055	4,073	10,458	3.009	5,417	1,483	3,925	5.037	-3,457	6,194	2,408
52	<u>⊢ </u> , ,	· · ·	280	5,556	6,322	4,568	6,748	2,959	7,060	4,783	1,845	4,321	9,299	3,145	4,856	0,766	2,180	4,101	-2,938	4,978	1,711
53	<u> </u>	\square	265	5,577	5,610	4,521	5,753	3,107	6,284	4,954	2,155	4,437	8,313	3,251	4,312	0,033	1,232	3,177	-2,799	3,876	1,061
54		<u>[` '</u>	250	5,538	4,821	4,561	4,840	3,318	5,506	4,965	2,490	4,514	7,264	3,326	3,761	-0,717	0,279	2,188	-2,475	2,750	0,435
55	<u>↓ · · · </u>	<u>← '</u>	235	5,531	4,150	4,641	4,049	3,414	4,689	5,015	2,849	4,567	6,289	3,443	3,308	-1,381	-0,592	1,275	-2,166	1,722	-0,135
50	+	+	220	5,484	2 937	4,00/	3,209	3,552	3,923	5,036	3,077	4,619	5,265	3,577	2,807	-2,048	-1,458	-0.371	-1,959	0,646	-0,770
58			190	5,309	2,037	4,750	2,036	3,707	2,794	5,100	3,405	4,595	3,327	3,883	2,4.04	-2,000	-2,250	-0,913	-1.521	-1.268	-1,250
59		· · ·	170	5,397	2,194	4,650	1,158	3,890	2,363	5,156	3,942	4,696	3,022	4,002	2,136	-3,203	-3,492	-1,527	-1,214	-1,674	-1,866
60	· · · ·	· · · ·	155	5,574	2,251	4,830	1,139	4,150	2,452	5,336	4,206	4,760	2,862	4,388	2,390	-3,323	-3,691	-1,698	-1,130	-1,898	-1,998
61		<u> </u>	140	5,505	2,342	4,940	1,198	4,332	2,540	5,401	4,492	4,787	2,785	4,616	2,647	-3,163	-3,742	-1,792	-0,909	-2,002	-1,969
62	<u>↓ · </u>	<u>← '</u> '	125	5,631	2,447	5,008	1,315	4,527	2,600	5,438	4,745	4,900	2,676	4,791	2,870	-3,184	-3,693	-1,927	-0,693	-2,224	-1,921
64	<u>↓ · · · </u>	<u>←</u> '	4 110	5,082	2,565	5,001	1,303	4,626	2,680	5,42/	4,963	4,933	2,001	4,966	3,085	-3,11/	-3,638	-1,946	-0,464	-2,272	-1,881
65	\vdash	\vdash	80	5,767	2,826	4,933	1.585	4,800	2,780	5,421	5,351	5.044	2,655	5.222	3,457	-2.941	-3.348	-2.020	-0,230	-2,336	-1.765
66	(· · ·	(· · ·	65	5,824	2,895	4,866	1,743	4,874	2,869	5,356	5,481	5,130	2,704	5,284	3,707	-2,929	-3,123	-2,005	0,125	-2,426	-1,577
0			50	5.011	2,000	4.040	1.024	A 950	2.924	5 222	5 560	5 117	2 719	5 355	3 797	-2.931	-3.016	-2.024	0.247	-2 398	-1.558

Junta sem chanfro (junta 1) e tecimento "Zig-Zag".

	Dictância na	Dictância na	Dictôncia na	D	TTS	D D	TT6	DT	TP 1	D	TI S	DT	192	D.	16	DT	101	DITIS	DITE	DTTP1	DTLS	DTLP2	DTL6	071.91
Pontos	PT (mm) -	PT (mm) -	PT (mm) -	Valor inicial	Valor final	Distorção	Distorcão	Distorcão	Distorção	Distorcão	Distorcão	Distorcão												
	Vista 1	Vista 2	Vista 3	eixo Z (mm)	eixo Z (mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)												
1	50	-	-	4,100	6,403	4,096	7,045	4,010	1,409	4,668	6,764	4,588	6,849	4,854	6,829	4,666	7,213	2,303	2,949	-2,601	2,096	2,261	1,975	2,547
2	65	-	-	4,135	6,594	4,141	7,148	4,042	1,540	4,582	6,766	4,562	6,893	4,765	6,753	4,684	7,374	2,459	3,007	-2,502	2,184	2,331	1,988	2,690
3	80			4,100	6,670	4,159	7,231	4,039	1,580	4,475	6,775	4,501	6,919	4,000	6 548	4,039	7,489	2,504	3,072	-2,453	2,302	2,418	2,012	2,830
5	110	-		4,170	6,884	4,149	7,440	4,025	1,873	4,279	6,744	4,368	6,971	4,452	6,481	4,600	7,789	2,714	3,291	-2,152	2,465	2,603	2,029	3,189
6	125	-	-	4,144	6,962	4,105	7,504	4,009	1,976	4,174	6,716	4,326	6,994	4,351	6,348	4,565	7,853	2,818	3,399	-2,033	2,542	2,668	1,997	3,288
7	140	-	-	4,154	7,010	4,037	7,568	3,952	2,276	4,085	6,681	4,271	6,987	4,267	6,245	4,577	7,947	2,856	3,531	-1,676	2,596	2,716	1,978	3,370
8	155	-		4,108	7,046	4,035	7,500	3,824	2,667	3,964	6,655	4,218	6,940	4,133	6,108	4,517	7,955	2,938	3,465	-1,157	2,691	2,722	1,975	3,438
9	1/0		-	4,045	6,883	3,917	6,819	3,800	3,113	3,851	6,607	4,215	6,819	4,023	5,970	4,468	7,971	3,057	3,501	-0,687	2,756	2,604	1,947	3,503
11	205			3,911	6.048	3,412	5,849	3,733	4,100	3,380	5,113	3,715	5.665	3,528	4.096	3,956	6,663	2,137	2,437	0,367	1.733	1,950	0.568	2,305
12	220	-	-	3,707	5,279	3,015	4,675	3,638	4,836	2,952	4,233	3,493	5,075	3,372	3,063	3,737	5,846	1,572	1,660	1,198	1,281	1,582	-0,309	2,109
13	235	-	-	3,345	4,354	2,587	3,612	3,471	5,466	2,588	3,487	3,275	4,404	3,196	1,924	3,540	4,883	1,009	1,025	1,995	0,899	1,129	-1,272	1,343
14	250	-	-	3,093	3,459	2,219	2,405	3,421	6,392	2,178	2,514	3,021	3,723	3,005	0,942	3,242	4,075	0,366	0,186	2,971	0,336	0,702	-2,063	0,833
15	265	-	-	2,845	2,609	1,788	1,210	3,305	7,265	1,789	1,583	2,723	2,854	2,781	-0,185	3,022	3,103	-0,236	-0,578	3,960	-0,206	0,131	-2,966	0,081
10	200			2,009	0.726	1,425	-1.025	3,036	9,224	1,404	-0.101	2,540	1 246	2,380	-1,230	2,075	1,056	-1 524	-2.062	6 184	-1 130	-0,170	-3,010	-1 313
18	310	-	-	2,026	-0,273	0,532	-2,254	2,949	10,215	0,569	-1,137	1,790	0,487	2,165	-3,453	1,997	0,062	-2,299	-2,786	7,266	-1,706	-1,303	-5,618	-1,935
19	325			1,758	-1,194	0,168	-3,521	2,755	11,159	0,335	-1,943	1,489	-0,271	1,969	-4,509	1,679	-0,939	-2,952	-3,689	8,404	-2,278	-1,760	-6,478	-2,618
20	340	-		1,428	-2,321	-0,219	-4,769	2,641	12,170	-0,054	-2,834	1,062	-1,035	1,693	-5,720	1,255	-2,067	-3,749	-4,550	9,529	-2,780	-2,097	-7,413	-3,322
21	355	5		1,169	3,202	-0,949	-6,154	2,455	13,337	-0,473	3,800	0,746	-1,388	1,541	-6,876	0,795	-3,397	4,371	5,205	10,882	3,327	-2,634	8,417	-4,192
22	-	20		1,117	-3,721	-0,785	-0,302	2,484	14,025	-0,1/5	-4,100	0,925	-1,981	1,775	-7,039	1,022	-1,621	-4,838	-5,777	12,121	-3,791	-2,900	-8,814	-4,043
24	1.0	50		1,229	-4,605	-0,641	-7,389	2,589	15,152	-0,169	-4,656	1,313	-2,439	1,937	-7,518	1,399	-4,305	-5,834	-6,748	12,563	-4,487	-1,752	-9,455	-5,704
25		65		1,285	-5,041	-0,616	-7,853	2,644	15,763	-0,033	-5,017	1,395	-2,648	2,076	-7,756	1,455	-4,757	-6,326	-7,237	13,119	-4,984	-4,043	-9,832	-6,212
26		80	1.8	1,336	-5,372	-0,594	-8,281	2,675	16,345	0,041	-5,263	1,491	-2,971	2,154	-7,983	1,564	-5,015	-6,708	-7,687	13,670	-5,304	-4,462	-10,137	-6,579
27		95		1,344	-5,722	-0,554	-8,597	2,758	16,889	0,104	-5,545	1,572	-3,042	2,245	-8,220	1,733	-5,310	-7,066	-8,043	14,131	-5,649	-4,614	-10,465	-7,043
28		110	•	1,407	-6,104	-0,487	-8,901	2,819	17,539	0,167	-5,773	1,607	-3,211	2,300	-8,409	1,783	-5,588	-7,511	-8,414	14,720	-5,940	-4,818	-10,709	-7,371
30		140		1,474	-6,718	-0,466	-9,499	2,904	18,453	0,227	6.122	1,700	-3,421	2,398	-8,782	1,005	-6.116	-8.192	-9.033	15,549	-6,405	-5.172	-11,180	-8.071
31		155		1,516	-6,925	-0,427	-9,696	2,8%5	18,762	0,295	-6,260	1,822	-3,517	2,467	-8,899	1,982	-6,352	-8,441	-9,269	15,867	-6,555	-5,339	-11,366	-8,334
32		170		1,512	-7,123	-0,443	-9,838	2,917	18,939	0,306	-6,417	1,859	-3,509	2,504	-8,904	2,025	-6,538	-8,635	-9,395	16,022	-6,723	-5,368	-11,408	-8,563
33		185		1,515	-7,224	-0,487	-9,980	2,893	19,193	0,323	-6,497	1,889	-3,567	2,529	-9,065	2,004	-6,642	-8,739	-9,493	16,300	-6,820	-5,456	-11,594	-8,646
34		200		1,537	-7,360	-0,485	-10,005	2,859	19,262	0,327	-6,591	1,977	-3,501	2,557	-8,966	2,059	-6,760	-8,897	-9,520	16,403	-6,918	-5,478	-11,523	-8,819
35	-	215		1,534	-7,309	-0,474	-10,103	2,837	19,245	0,293	6.531	1,949	-3,460	2,304	-9,019	2,052	-6,758	-8,903	-9,629	16,403	-0,852	-5,435	-11,583	-8,910
37	1	245		1,488	-7,216	-0,562	-9,811	2,720	18,946	0,213	-5,498	1,963	-3,194	2,533	-8,778	2,040	-6,733	-8,704	-9,249	16,226	-6,711	-5,157	-11,311	-8,773
38		260		1,438	-7,200	-0,585	-9,685	2,664	18,834	0,229	-6,388	1,961	-3,039	2,529	-8,523	2,014	-6,641	-8,638	-9,099	16,170	-6,617	-5,000	-11,052	-8,655
39		275	1.8	1,403	-7,030	-0,668	-9,443	2,585	18,513	0,194	-6,257	1,974	-2,931	2,524	-8,268	2,010	-6,559	-8,433	-8,775	15,928	-6,451	-4,905	-10,792	-8,569
40		290		1,334	-6,791	-0,769	-9,242	2,498	18,031	0,154	-6,080	1,949	-2,633	2,477	-8,072	1,950	-6,410	-8,125	-8,473	15,533	-6,234	-4,582	-10,549	-8,360
41		305		1,251	-6,222	-0,833	-8,767	2,424	17,099	0,091	-5,955	1,891	-2,281	2,412	-7,689	1,867	-6,311	-7,836	-7,934	15,272	-6,044	-4,1/2	-10,101	-7 883
43		335		1,163	-6,107	-0,967	-8,021	2,306	16,614	-0,037	5,480	1,949	-1,890	2,276	-7,011	1,736	-5,988	-7,270	-7,054	14,308	-5,443	-3,839	-9,287	-7,724
-44		350	- e 1	1,114	5,842	0,953	7,682	2,220	16,089	-0,162	-8,373	1,984	-1,507	2,176	-6,584	1,616	-5,891	-6,956	-6,729	13,869	5,211	-3,491	8,760	7,507
45	-	365	-	1,081	-5,563	-1,087	-7,329	2,147	15,392	-0,331	-5,090	1,944	-1,186	2,050	-6,273	1,518	-5,610	-6,644	-6,242	13,245	-4,759	-3,130	-8,323	-7,128
46	•	380	-	1,014	-5,283	-1,215	-6,944	2,106	14,809	-0,482	-5,021	1,944	-0,877	1,926	-5,947	1,374	-5,516	-6,297	-5,729	12,703	-4,539	-2,821	-7,873	-6,890
47			340	1,372	-4,505	-0.403	-0,555	2,361	12,933	0.068	-3,571	2,083	0,122	2,242	-3,790	1,709	-3,992	-5,017	-4,589	10.572	-3,639	-2,375	-6.032	-5,701
49	-	-	325	1,779	-2,566	-0,008	-3,697	2,631	11,589	0,537	-2,508	2,426	0,988	2,569	-2,428	2,049	-2,892	-4,345	-3,689	8,958	-3,045	-1,438	-4,997	-4,941
50	-	-	310	2,139	-1,513	0,555	-2,355	2,833	10,749	0,994	-1,446	2,704	1,617	2,862	-0,940	2,339	-1,770	-3,652	-2,910	7,916	-2,440	-1,087	-3,802	-4,109
51	-	-	295	2,433	-0,596	0,974	-1,017	3,053	9,507	1,369	-0,438	2,981	2,280	3,096	0,334	2,677	-0,639	-3,029	-1,991	6,454	-1,807	-0,701	-2,762	-3,316
52	-	-	280	2,719	0,375	1,377	0,151	3,179	8,586	1,843	0,457	3,212	2,961	3,329	1,658	3,039	0,428	-2,344	-1,226	5,407	-1,386	-0,251	-1,671	-2,611
53	-	-	200	2,970	1,325	1,849	1,337	3,304	7,294	2,181	1,312	3,485	3,007	3,514	2,994	3,320	1,450	-1,051	-0,512	3,990	-0,809	0,182	-0,520	-1,870
55			235	3,508	3,076	2,646	3,544	3,560	5,178	2,887	3,247	3,960	5,070	3,878	5,568	3,960	3,546	-0,432	0,278	1,618	0,360	1,110	1,690	-0,414
56	-	-	220	3,763	3,883	3,088	4,777	3,711	4,006	3,264	4,160	4,150	5,581	4,026	6,824	4,283	4,498	0,120	1,689	0,295	0,896	1,431	2,798	0,215
57		-	205	3,927	4,587	3,496	5,702	3,809	2,941	3,521	4,879	4,379	6,107	4,193	7,953	4,585	5,594	0,660	2,206	-0,868	1,358	1,728	3,760	1,009
58			190	4,140	5,302	3,867	6,550	3,931	2,063	3,796	5,624	4,599	6,584	4,283	9,112	4,917	6,431	1,162	2,683	-1,868	1,828	1,985	4,829	1,514
59	-	-	170	4,423	5,734	4,157	7,160	4,203	1,619	4,111	6,498	4,385	6,623	4,430	9,955	5,010	7,059	1,311	3,003	-2,584	2,387	2,238	5,525	2,049
61			140	4,398	6,020	4,311	7,428	4,440	1,508	4,318	7 135	4,077	7.089	4,095	9,901	5,252	7,381	1,022	3,117	-2,872	2,587	2,18/	5,200	2,129
62	-	-	125	4,695	6,344	4,539	7,601	4,654	1,569	4,785	7,298	5,012	7,159	5,041	9,893	5,374	7,579	1,649	3,062	-3,085	2,513	2,147	4,852	2,205
63			110	4,740	6,484	4,552	7,528	4,686	1,542	4,975	7,447	5,124	7,266	5,170	9,791	5,385	7,662	1,744	2,976	-3,144	2,472	2,142	4,621	2,277
64	-	-	95	4,737	6,510	4,559	7,576	4,728	1,595	5,084	7,536	5,184	7,252	5,262	9,673	5,404	7,688	1,773	3,017	-3,133	2,452	2,068	4,411	2,284
65	-	-	80	4,713	6,549	4,537	7,545	4,723	1,635	5,180	7,591	5,244	7,273	5,334	9,567	5,392	7,646	1,836	3,008	-3,088	2,411	2,029	4,233	2,254
66			65	4,636	6,576	4,512	7,437	4,710	1,622	5,245	7,628	5,294	7,241	5,372	9,382	5,352	7,610	1,940	2,925	-3,088	2,383	1,947	4,010	2,258

Junta sem chanfro (junta 1) e tecimento "Vai-Vem".

•	Junta con	n chanfro	60	°(junta 2)	e sem	tecimento.
---	-----------	-----------	----	------------	-------	------------

	Distância na	Distância na	Distância na	PT	Т7	PT	T8	РТ	17	PT	LR5	PT	FL8	PTT7	PTT8	PTL7	PTLR5	PTL8
Pontos	PT (mm) -	PT (mm) -	PT (mm) -	Valor inicial	Valor final	Distorção	Distorção	Distorção	Distorção	Distorção								
	Vista 1	Vista 2	Vista 3	eixo Z (mm)	eixo Z (mm)	(mm)	(mm)	(mm)	(mm)	(mm)								
1	50	-	-	3,963	1,322	4,389	1,931	4,543	2,585	4,564	2,254	4,843	2,576	-2,641	-2,458	-1,958	-2,310	-2,267
2	65	-	-	4,017	1,384	4,293	1,798	4,501	2,561	4,512	2,213	4,867	2,562	-2,633	-2,495	-1,940	-2,299	-2,305
3	80	-	-	4,026	1,432	4,147	1,604	4,405	2,505	4,432	2,105	4,810	2,518	-2,594	-2,543	-1,900	-2,327	-2,292
4	95	-	-	4,108	1,563	4,025	1,405	4,347	2,504	4,393	2,085	4,765	2,516	-2,545	-2,620	-1,843	-2,308	-2,249
5	110	-	-	4,125	1,740	3,874	1,349	4,315	2,550	4,320	2,112	4,692	2,533	-2,385	-2,525	-1,765	-2,208	-2,159
6	125	-	-	4,161	1,991	3,709	1,212	4,253	2,591	4,269	2,152	4,623	2,446	-2,170	-2,497	-1,662	-2,117	-2,177
7	140	-	-	4,212	2,341	3,536	1,245	4,163	2,726	4,211	2,269	4,503	2,469	-1,871	-2,291	-1,437	-1,942	-2,034
8	155	-	-	4,223	2,746	3,339	1,280	4,109	2,941	4,136	2,463	4,394	2,5/4	-1,4//	-2,059	-1,168	-1,6/3	-1,820
10	190			4,217	3,255	3 268	2 247	3,972	3,567	4,075	2,003	4,200	2,701	-0,518	-1,040	-0,000	-1,154	-1,303
11	205			4,359	4,709	3.214	2.824	3.838	4.000	4,444	4.326	4.047	3.423	0.350	-0.390	0.162	-0.118	-0.624
12	220	-	-	4,379	5,669	3,139	3,640	3,735	4,387	4,602	5,137	4,004	4,028	1,290	0,501	0,652	0,535	0,024
13	235	-	-	4,389	6,487	3,015	4,481	3,583	4,925	4,706	6,137	4,030	4,758	2,098	1,466	1,342	1,431	0,728
14	250		-	4,350	7,689	2,878	5,301	3,456	5,571	4,786	7,143	4,006	5,672	3,339	2,423	2,115	2,357	1,666
15	265	-	-	4,326	8,630	2,649	6,220	3,309	6,216	4,800	8,088	4,049	6,484	4,304	3,571	2,907	3,288	2,435
16	280	-	-	4,309	9,692	2,425	7,229	3,162	6,803	4,837	9,091	4,041	7,478	5,383	4,804	3,641	4,254	3,437
1/	295	-	-	4,248	10,816	2,309	8,052	3,117	7,571	4,856	10,141	3,967	8,400	0,568	5,743	4,454	5,285	4,433
10	310	-	-	4,229	11,734	2,078	9,138	2,985	8,180	4,820	11,293	4,078	9,335	7,303	7,080	5,201	0,408	5,257
15	323	-	-	4,131	12,560	1,070	10,149	2,005	5,501	4,010	12,202	4,024	10,357	0,000	0,275	0,492	7,352	0,575
20	340		-	3,941	14,130	1,081	11,138	2,677	10,097	4,/4/	13,200	4,109	11,2/1	10,195	9,457	7,420	8,459	7,162
21	355	20	-	3,957	15,129	1,505	11,997	2,598	10,869	4,620	14,101	4,074	12,377	11,1/2	10,492	8,271	9,481	8,303
22		35		4,102	16 651	1,700	13,070	2,710	12 212	4,703	15,416	4,277	14 009	12 165	11,302	9 321	10 603	9.606
24	-	50	-	4,674	17,348	2,219	14,492	2,930	12,784	4,944	16,089	4,507	14,641	12,674	12,273	9,854	11,145	10,134
25	-	65	-	4,818	18,024	2,380	15,107	3,033	13,341	5,012	16,687	4,654	15,348	13,206	12,727	10,308	11,675	10,694
26		80	-	4,967	18,466	2,506	15,837	3,141	13,928	5,074	17,290	4,791	15,993	13,499	13,331	10,787	12,216	11,202
27	-	95	-	5,042	19,033	2,630	16,274	3,206	14,388	5,117	17,833	4,904	16,820	13,991	13,644	11,182	12,716	11,916
28	-	110	-	5,154	19,464	2,764	16,745	3,253	14,878	5,192	18,305	4,982	17,334	14,310	13,981	11,625	13,113	12,352
29	-	125	-	5,222	19,827	2,869	17,305	3,289	15,259	5,228	18,874	4,989	17,914	14,605	14,436	11,970	13,646	12,925
30	-	140	-	5,284	20,071	2,921	17,734	3,337	15,599	5,267	19,209	5,120	18,384	14,787	14,813	12,262	13,942	13,264
32	-	133	-	5,398	20,335	3.020	18,000	3,334	15,027	5,330	19,846	5,228	19,266	15,077	15,080	12,473	14,235	14,038
33	-	185	-	5,413	20,605	3,050	18,366	3,395	16,116	5,334	19,981	5,255	19,569	15,192	15,316	12,721	14,647	14,314
34	-	200	-	5,407	20,575	3,075	18,337	3,392	16,204	5,329	19,974	5,274	19,747	15,168	15,262	12,812	14,645	14,473
35	-	215	-	5,404	20,370	3,059	18,346	3,364	16,093	5,319	20,166	5,296	19,834	14,966	15,287	12,729	14,847	14,538
36	-	230	-	5,395	20,264	3,059	18,135	3,369	16,038	5,304	19,979	5,305	19,984	14,869	15,076	12,669	14,675	14,679
37	-	245	-	5,360	19,969	3,011	17,945	3,322	15,777	5,258	19,845	5,293	19,988	14,609	14,934	12,455	14,587	14,695
38	-	260	-	5,330	19,440	2,982	17,660	3,283	15,383	5,242	19,645	5,287	19,831	14,110	14,678	12,100	14,403	14,544
39	-	275	-	5,258	19,073	2,928	17,212	3,272	15,080	5,201	19,377	5,276	19,751	13,815	14,284	11,808	14,176	14,475
40	-	290	-	5,184	18,376	2,842	16,838	3,195	14,557	5,168	18,891	5,238	19,424	13,192	13,996	11,362	13,723	14,186
41	-	305	-	5,130	17,788	2,/34	16,235	3,140	14,148	5,103	18,613	5,216	19,148	12,658	13,501	11,008	13,510	13,932
42	-	320		4 862	16 356	2,032	15,085	2,883	12,870	5,053	17,650	5,079	18,055	11 494	12 538	9 987	12 587	13,335
44	-	350	-	4,783	15,496	2,351	14,382	2,822	12,243	4,962	17,208	4.966	18,000	10,713	12,030	9,421	12,307	13,034
45	-	365	-	4,646	14,616	2,210	13,600	2,622	11,673	4,850	16,646	4,818	17,519	9,970	11,390	9,051	11,796	12,701
46	-	380	-	4,474	13,706	1,980	12,762	2,504	10,873	4,824	15,951	4,697	17,060	9,232	10,782	8,369	11,127	12,363
47	-	395	355	4,173	12,711	1,665	11,932	2,314	10,076	4,744	15,469	4,688	16,610	8,538	10,267	7,762	10,725	11,922
48	-	-	340	4,175	11,448	1,905	10,781	2,710	9,489	4,770	14,390	4,910	15,531	7,273	8,876	6,779	9,620	10,621
49	-	-	325	4,238	10,244	2,062	9,552	3,038	8,611	4,737	13,003	4,933	14,346	6,006	7,490	5,573	8,266	9,413
50	-	-	295	4,300	9,035	2,272	8,040	3,241	7,801	4,747	10,616	5,034	11,100	4,009	0,308	4,620	5,857	6,860
52	-	-	280	4,380	6,661	2,659	6,422	3,674	6,201	4,718	9,395	5,106	10,672	2,281	3,763	2,527	4,677	5,566
53	-	-	265	4,560	5,415	2,836	5,423	3,833	5,324	4,689	8,179	5,149	9,420	0,855	2,587	1,491	3,490	4,271
54	-	-	250	4,576	4,314	3,006	4,378	3,939	4,487	4,665	7,002	5,116	8,094	-0,262	1,372	0,548	2,337	2,978
55	-	-	235	4,628	3,152	3,203	3,441	4,079	3,638	4,671	5,698	5,079	6,822	-1,476	0,238	-0,441	1,027	1,743
56	-	-	220	4,639	2,135	3,331	2,390	4,210	2,831	4,664	4,642	5,067	5,474	-2,504	-0,941	-1,379	-0,022	0,407
57	-	-	205	4,628	1,165	3,434	1,418	4,318	1,991	4,584	3,567	4,957	4,215	-3,463	-2,016	-2,327	-1,017	-0,742
58			190	4,601	0,193	3,495	0,707	4,294	1,420	4,599	2,578	4,824	3,006	-4,408	-2,788	-2,874	-2,021	-1,818
59			1/0	4,572	-0,331	3,576	0,405	4,422	1,372	4,502	1,808	4,625	2,147	-4,903	-3,1/1	-3,050	-2,034	-2,478
61	-	-	133	4,700	0,162	4,133	0,371	4,721	1,005	4,752	1,070	4,001	2,047	-4,665	-3,310	-3,118	-2,522	-2,034
62	-	-	125	4,833	0,325	4,317	1,035	5,050	2,108	5,139	2,186	4,829	2,015	-4,508	-3,282	-2,942	-2,953	-2,814
63	-	-	110	4,863	0,616	4,433	1,304	5,143	2,333	5,234	2,269	4,888	2,135	-4,247	-3,129	-2,810	-2,965	-2,753
64	-	-	95	4,833	0,774	4,559	1,518	5,225	2,578	5,322	2,412	4,915	2,245	-4,059	-3,041	-2,647	-2,910	-2,670
65	-	-	80	4,731	0,951	4,620	1,751	5,263	2,706	5,360	2,546	4,928	2,346	-3,780	-2,869	-2,557	-2,814	-2,582
66	-	-	65	4,720	1,147	4,756	1,992	5,292	2,898	5,391	2,673	5,005	2,440	-3,573	-2,764	-2,394	-2,718	-2,565
67			10	1 COF	1 3 3 3 3			E 201	3,030	E 204	3 366	F 030	a car	1 2 2 2 2 7	3 604		3 630	

	Distância na	Distincia M	Distância na	PT	119		184		185	PT	110	- 97	185	P	11.9	Pt	197	PI	1.10	PTT9	PITEM	PTTRS	PTTIO	PTIRS	PTLS	PTUR7	PTLID
Pontos	PT (mm)-	PT (mm)-	PT (mm) -	Valor inicial	Valor final	Valce mical	Value final	Valor Michael	Valor final	Valor inicial	Valor final	Valor manal	Valor final	Valor inicial	Valor final	Valor menal	Valor final	Valor inicial	Valor final	Distorção	Deterção	Distorção	Distorção	Distorgão	Distorção	Distorgilo	Distorga
1	Vista 1	Vista 2	Vista 3	eixo Z (mm)	eixo Z (mm)	esso Z (mm)		mac Z (mm)	nteo Z (mm)	eixo Z (mm)	eixo Z (mm)	enco Z (mme)	enco Z (rem)	eixo Z (mm)	eixo Z (mm)	nteo I (mm)	nice Z (min)	eixo Z (mm)	eixo Z (mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(1000)	(mm)
1	50	1.1.1	1000	4,089	1,845	5,310	2,944	4,810	2,442	3,998	1,572	4,353	2,215	4,332	2,215	4,554	1,025	4,821	2,507	-2,243	-2,396	-2,453	-2,336	-2,138	2,597	-1,528	-2,314
2	65			4,053	1,763	5,193	2,812	4,893	2,485	4,024	1,551	4,282	2,092	4,859	2,245	4,542	2,971	4,731	2,428	-2,290	-2,381	-2,407	-2,473	-2,190	-2,614	-1,571	-2,303
	80			4,009	1,740	5,134	2,787	5,018	2,439	4,098	1,047	4,173	2,003	4,857	2,253	4,408	2,902	4,600	2,394	-2,263	-2,347	-2,579	-2,451	-2,170	-2,604	-1,500	-2,262
-	110			3,547	1.672	4.956	2,729	5,146	2.458	4.149	1,816	1,876	1.681	4,793	2,225	4.345	2,901	4,300	2,331	-2.290	-2.211	-2,688	-2,410	-2,195	-2,610	-1.446	-2.220
6	125			3,854	1.656	4,879	2,886	5.190	2.514	4,127	1,993	3,730	1.680	4.747	2,450	4,314	3,026	4.410	2,370	-2.198	-1.993	-2.676	-2.134	-2.050	-2.287	-1.288	-2,040
7	140		-	3,777	1,798	4,887	3,090	5,286	2,583	4,164	2,120	3,620	1,569	4,714	2,627	4,229	3,118	4,322	2,500	-1,979	-1,797	-2,703	-2,044	-2,051	-2,087	-1,111	-1,822
8	155		- + à	3,716	1,991	4,896	3,440	5,334	2,659	4,215	2,375	3,404	1,598	4,671	2,864	4,209	3,254	4,234	2,713	-1,725	-1,456	-2,675	-1,839	-1,806	-1,807	-0,955	-1,521
	170		-	3,603	2,289	4,928	1.900	5,264	2,832	4,159	2,750	1,207	1,785	-4,598	1,265	4,167	1,578	4,140	1,089	-1,390	-1,022	-2,452	-1,391	-1,462	-1,333	-0,591	-1,057
30	190		-	1,591	2,645	4,667	4,149	5,527	\$144	4,264	1,329	3,297	2,341	4,701	4,052	4,143	3,832	4,452	3,948	-0,945	-0,518	2,383	0,915	-0,956	-0,651	-0,315	-0,504
13	205			3,892	3,612	4,755	4,984	5,711	3,535	4,448	4,203	3,589	3,190	4,859	4,916	4,069	4,227	4,644	4,882	-0,280	0,229	-2,196	-0,245	-0,393	0,057	0,158	0,238
11	220			4,124	4,030	4,614	6,677	5,878	4,324	4,343	6.243	4.124	5,400	4,909	6,910	3,701	4,000	4,000	6.758	1.422	1.641	-1,919	1,500	1.282	1,916	1,725	1.873
14	250			4.412	6,777	4.835	7.697	5.968	4,748	4.851	7,234	4,335	6.525	4.997	7.856	3.894	5.931	5.007	7.772	2,365	2,862	-1.220	2,383	2,190	2.859	2.037	2,765
15	265		-	4,489	7,878	4,739	8,680	5,955	5,239	4,910	8,356	4,532	7,733	4,897	9,010	3,829	6,653	5,007	8,922	3,389	3,947	-0,715	3,446	3,201	4,113	2,824	3,915
16	280			4,645	8,929	4,758	9,707	5,916	5,839	4,988	9,402	4,770	9,196	4,897	9,953	3,786	7,319	5,162	9,976	4,284	4,949	-0,077	4,414	4,425	5,056	3,533	4,814
17	295		+	4,700	10,220	4,663	10,758	5,938	6,445	5,087	10,434	5,011	10,587	4,850	11,171	3,756	8,185	5,208	11,135	5,520	6,205	0,528	5,347	5,576	6,311	4,429	5,927
18	310			4,721	11,279	4,652	11,866	5,930	7,043	5,096	11,574	5,198	11,576	4,722	12,151	3,731	8,947	5,240	12,221	6,558	7,214	1,113	6,478	6,378	7,429	5,216	6,981
19	325		-	4,866	12,508	4,614	13,086	5,917	7,624	5,122	12,806	5,365	13,051	4,619	13,378	3,634	9,662	5,180	13,405	7,642	8,472	1,707	7,684	7,685	8,759	6,028	8,225
20	340		-	4,909	13,572	4,552	14,267	5,857	8,137	5,150	13,834	5,507	14,423	4,300	14,503	3,579	10,550	5,234	19,409	8,003	9,715	2,250	8,687	8,916	9,856	0,771	3,1/5
22		20		5,017	15,418	4,528	15,941	6,160	9,716	5,588	15,836	5,767	16,457	4,505	15,883	1,640	11,665	5,210	16,039	10,401	11,413	3,556	10,248	30,700	11,378	8,025	10,829
23	-	35		5,219	16,053	4,618	16,674	6,303	10,683	5,812	16,656	5,800	17,084	4,595	16,678	3,735	12,241	5,265	16,644	10,834	12,056	4,380	10,844	11,284	12,083	8,506	11,379
24		50	-	5,303	16,594	4,634	17,338	6,469	11,411	6,050	17,366	5,916	17,804	4,648	17,203	3,836	12,537	5,332	17,135	11,291	12,704	4,942	11,316	11,888	12,555	8,701	11,802
25	1 - P	65		5,420	17,173	4,678	17,971	6,521	12,284	6,209	17,954	6,072	18,542	4,630	17,851	3,967	13,139	5,334	17,584	11,753	13,293	5,763	11,745	12,470	13,221	9,172	12,250
26		-80		5,515	17,725	4,718	18,615	6,630	13,157	6,384	18,490	6,119	19,17B	4,725	18,277	4,010	13,485	5,427	18,163	12,210	13,898	6,527	12,106	13,059	13,552	9,475	12,736
27	- ×	95		5,588	18,278	4,719	19,166	6,668	13,831	6,510	19,192	6,153	19,829	4,643	18,789	4,042	13,767	5,457	18,621	12,690	14,447	7,163	12,682	13,676	14.146	9,725	13,164
28	-	110		5,685	18,815	4,753	19,707	6,706	14,517	6,620	19,599	6,249	20,341	4,747	19,365	4,118	14,150	5,494	19,022	13,130	14,954	7,811	12,979	14,092	14,621	10,038	13,528
30	-	145		5,743	19,205	4,745	20,237	6 239	15,224	6.748	20,408	6,296	21,360	4 729	20.153	4.199	14,649	5,548	19,323	13,525	15,469	9,059	18,660	15,020	15,374	10,450	14 210
31	-	155		5,871	20,031	4,727	20,908	6,743	16,326	6,815	20,647	6,324	21,797	4,812	20,500	4,232	14,776	5,546	20,036	14,160	16,181	9,583	13,832	15,473	15,688	10,544	14,490
32	~	170	1. C.	5,931	20,262	4,712	21,162	6,737	16,742	6,859	20,974	6,363	22,121	4,818	20,820	4,254	14,827	5,562	20,333	14,331	16,450	10,005	14,105	15,758	16,002	10,573	14,771
33	· · · · ·	185		5,970	20,470	4,682	21,427	6,706	17,178	6,869	21,252	6,382	22,586	4,817	21,076	4,278	14,771	5,556	20,530	14,500	16,745	10,472	14,383	16,204	16,259	10,493	14,974
34	10.00	200	1.00	5,990	20,631	4,630	21,501	6,715	17,528	6,885	21,206	6,413	22,595	4,873	21,243	4,267	14,788	5,531	20,599	14,641	16,871	10,812	14,321	16,182	16,370	10,521	15,068
35		215	~	5,996	20,595	4,575	ZL395	6,676	17,784	6,883	21,265	6,375	22,918	4,860	21,194	4,275	14,614	5,508	20,670	14,599	16,820	11,108	14,382	16,543	16,334	10,338	15,162
36		230	-	5,961	20,690	4,503	21,436	6,663	18,039	6,863	21,042	6,370	22,758	4,851	21,319	4,257	14,454	5,467	20,659	14,729	16,933	11,376	14,179	16,388	16,468	10,197	15,192
37		243		5,994	20,504	4,425	21,277	6.572	18,119	0.843	23,020	6.361	22,900	4,840	21,137	4,250	19,213	5,499	20,566	14,000	10,732	11,495	14,177	16,579	16,291	9,997	15,134
39		275		5,892	20,135	4,223	20,545	6.531	18,191	6,717	20,401	6,250	22.667	4.821	20,743	4.225	13,505	5,224	20.115	14,264	16.322	11,660	13,684	16.412	15,912	9.281	14,791
40		290		5,851	19,878	4,113	20,018	6,477	17,964	6,640	19,988	6,190	22,440	4,812	20,410	4,213	13,001	5,283	19,902	14,027	15,905	11,487	13,348	16.250	15,598	8,788	14,619
41		305		5,845	19,527	3,950	19,664	6,403	17,707	6,544	19,636	6,103	22,178	4,820	20,133	4,196	12,541	5,237	19,652	13,682	15,714	11,304	13,092	16,075	15,213	8,345	14,415
42	1-2-1	320	- 0	5,810	19,207	3,827	18,927	6,338	17,523	6,424	19,110	6,024	21,842	4,799	19,737	4,135	11,997	5,131	19,194	13,397	15,100	11,185	12,686	15,818	14,938	7,862	14,063
43	-	335	-	5,644	18,716	3,669	18,339	6,172	17,009	6,233	18,644	5,972	21,467	4,821	19,241	4,085	11,445	5,054	18,856	13,072	14,670	10,837	12,411	15,495	14,420	7,359	13,802
44		350	-	-5,631	18,127	3,576	17,699	6,061	16,663	6,022	17,906	5,841	21,149	4,817	18,781	4,017	10,884	5,001	18,348	12,496	14,123	10,602	11,884	15,308	13,964	6,867	13,347
45	-	395		5,548	17,710	3,597	17,053	5,848	16,307	5,862	17,222	5,709	20,654	4,793	12,328	3,947	10,114	4,913	18,005	12,168	13,656	10,459	11,390	14,885	13,555	6,167	13,092
57		395	105	5,002	15.571	3,181	15,553	5.245	15.674	5.214	15,619	5,587	19,694	4,683	17.317	1.573	8,720	4.745	17.072	11,224	17.365	10,254	10,241	14 107	12.634	5.047	12,327
48			340	5,305	15,297	3,398	14,379	5,559	14,823	5,404	14,480	5,606	18,497	4,573	15,912	2,939	8,177	4,703	15,808	9,992	10,981	9,264	9,076	12,891	11,139	4,238	11,105
49	- <i>v</i> -		325	5,161	13,766	3,582	13,097	5,658	13,919	5,432	13,316	5,526	16,845	4,648	14,576	4,075	7,459	4,663	14,434	8,605	9,515	8,261	7,884	11,319	9,928	3,384	9,771
50	+		310	5,060	12,501	3,695	11,795	5,747	13,180	5,403	11,936	5,409	15,217	4,739	13,215	4,178	5,785	4,530	13,107	7,441	8,100	7,433	6,533	9,808	8,475	2,608	8,577
51	1.1		295	4,927	10,893	3,765	10,439	5,723	12,304	5,442	10,627	5,230	13,735	4,797	11,964	4,251	6,067	4,568	11,714	5,966	6,674	6,581	5,185	8,505	7,167	1,816	7,145
52	-		280	4,846	9,420	3,777	9,136	5,833	11,419	5,111	9,374	5,046	12,099	4,874	20,603	4,308	5,298	4,485	10,406	4,574	5,359	5,016	4,043	7,053	5,729	0,990	5,923
53			265	4,572	8,090	3,808	6.348	5,840	1697	5,255	6,021	4,600	8.672	4,932	7,587	4,375	4,510	4,434	7,006	3,438	3,689	4,716	1,677	3,608	4,455	0,141	4,522
55			235	4,594	5,097	3.802	5.079	5.868	8,750	5.115	5.548	4,399	7.163	5.012	6,936	4,447	3,187	4,316	6.371	0.503	1.277	2,882	0,433	2,764	1.924	1.260	2,055
56	-	1	220	4,425	3,748	1,727	3,623	5,841	7,849	4,997	4,239	4,158	5,287	5,086	5,687	4,473	2,550	4,245	5,116	-0,678	-0,104	2,008	-0,758	1,129	0,601	-1,923	0,871
57	- 10 -		205	4,375	2,491	3,821	2,340	5,851	7,089	4,918	3,132	3,938	3,799	5,113	4,526	4,527	1,973	4,202	3,805	-1.854	-1,481	1.238	-1,786	-0,139	-0,587	-2,554	-0,397
58	-	-	190	4,282	1,520	1,705	1,213	3,854	6,275	4,772	1,901	3,687	2,214	5,150	3,649	4,450	1,615	4,342	2,575	-2,962	-2,495	0,445	-2,871	-1,473	-1,501	-7,882	-1,460
59	-	1.1	170	4,135	0,465	4,917	USS	5,751	5,312	4,516	0.815	3,684	1,398	5,132	2,381	4,476	LSH	4,139	1,895	-3,669	3,287	-0,439	-3,701	2,286	2,751	2,965	-2,244
60	-		155	-4,352	0,728	5,039	1,706	5,700	-4,872	4,655	0,857	3,960	1,494	5,261	2,240	4,757	1,849	4,451	1,992	-3,624	-3,333	-0,878	-1,798	-2,466	-3,021	-2,908	-2,459
61	· · · ·		140	4,594	0,918	5,134	1,815	5,639	4,353	4,709	1,040	4,139	1,481	5,347	2,228	4,962	2,154	4,666	2,167	-3,646	-3,319	-1,276	-3,969	-2,658	-8,119	-2,808	-2,499
63			110	4,719	1,438	5,386	2,167	5.527	3,792	4,753	1,317	4,417	1,786	5,435	2,248	5,288	2,622	4,991	2,525	-3,291	-3,219	-1.735	-3,332	-2,631	-3,187	-2.666	-2,522
64			95	4,728	1,647	5.522	2,457	5,463	3,588	4,696	1,416	4,560	1,970	5,459	2,350	5,358	2,835	5,126	2,662	-3,081	-3,065	-1,875	-1,280	-2,590	-3,109	-2,522	-2,464
65	1		80	4,800	1,863	5,665	2,659	5,375	3,459	4,642	1,558	4,676	2,131	5,450	2,404	5,409	3,070	5,212	2,831	-2,937	-3,006	-1.916	-3,064	-2,545	-3,046	-2,339	-2,381
66			65	4,798	2,069	5,818	2,955	5,320	1,351	4,579	1,668	4,732	2,281	5,443	2,484	5,445	1,259	5,316	3,025	-2,729	-2,853	-1,969	-2,911	-2,451	-2,959	-2,186	-2,291
67	-		.50	4,782	2,722	5.976	1,205	5,305	3,240	4,485	1.751	4,548	2.456	5,357	2,423	5,442	3,379	5,378	3,126	-2.560	-2,771	-2,065	-2,734	-7.392	2.934	2,063	-2.257

Junta com chanfro 60 °(junta 2) e tecimento "Zig-Zag".

	Distância na	Distância na	Distinging	. DT	T11	DT	M 0	07	111	070	06	DT	00	DT	112	07711	07710	07111	DTLDG	071.00	071.10
Pontos	PT (mm) -	PT (mm) -	PT (mm) -	Valor inicial	Valor final	Valor inicial	Valor final	Valor inicial	Valor final	Valor inicial	.Ko Valor final	Valor inicial	.no Valor final	Valor inicial	Valor final	Distorcão	Distorcão	Distorcão	Distorcão	Distorcão	Distorcão
	Vista 1	Vista 2	Vista 3	eixo Z (mm)	eixo Z (mm)	eixo Z (mm)	eixo Z (mm)	eixo Z (mm)	eixo Z (mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)						
1	50	-	-	3,950	1,670	4,060	1,648	4,853	2,801	4,713	2,381	4,806	2,833	4,700	2,883	-2,280	-2,412	-2,052	-2,332	-1,973	-1,817
2	65		-	4,039	1,757	4,117	1,689	4,772	2,712	4,743	2,416	4,819	2,820	4,583	2,832	-2,282	-2,428	-2,060	-2,327	-1,999	-1,751
3	80		-	4,104	1,812	4,157	1,655	4,658	2,673	4,750	2,410	4,792	2,808	4,452	2,727	-2,292	-2,502	-1,985	-2,340	-1,984	-1,725
4	95	-	-	4,150	1,906	4,153	1,741	4,529	2,777	4,757	2,463	4,770	2,781	4,305	2,632	-2,244	-2,412	-2,076	-2,294	-1,989	-1,673
5	110	-	-	4,162	1,995	4,177	1,834	4,388	2,811	4,711	2,586	4,740	2,725	4,151	2,555	-2,167	-2,343	-1,961	-2,125	-2,015	-1,596
6	125	-	-	4,194	2,163	4,151	1,973	4,230	2,849	4,707	2,718	4,679	2,716	3,955	2,524	-2,031	-2,178	-1,809	-1,989	-1,963	-1,431
/ 。	140	-	-	4,128	2,304	4,151	2,148	4,058	3,017	4,670	2,923	4,597	2,798	3,709	2,385	-1,704	-2,003	-1,512	-1,/4/	-1,799	-1,384
9	170		-	4,101	2,012	4,100	2,418	3,586	3,140	4,042	3,567	4,336	2,885	3,333	2,432	-1.103	-1.392	-0.797	-1.048	-1.372	-0.806
10	190		-	3,879	3.221	3,707	2,801	3,714	4,198	4,010	3,624	3.813	2,543	3,181	2,765	-0.658	-0.906	0,140	-0.566	-1.270	-0.416
11	205			3,953	3,931	3,827	3,417	3,895	5,148	4,373	4,270	3,837	2,960	3,234	3,314	-0,022	-0,410	1,310	-0,103	-0,877	0,080
12	220	-	-	3,949	4,520	3,819	4,120	3,977	6,207	4,527	5,265	3,870	3,506	3,241	3,988	0,571	0,301	2,621	0,738	-0,364	0,747
13	235	-	-	3,895	5,534	3,819	4,897	4,009	7,517	4,692	6,406	3,802	4,097	3,237	4,825	1,639	1,078	3,803	1,714	0,295	1,588
14	250	-	-	3,804	6,259	3,783	5,725	4,006	8,720	4,878	7,368	3,687	4,798	3,245	5,686	2,455	1,942	4,825	2,490	1,111	2,441
15	265	1.1	-	3,767	7,157	3,614	6,561	4,015	9,923	5,072	8,514	3,568	5,423	3,210	6,446	3,390	2,947	5,908	3,442	1,855	3,236
16	280	-	-	3,413	7,804	3,509	7,501	4,014	11,215	5,232	9,734	3,492	6,141	3,191	7,425	4,391	3,992	7,201	4,502	2,649	4,234
17	295	-	-	3,341	8,875	3,371	8,311	3,969	12,464	5,383	11,117	3,366	6,982	3,160	8,497	5,534	4,940	8,495	5,734	3,616	5,337
18	310	-	-	3,301	9,936	3,180	9,212	3,913	13,825	5,550	12,343	3,179	7,668	3,159	9,507	6,635	6,032	9,912	6,793	4,489	6,348
20	325			3,107	10,758	3,194	10,371	3,804	15,044	5,802	13,334	2,922	9 310	3,181	10,403	7,591	8 165	12 654	9.045	5,558	8 403
20	355	5	-	2,855	12,672	2,901	12,097	3,612	17,630	5,973	16,171	2,554	9,908	3,076	12,428	9,817	9,196	14,018	10,198	7,354	9,352
22	-	20	-	3,183	13,568	3,140	13,145	3,713	18,151	5,952	16,838	2,619	10,707	3,074	13,192	10,385	10,005	14,438	10,886	8,088	10,118
23	-	35	-	3,432	14,143	3,524	14,061	3,748	18,775	5,989	17,490	2,595	11,406	3,179	13,777	10,711	10,537	15,027	11,501	8,811	10,598
24	1.1	50	-	3,637	14,858	3,692	14,956	3,837	19,379	6,065	18,169	2,781	12,036	3,237	14,323	11,221	11,264	15,542	12,104	9,255	11,086
25		65	-	3,808	15,568	3,830	15,638	3,933	20,013	6,166	18,923	2,886	12,787	3,287	15,047	11,760	11,808	16,080	12,757	9,901	11,760
26		80	-	3,932	16,138	4,054	16,354	4,028	20,532	6,237	19,651	2,954	13,448	3,371	15,691	12,206	12,300	16,504	13,414	10,494	12,320
27	-	95	-	4,049	16,625	4,220	17,094	4,083	21,116	6,287	20,334	3,013	14,098	3,394	16,258	12,576	12,874	17,033	14,047	11,085	12,864
28	-	110	-	4,128	17,213	4,347	17,765	4,149	21,697	6,364	20,866	3,069	14,691	3,431	16,875	13,085	13,418	17,548	14,502	11,622	13,444
29		125	-	4,257	17,627	4,463	18,373	4,195	22,245	6,431	21,611	3,137	15,265	3,467	17,348	13,370	13,910	18,050	15,180	12,128	13,881
30		140	-	4,317	18,012	4,537	19,048	4,233	22,033	6,569	22,244	3,108	15,838	3,510	19 294	13,095	14,511	18,400	15,737	12,070	14,241
32	-	170	-	4,323	18,468	4,690	19,770	4,300	23,391	6,619	23,173	3,255	16,661	3,604	18,656	14.096	15,080	19,025	16,554	13,406	15,052
33	-	185	-	4,392	18,429	4,030	20.116	4,302	23,600	6,675	23,557	3,296	17,002	3.627	19,030	14,037	15,389	19,298	16,882	13,706	15,388
34	-	200	-	4,380	18,546	4,759	20,429	4,321	23,835	6,718	23,841	3,299	17,264	3,638	19,280	14,166	15,670	19,514	17,123	13,965	15,642
35	1.1	215	-	4,395	18,416	4,769	20,448	4,307	24,057	6,757	24,014	3,329	17,515	3,653	19,524	14,021	15,679	19,750	17,257	14,186	15,871
36		230	-	4,367	18,422	4,752	20,579	4,299	23,993	6,791	24,227	3,353	17,562	3,659	19,640	14,055	15,827	19,694	17,436	14,209	15,981
37	-	245	-	4,333	18,338	4,710	20,588	4,285	24,063	6,821	24,373	3,365	17,660	3,680	19,731	14,005	15,878	19,778	17,552	14,295	16,051
38	-	260	-	4,272	17,980	4,694	20,428	4,250	23,952	6,833	24,337	3,345	17,540	3,653	19,782	13,708	15,734	19,702	17,504	14,195	16,129
39		275	-	4,188	17,650	4,623	20,280	4,225	23,843	6,872	24,141	3,361	17,558	3,671	19,714	13,462	15,657	19,618	17,269	14,197	16,043
40		290	-	4,119	17,282	4,563	19,940	4,205	23,533	6,911	24,008	3,335	17,278	3,658	19,637	13,163	15,377	19,328	17,097	13,943	15,979
41	-	305	-	4,010	10,830	4,472	19,509	4,140	23,274	6,920	23,801	3,343	17,201	3,034	19,470	12,840	13,097	19,134	16,935	13,858	15,810
42	-	325		3,749	15,520	4,415	18,663	4,103	22,000	6.952	23,337	3,205	16,659	3,020	19,200	11,233	14,045	18,705	16 297	13,711	15,040
43	-	350	-	3,517	14,803	4,084	18,161	4,010	22,303	6,959	22,822	3,318	16,472	3,503	18,667	11,286	14,427	18,147	15,863	13,154	15,164
45		365	-	3,352	14,208	3,932	17,496	3,924	21,651	7,014	22,464	3,280	16,013	3,553	18,530	10,856	13,564	17,727	15,450	12,733	14,977
46	-	380	-	3,054	13,257	3,700	16,882	3,892	21,047	7,019	22,117	3,264	15,705	3,588	18,166	10,203	13,182	17,155	15,098	12,441	14,578
47	-	395	355	2,754	12,608	3,373	16,230	3,828	20,605	7,077	21,688	3,199	15,425	3,515	17,773	9,854	12,857	16,777	14,611	12,226	14,258
48	-	-	340	3,089	11,634	3,542	14,989	3,796	19,005	6,991	20,104	3,382	14,246	3,685	16,526	8,545	11,447	15,209	13,113	10,864	12,841
49	-	-	325	3,305	10,501	3,718	13,789	3,840	17,209	6,885	18,525	3,467	13,076	3,797	15,296	7,196	10,071	13,369	11,640	9,609	11,499
50	-	-	310	3,494	9,438	3,914	12,722	3,955	15,423	6,818	16,888	3,637	12,050	3,909	14,012	5,944	8,808	11,468	10,070	8,413	10,103
51			295	3,078	8,385	4,064	11,380	3,933	13,707	0,075	13,248	3,741	0.744	3,900	12,099	4,707	6,322	9,834	8,373	7,103	8,744
53			265	3,005	6 349	4,104	9 167	3,969	10 277	6 381	15,405	4.046	8 612	4 040	9.831	2 433	0,225	6 308	5 395	4 566	5 791
54	-	-	250	4,034	5,231	4,433	7.970	4,068	8.503	6,142	10.018	4,201	7.558	4,042	8,384	1.197	3.537	4,435	3,876	3.357	4,342
55	-	-	235	4,141	4,291	4,322	6,871	4,068	6,683	6,015	8,191	4,340	6,484	4,025	7,135	0,150	2,549	2,615	2,176	2,144	3,110
56	-	-	220	4,263	3,142	4,450	5,697	4,116	5,010	5,868	6,556	4,525	5,374	4,019	5,740	-1,121	1,247	0,894	0,688	0,849	1,721
57	1.1		205	4,372	2,247	4,621	4,581	4,165	3,289	5,621	4,676	4,651	4,392	3,971	4,360	-2,125	-0,040	-0,876	-0,945	-0,259	0,389
58			190	4,472	1,544	4,656	3,612	4,200	1,788	5,466	3,110	4,777	3,415	3,868	2,855	-2,928	-1,044	-2,412	-2,356	-1,362	-1,013
59		-	170	4,346	0,677	4,232	2,053	4,142	0,686	5,341	1,777	5,033	2,924	3,796	2,000	-3,669	-2,179	-3,456	-3,564	-2,109	-1,796
60	-	-	155	4,524	0,750	4,416	1,883	4,346	0,678	5,456	1,739	5,062	2,774	4,100	2,063	-3,774	-2,533	-3,668	-3,717	-2,288	-2,037
61	-	-	140	4,646	0,920	4,524	1,838	4,530	0,901	5,426	1,820	5,069	2,743	4,303	2,134	-3,726	-2,686	-3,629	-3,606	-2,326	-2,169
62	-	-	125	4,/18	1,0/1	4,593	1,702	4,679	1,093	5,490	1,936	5,104	2,691	4,502	2,306	-3,647	-2,831	-3,580	-3,554	-2,413	-2,196
03 64			95	4,718	1,221	4,038	1,700	4,804	1,443	5,494	2,027	5,109	2,740	4,003	2,410	-3,497	-2,958	-3,301	-3,407	-2,309	-2,247
65			80	4,658	1.526	4,615	1.745	5.059	1.975	5,435	2,322	5,139	2,835	4,954	2,767	-3.132	-2,870	-3.084	-3.113	-2.304	-2.187
66	-	-	65	4,601	1,630	4,570	1,719	5,178	2,246	5,396	2,308	5,154	2,937	5,071	2,918	-2,971	-2,851	-2,932	-3,088	-2,217	-2,153
				· · ·	-	· ·															

Junta com chanfro 60 °(junta 2) e tecimento "Vai-Vem".