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Self-bound droplet of Bose and Fermi atoms in one dimension:
Collective properties in mean-field and Tonks-Girardeau regimes
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We investigate a dilute mixture of bosons and spin-polarized fermions in one dimension. With an attractive
Bose-Fermi scattering length the ground state is a self-bound droplet, i.e., a Bose-Fermi bright soliton where
the Bose and Fermi clouds are superimposed. We find that the quantum fluctuations stabilize the Bose-Fermi
soliton such that the one-dimensional bright soliton exists for any finite attractive Bose-Fermi scattering length.
We study density profile and collective excitations of the atomic bright soliton showing that they depend on the
bosonic regime involved: mean-field or Tonks-Girardeau.

DOI: 10.1103/PhysRevA.75.023616

I. INTRODUCTION

Ultracold vapors of alkali-metal atoms, such as 87Rb,
85Rb, 40K, 23Na, 6Li, 7Li, etc. are now actively studied in the
regime of deep Bose and Fermi degeneracy [1-5]. Trapped
Bose-Fermi mixtures, with Fermi atoms in a single hyperfine
state, have been investigated by various authors both theo-
retically [6—12] and experimentally [13—18]. Recently, it has
been predicted that self-bound droplets, also called atomic
bright solitons, can be formed within a mixture of degenerate
Bose-Fermi gases provided the gases attract each other
strongly enough and that there is an external transverse con-
finement [19-21]. Formation of bright solitons in a dilute
spin-polarized Fermi gas is prevented by Pauli repulsion.
The formation of bright soliton in a Bose-Fermi mixture is
related to the fact that the system can lower its energy by
forming high-density regions (bright solitons) when the
Bose-Fermi attraction is sufficient to overcome the Pauli re-
pulsion among Fermi atoms and any possible repulsion
among the Bose atoms. A common point of these papers
[19-21] is that the Fermi cloud is three-dimensional (3D). In
fact, for not too strong Bose-Bose repulsion the transverse
width of the Fermi component significantly exceeds the
transverse width of the Bose component [19-21].

In the strict one-dimensional (1D) regime, the Bose-Fermi
mixture requires an appropriate theoretical description. The
exponent of the power-law, which describes the bulk energy
of a Fermi gas as a function of its density depends on the
dimensionality (see, for instance, Ref. [22]). In addition,
even at zero temperature, the 1D Bose gas can never be a
true Bose-Einstein condensate due to phase fluctuations
[1,23]. For a repulsive 1D Bose gas, one must distinguish
two regimes: a quasi-Bose-Einstein condensate (BEC) re-
gime, well described by the 1D Gross-Pitaevskii equation
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with positive nonlinearity [23], and a Tonks-Girardeau (TG)
regime at very low densities, where the 1D bosons behave as
1D ideal fermions [24,25]. An attractive 1D Bose gas is in-
stead well described by the Hartree mean-field theory
[26,27], i.e., the 1D Gross-Pitaevskii equation with negative
nonlinearity [28].

The existence of the TG regime above has recently been
experimentally confirmed [29] in a study of the 1D degener-
ate $’Rb system. In a subsequent study of this system [30],
the 1D Bose gas in the TG regime has been found to possess
the peculiar property of not attaining a thermal equilibrium
even after thousands of collisions. This is often termed fer-
mionization of 1D bosons in the TG regime. It is well known
that due to Pauli principle the spin-polarized trapped fermi-
ons do not interact at low temperature and hence fail to reach
a thermal equilibrium necessary for evaporative cooling
leading to a degenerate state. The necessary thermal equilib-
rium was attained only in Bose-Fermi [16—18] or Fermi-
Fermi [31] mixtures through collision between bosons and
fermions or between fermions in different quantum states,
respectively.

In this paper we consider a Bose-Fermi mixture strongly
confined by a 2D harmonic potential in the transverse cylin-
dric radial coordinate. The ensuing effective 1D system is
described in the quantum hydrodynamical approximation,
i.e., the time-dependent density-functional approach based
on real hydrodynamic variables or complex scalar fields.
Quantum hydrodynamics is very useful for the study of static
and collective properties of a Bose-Fermi mixture and it has
been used successfully in 3D [20,21,32] for a description of
bright and dark solitons and collapse. We investigate the 1D
mixture of bosons and spin-polarized fermions by using an
effective 1D Lagrangian [1,33-35]. A Gaussian variational
approach is adopted to derive axial static and dynamical
properties of the mixture with attractive Bose-Fermi scatter-
ing length (a,;<0). The solution of the variational scheme
was found to be in satisfactory agreement with the accurate
numerical solution of the hydrodynamic equations. We find
that a self-bound droplet, i.e., a Bose-Fermi bright soliton,
exists also for very small values of |a,,f|. In this case the axial
width of the Fermi component is very large while the axial
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width of the Bose component depends on the sign and mag-
nitude of the Bose-Bose scattering length a;,. Remarkably,
the TG regime is essential to preserve a localized Bose-
Fermi soliton for very small |a,,f; in fact, for a repulsive
Bose-Bose interaction in the quasi-BEC 1D regime the
theory predicts a minimum value of |abf| below which the
mixture is uniform, i.e., fully delocalized. For large values of
|abf| the Bose-Fermi system is self-confined in a very narrow
region and therefore the local axial densities of bosons and
fermions strongly increase. We must remember, however,
that above a critical axial density the Fermi system is no
more strictly one dimensional, and the same happens for re-
pulsive bosons.

The paper is organized as follows. In Sec. II we present
the model used to study the degenerate Bose-Fermi system.
Then we derive a set of coupled equations for the mixture
starting from a Lagrangian density. In Sec. III, by using a
Gaussian variational ansatz, we demonstrate that for an at-
tractive Bose-Fermi interaction, the ground state of the
model is a self-bound bright soliton (in the absence of an
external longitudinal trap). In Sec. IV we present a study of
the system in the quasi-BEC regime and in the TG regime
for attractive Bose-Fermi interaction. These results are fur-
ther explored in Sec. V considering a single Fermi atom
inside the Bose cloud. In Sec. VI we consider the problem of
coupled breathing oscillations of the Bose-Fermi system and
calculate the frequencies of these oscillations. Finally, in Sec.
VII we present a brief summary of our investigation and
discuss the experimental conditions necessary to achieve the
1D Bose-Fermi soliton.

II. BOSE-FERMI LAGRANGIAN FOR ONE-DIMENSIONAL
HYDRODYNAMICS

We consider a mixture of N, bosons of mass m;, and Ny
spin-polarized fermions of mass m, at zero temperature
trapped by a tight cylindrically symmetric harmonic potential
of frequency w, in the transverse direction. We assume fac-
torization of the transverse degrees of freedom. It is justified
in 1D confinement where, regardless of the longitudinal be-
havior or statistics, the transverse spatial profile is that of the
single-particle ground state [10,35-38]. The transverse width
of the atom distribution is given by the characteristic har-
monic _length of the single-particle ground state: a
=\h/(2m;w,), with j=b,f. The atoms have an effective 1D
behavior at zero temperature if their chemical potentials are
much smaller than the transverse energy fiw, [10,35].

We use a hydrodynamic effective Lagrangian to study the
static and collective properties of the 1D Bose-Fermi mix-
ture. In the rest of the paper all quantities are dimensionless.
In particular, lengths are in units of a ,, linear densities in
units of a7, times in units of 7', and energies in units of
fhw, . The Lagrangian density £ of the mixture reads

£=£b+£f+£bf~ (1)

The term L, is the bosonic Lagrangian, defined as
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where i,(z,1) is the hydrodynamic field of the Bose gas,
such that n,(z,1)=|i(z,2)|* is the 1D density and v,(z,?)
=id, In[,(z,0)/ | (z,1)[] is its velocity. Here g,=2a,/a,, is
the scaled interatomic strength with a, the Bose-Bose scat-
tering length. We take |g,/<1 to avoid the confinement-
induced resonance [39]. Interacting bosons are one-
dimensional if g,n,<<1 [35-37]. For x>0 the function G(x)
is the so-called Lieb-Liniger function, defined as the solution
of a Fredholm equation and such that G(x) =x for 0<x<1
and G(x)=2/3 for x>1 [24]. For x<0 we set G(x)=x
[28,35]. V,(z) is the longitudinal external potential acting on
the bosons. In the static case the Lagrangian density £, re-
duces exactly to the energy functional recently introduced by
Lieb, Seiringer, and Yngvason [40]. In addition, £, has been
successfully used to determine the collective oscillation of
the 1D Bose gas with longitudinal harmonic confinement
[35].

The fermionic Lagrangian density L is given instead by

TNy 16
3 |4l® = Vil

)

Ly = (id,+ )y, — |lﬂb|ﬁG( ) - Vil

% (3)

L= (d,+ N, 02 by —

where \,,=my,/m; and z,1) is the hydrodynamic field of
the 1D spin-polarized Fermi gas, such that ng(z,7)
=|yz.0)]* is the 1D fermionic density and vAz,?)
=i\, In[p(z,0)/[¢h(z,1)|] is the velocity of the Fermi gas.
The noninteracting fermions are 1D if (7°\,,/ 2)n]%<1 [10].
Vi(z) is the longitudinal external potential acting on fermi-
ons. In the static case and with V/{(z)=0 the Lagrangian L,
gives the correct energy density of a uniform and noninter-
acting 1D Fermi gas. More generally, the Euler-Lagrange
equation of L, yields the hydrodynamic equations of the 1D
Fermi gas [34].

Finally, the Lagrangian density £, of the Bose-Fermi in-
teraction reads

Lyr=—8gufl ¢b|2|d/f|2’ (4)

where g,=2a;,/a,, is the scaled interatomic strength be-
tween bosons and fermions, with app the Bose-Fermi scatter-
ing length [10].

Euler-Lagrange equations of the Lagrangian £ provide
the two coupled partial differential equations for i, and ¢,

i, = [— &+ 3|wb|46(2|i’; |2)

8b
2/

1
- Egb|¢b|zc/( ) + Vi + 8yl ¢f|2:| by, (5)

0=~ Mﬁ? + N+ Vit gufl P10, (6)

For g,,=0 and 0<g, <1, the first partial differential equa-
tion (5) reduces, in the regime g,/n,<<1, to the familiar
mean-field 1D Gross-Pitaevskii equation [1], i.e., to the 1D
cubic nonlinear Schrodinger equation describing a quasi-
BEC. Instead, in the regime where everywhere g,/n,>1,
Eq. (5) for bosons becomes the quintic nonlinear
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Schrodinger equation proposed by Kolomeisky ef al. [33] for
the dynamics of a TG gas, which is formally equivalent to
Eq. (6) describing the 1D noninteracting Fermi gas. Actually,
Girardeau and Wright [41] have shown that this quintic non-
linear Schrodinger equation overestimates the coherence in
interference patterns at a small number of particles. Never-
theless, Minguzzi er al. [34] have found that this quintic
equation is quite accurate in describing the density profile
and the collective oscillations of the 1D ideal Fermi gas with
longitudinal harmonic confinement. If we define G(x)=x for
x<0 then, when g,,=0 and g,<<0 Eq. (5) reduces to the
mean-field 1D Gross-Pitaevskii equation with attractive
(negative) nonlinearity, which describes quite accurately the
attractive 1D Bose gas [27,28].

III. SELF-BOUND SOLUTION: BOSE-FERMI BRIGHT
SOLITON

In the remaining part of the paper we set V,(z)=VAz)
=0 and investigate the case of a negative Bose-Fermi scat-
tering length (g,,<<0). We use a time-dependent variational
ansatz for the fields wj(z,t) to determine the conditions under
which a self-bound droplet of 1D bosons and fermions ex-
ists. In particular, we investigate the two main regimes of 1D
bosons: the quasi-BEC regime and the TG regime. For the
two fields Lﬂj(z,t), with j=b,f, we use the following Gauss-
ian ansatz:

12 2
~ (z-z)
=—1—ex (— !

¥ W1/40_}/2 p 202

J

+i¢jz+i0jzz>, (7)

where the time-dependent variational parameters are the lon-
gitudinal widths o(r), the centers of mass zj(t) and the
slopes ¢;(t) and curvatures ;(r) of the phase. It is obvious
that the tails of the Gaussian nb(z )=\ (z,1)|* given by Eq.
(7) are locally in the TG regime but, in our terminology, a
nonuniform cloud of bosons is in the TG regime only if
everywhere its local density n,(z,t) satisfies the condition
gp/np(z,0)>1.

We insert the Gaussian fields ¢;(z,?) into the Lagrangian
L and integrate over the spatial variable z and get an effec-
tive Lagrangian [42,43], which depends on o7(1), (1), ¢;(1),
6,(t) and their time derivatives. By writing the eight Euler-
Lagrange equations one finds that the slopes ¢;(¢) and the
curvatures ¢,(¢) of the fields ¢;(z,) can be obtained from the
widths o(#) and the center coordinates z;(¢) through the
equations

bi=—2,-207, O=——L )
j J i< Y 20,

with j=b,f. The equations of motion of the parameters o(t)
and z;(t) do not depend on the phase parameters ¢;(1) and
0,(1) [42,43]. They are the “classical” equations of motion of
a system with effective Lagrangian

L=T-E, )

where
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N, N
T= 71’(('72 +24) + —ZL(('T}+ 2¢7) (10)

is the effective kinetic energy and
E=Eb+Ef+Ebf (11)

is the effective potential energy of the system. The term E,
involves a complicated integral of the Lieb-Liniger function
G(x), namely,

Nb ]\73 J+w 3 (g,,O',, 2)
G 7 dy. 12
20—1) 7T3/2 2 2’Nb Y ( )

The other two terms, E; and Ej;, are given by

Eb_

N\, N\
=Tl I (13)
2t " 3007
and
N.N,
Eb=Mexp[ (z”%)zl (14)
\;'770'bf \/O’b+ r

We stress that the potential energy (11) of the effective La-
grangian (9) can be easily obtained from ansatz (7) without
including the phase parameters ¢;(¢) and 6(r). On the con-
trary, to get the Kinetic energy term (10) it is necessary to
include in the ansatz the four phase parameters of Eq. (7)
[42,43]. The Kinetic term is essential to calculate the dynami-
cal properties of the mixture, such as the collective oscilla-
tions considered in Sec. VI.

The stable stationary state of the system is found by mini-
mizing the effective potential energy

oE
—=0, j=b.f, (15)
O7Zj
oE
—=0, j=b.f. (16)

Equations (15) lead to z,=z; and without loss of generality
we set z,=2,=0. Equations (16) can then be rewritten as

2NbJ 2 (gba-b ,2)
1+—5 e Gl 22 dy
= N,

o 4
B ngba'bf+ e_2y2G,<gb0'bey2) _= gngUb
22 . 2Nb N 770'2f

(17)

ON?mN,,  —gyN,ot
)\m+ f/_ = g/b_f 2 f7 (18)
3V3 N0y,

where o,,= \"0’127+o'}2¢~. From Egs. (17) and (18) one can deter-
mine the widths o}, and oy at equilibrium. Stability requires
that the Hessian matrix of the second partial derivatives of
the effective potential energy E(o;) is positive definite;
equivalently, the Gaussian curvature
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FIG. 1. (Color online) Effective potential energy E of Eq. (11)
as a function of soliton widths o, and oy for parameters: \,,=1,
N,=100, N;=10, g,=0.01, and g,,=-0.2. The potential has a mini-
mum_at 0,=16.90 and 0;=21.84. Lengths are in units of a,
=\h/(2m,w ) and energy is in units of Ziw .

G= (19)

FEJFE ( PE )2
z?(rb &crf dopdoy
must be positive. An inspection of Egs. (17) and (18) shows
that there are stable solutions only for g,,<0. For g,=0 and
g,>0, the solutions are 0;,=0,=+%, corresponding to infi-
nitely extended, uniform bosonic and fermionic clouds,
while for g,,=0 and g, <0, the fermionic 1D density is uni-
form while the bosonic cloud is localized with o,
=2\27/(|g,|N,). For gr<0, Egs. (17) and (18) must be
solved numerically. In the numerical calculations the Lieb-
Liniger function G(x) is modeled by an efficient Padé ap-
proximant based on the exact numerical determination of
G(x) [44].

As the effective potential of the problem is E of Eq. (11),
Eq. (16) together with the condition implicit in Eq. (19)
minimizes the effective potential as a function of the two
widths o, and o, A typical plot of the potential for N,
=100, N;=10, g,=0.01, g,;=-0.2, and \,,=1 is shown in
Fig. 1. Stable oscillations of the system are possible around
the minimum. We shall study different features of these os-
cillations in the following.

As previously stressed, bosons are 1D under the condition
gy <<1, which corresponds to o3> g,N,/ V. For a quite
large width, namely, for o, > N,/(\g,), the bosons enter in
the TG regime, where g,/n,>1. The fermions are instead
1D under the condition (7N, / 2)nf<1 which corresponds
to 0> Np/\,, Nl 2.

We shall base the present study on the Gaussian varia-
tional approach described above, which, like any variational
approach, should be reliable for the Bose-Fermi ground state
studied in this paper. Moreover, the analytical variational so-
lution provides interesting physical insight into the problem,
as we shall see in the following. Also, the actual numerical
solution of the full coupled dynamics is pretty complicated to
implement for all cases reported in this paper in the various
parameter ranges. Nevertheless, we find it worthwhile to
compare the solution of the variational scheme with the ac-
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FIG. 2. (Color online) Probability density p,»(z)=|¢j(z)|2/1\l_ ; of
bosons and fermions in the self-bound mixture with g,=0.01 and
8py=—0.2. In the upper panel, N;,=100 and N;=20; in the lower
panel, N;,=300 and N;=10. Solid lines: numerical results. Dashed
lines: variational results. Units as in Fig. 1.

curate numerical solution of Egs. (5) and (6) in certain cases.
We solved these numerically, using a imaginary-time integra-
tion method based on the finite-difference Crank-Nicholson
scheme, as described in Ref. [45]. We discretize the mean-
field equations using a time step Az=0.05 and a space step
Az=0.05, and z €[-L/2,L/2] with L=2000. The boundary
conditions are i;(=L/2)=4,(L/2)=0, with j=b,f. We start
with broad Gaussians as initial wave functions. In the course
of the imaginary-time evolution the self-bound mixture is
quickly formed but, due to strong Pauli repulsion among
identical spin-polarized fermions, the fermionic density pro-
file extends to many hundredths of length’s units. It is then
essential to take a very large space interval [-L/2,L/2] of
integration to see that these long tails of the fermionic cloud
are indeed decaying to zero.

In Fig. 2 we plot two sets of numerical results for the
probability density in the quasi-BEC 1D regime. The figure
shows that, for fixed values of the interaction strengths g,
and g, the axial width of the bosonic probability density
becomes larger than the fermionic one by reducing the num-
ber N, of fermions and increasing the number N, of bosons.
The figure shows that the variational approach can be used to
give a reasonable estimation of the axial widths of the two
clouds.

We now turn to a study of the Bose-Fermi system by
using the variational approach, which enables us to explore
quite easily all regimes and extract physically interesting
analytical results. With the intention of illustrating the TG
regime and the quasi-BEC Gross-Pitaevskii regime for
bosons and 1D regime for fermions for a specific set of
Bose-Fermi parameters. In Fig. 3 we plot gy, (solid line) and
oy (dashed line) from Eqs. (17) and (18) as a function of
, with g,,<<0 for the values N;,=100, N;=20, g,=0.01,
and )\ =1 of the parameters. In the upper panel the linear-
linear scale is employed while in the lower panel we report
the same results on a log-log scale, to better visualize the TG
regime and the quasi-BEC regimes. When their width takes
values between o,=g,N,/\V7=0.56 (dot-dashed line) and
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FIG. 3. (Color online) 1D self-bound Bose-Fermi droplet with
repulsive bosons (g,>0). Axial widths o}, and o of the bosonic
and fermionic widths as a function of the Bose-Fermi interaction
=20,
N,=1, and g,=0.01. Upper panel: linear-linear scale. Lower panel:
log-log scale. Between the dot-dashed line and the dot-dot-dashed
line the bosons are in the quasi-BEC 1D regime, while above the
dot-dot-dashed line they are in the TG regime. Fermions are in the
1D regime above the dotted line. Units are as in Fig. 1.

o,=N,/ (gb\";)25600 (dot-dot-dashed line) bosons are in
the quasi-BEC 1D regime, while they are in the TG 1D re-
gime if 0, >5600 (above the dot-dot-dashed line). Fermions
are in the 1D regime when o> N\, mw/2=125, i.e., above
the dotted line. For large |gbf{ both the widths tend to zero
corresponding to narrow soliton(s).

IV. QUASI-BOSE-EINSTEIN CONDENSATE ONE-
DIMENSIONAL REGIME AND TONKS-GIRARDEAU
REGIME

The expression for the effective Lagrangian of the Bose-
Fermi system given by Egs. (11)—(14) is greatly simplified in
the quasi-BEC 1D regime and also in the TG regime. In the
quasi-BEC 1D regime one has G(x) =x and the expression
for the effective energy E of Eq. (11) can be evaluated ana-
lytically and written as

la B 1y )
E=s-—+—+ -5 ———, (20)
20‘2 gy, 20’]% \/o-b+g-}2,

where a=N,, B=g,Ni/(2\2m), y= mef[1+2wN2/(3\3)]
and =g, N,Ns/\m with g,,=—|g,. Then at equilibrium
one finds from Eq. (16) that o, and & can be written as
functions of oy,

Ty

— 174 , 21
U= (s o) 20

o \/Ta/z
5=<;b+,8><1+ a+,80b) . (22)

Equation (22) implies that for any finite o, and o one has
6> B, i.e., |2l > gpylmin= \2ngb/(4Nf) Thus, for g, >0 the

and also
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Bose-Fermi bright soliton exists only for |g{>[g;min
while the system will not be bound (o, —%, oy— %) for
|14/ <|85lmin- This last situation is, however, unphysical be-
cause for a very large o, the system enters in the TG regime
and Eq. (20) is no more valid.

When the Bose-Bose scattering length is zero (g,=0) then
|gbf|mm—0 For g, <0 (attractive Bose-Bose interaction), o,
is finite even for |gbf|mm—0 but it cannot exceed the value
0,=2\27/(|gy|N},) with the corresponding value of oy infi-
nitely large. When |g,;|=0 the bosonic cloud is localized
[o,=2v27/(|g,|N,)] while the fermionic cloud is fully de-
localized (oy=+) in the axial direction.

Coming back to the case of a repulsive Bose-Bose scat-
tering length (g, > 0), we observe that, after fixing g, and N,,
by reducing |gbf| the bosonic width o, increases and the sys-
tem enters in the TG regime, where G(x)=7>/3 and the
effective energy E of Eq. (11) can also be evaluated analyti-
cally as

la 1 [g 1y 5
E=—-—+— - 23
20‘b 20’b 20'f \/0'§+()']2, ( )

The quantities «, y, and & are the same as in Eq. (20) while

B=2N277/ (343). In this case the widths o, and oy at the
equilibrium can also be determined analytically. They are

> 3/2
ab:‘”ﬂ(lﬂ/%) , (24)
S (a+B)
3/2
+ 1) 7~) , (25)
(a+B)

and both increase as & decreases, and only when o= |g,,f|
=0 the two widths become infinitely large. Thus we conclude
that for any finite value of [g,| and g,>0 there exists a
Bose-Fermi bright soliton, the existence of this bright soliton
being guaranteed by the behavior of the bosonic energy term
in the TG regime.

In Fig. 4 we show the axial widths o, and o, of the
Bose-Fermi mixture with an attractive Bose-Bose scattering
length (g,<<0). We choose N,=50, N;=10, and g,=-0.01
and plot the widths as a function of |g,|. The figure shows
that, as | gbf| goes to zero, the Fermi width o is much larger
than the Bose width o},. In fact, as previously shown, at
lgsr| =0, one finds o=+ whlle 0= 2\277/(|gb|Nb|) For

= 7,1/4%( 1

and reaches the value a=Np\,m/2~ 12.5 (dotted line) be-
low which the Fermi system is no more strictly one dimen-
sional.

V. SINGLE FERMIONIC ATOM IN THE BOSE CLOUD

The existence of the Bose-Fermi bright soliton for both
attractive and repulsive Bose-Bose interaction, provided
there is an attractive Bose-Fermi interaction, even vanish-
ingly small, is due to the 1D effect of quantum fluctuations
described by the Lieb-Liniger function G(x). To understand
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FIG. 4. (Color online) 1D self-bound Bose-Fermi droplet with
attractive bosons (g, <<0). Axial widths o}, and o of the bosonic
and fermionic widths as a function of the Bose-Fermi interaction
strength |g,, with g,,<0. Mixture parameters: N,=50, Ny=10,
\,=1, and g,=-0.01. Fermions are in the 1D regime above the
dotted line. Units are as in Fig. 1.

this result further we consider the case of a single fermionic
atom (N,=1) interacting with the Bose cloud. In this case the
exact stationary Schrodinger equation of the single-particle
wave function ¢(z) of the fermion is given by

(= N> = gl i) v = ey, (26)

where € is the energy of the fermionic bound state under the
effective potential well V,;dz)=—|g,||#,(z)|* determined by
the Bose cloud. We know that for g, <O the pure 1D Bose

system supports a bright soliton described by i,(z)

(IgslNs)"” (\g,,|z) ) . )
=——>— sech\=>~). Guided by this result, in the present case

of repulsive bosons (g;,>0) attracted by a single fermion
gpr<<0 we adopt for the bosonic field #,(z) the following
ansatz:

Né/2 z
(2) = 20” sech(g), (27)

with & the variational width of the bosonic cloud. This ansatz
is also suggested by the existence of the analytical solution
for the eigenvalue of the corresponding Eq. (26) for the fer-
mionic bound state. One finds [46]

1 —
€(é) =— 2_52(1 +1gINpE = V1 +2]g, AN, O, (28)

The energy e(€) is the sum of the kinetic energy of the fer-
mionic atom and of the interaction energy between the fer-
mionic atom and the bosonic cloud.

The total energy of the system is then the effective energy
of the Bose cloud calculated from the Lagrangian density (2)
added to the energy e(¢) of the Fermi atom and is given by
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N, N, (*7
E=—% bf sechﬁ(y)G( 8¢

- 38 " 8_52 N,, sech?(y) )dy +e9).

(29)

The existence of the Bose-Fermi bright soliton depends on
the existence of a local minimum of this total energy E
=E(§) of the system. From Eq. (29) we find that E(§)

|go/ Ny . i p: I
_ bzzg_' as £— +, since for large £'s G( 7 seth(y)) =T for

any value of y. Thus, for £— +o0, the energy goes to zero
through negative values. Again, from Eq. (29) we see that
E(é€) — + as £€— 0 and therefore we conclude that the func-
tion E(&), being positive at the origin and vanishingly small
but negative, at large &’s, must possess a negative local mini-
mum that is also the global minimum of the energy. This
implies that there is always a finite value of ¢ that minimizes
the total energy. As previously stressed, this behavior strictly
depends on the properties of the Lieb-Liniger function G(x)
for large x and, as a consequence, the Bose-Fermi bright
soliton exists for any negative value g, even for Ny=1.

VI. COLLECTIVE OSCILLATIONS OF THE BOSE-FERMI
BRIGHT SOLITON

After having established the existence of stationary bright
solitons in a degenerate Bose-Fermi mixture, we study two
types of small oscillations of this system around the stable
equilibrium position and calculate their frequencies. The first
is the stable breathing oscillation of the system around its
mean position and the second describes the stable small os-
cillations once the centers of the Fermi and Bose clouds are
slightly displaced with respect to each other. Given the ef-
fective Lagrangian (9), the problem of small oscillations is
solved by expanding the kinetic energy (10) and the potential
energy (11) around the equilibrium solution up to quadratic
terms. In this way we extract [43] the frequencies w of the
collective breathing modes of the Bose and Fermi clouds
from the eigenvalue equation,

FE FE
doy I,y 2<Nb 0 )_
FE - PE |7\ 0 Na, =0 G0

do,07f (90’?

where the partial derivatives must be calculated at the equi-
librium (07, 0;,), where o), and o are the Bose and Fermi
widths obtained from Egs. (17) and (18). The two frequen-
cies w; and w, then read

R (31)

W)=
where

A-(N@+)\ N&Z—E)2 4N,.NpN K (32)
- bﬁa_j% mfaa_i mt VoY NG

and K is the Gaussian curvature of Eq. (19).
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FIG. 5. (Color online) Collective breathing frequencies w; and
w, of the self-bound Bose-Fermi droplet with attractive bosons
(g5<0). Q is the harmonic frequency of the displacement |z, —z,| of
the centers of mass of the Bose and Fermi clouds. Parameters are as
in Fig. 4. Frequencies are in units of the frequency w, of transverse
harmonic confinement.

In addition, by taking into account the “reduced mass”
NuNpN¢/ (Ny+N,,Ny), one can derive the frequency () of har-
monic oscillation of the relative distance |zb—zf| (displace-
ment) of the two clouds from the equation

NaNeNy o, FPE

= . (33)
Ny + NNy Nz - z4)
The result is
2|gpd (N, + \,,N))
_ b b m
N (34
(o}, + f)

where again o}, and oy are the Bose and Fermi widths at
equilibrium, where z;,=z;.

In Fig. 5 we plot the frequencies w; and w, of the coupled
breathing modes of the Bose and Fermi clouds by choosing
the same parameters of Fig. 4, namely, N,=50, Ny= 10, N,
=1, and g,=-0.01. The frequencies are plotted as a function
of the Bose-Fermi strength |g,|. For |g,,/| =0, the frequencies
are decoupled: w; is the frequency of the fermionic axial
breathing mode and w, is the frequency of the bosonic axial
breathing mode. Without a Bose-Fermi interaction the Fermi
cloud is delocalized (o/=) and its breathing frequency is
w;=0, while the Bose cloud remains localized (due to the
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negative Bose-Bose strength g;,) and its breathing frequency
w, remains finite and is equal to w,=g;N,/(167°). Figure 5
shows that both the breathing frequency w; and the harmonic
frequency () of the displacement |z, —z,| start from zero and
grow as |g,,| increases.

VII. CONCLUSION

We have studied a degenerate 1D Bose-Fermi mixture by
using the quantum hydrodynamics. We find that for attractive
Bose-Fermi interaction (g,,<0) the ground state of the sys-
tem is a self-bound Bose-Fermi droplet. The nonexistence of
a threshold in the strength of an attractive Bose-Fermi inter-
action for the formation of a Bose-Fermi bright soliton in
one dimension is confirmed in the case of a single Fermi
atom immersed in a degenerate Bose gas with repulsive
Bose-Bose interaction. We also calculate the frequencies of
stable oscillation of the Bose-Fermi bright soliton. Such a
Bose-Fermi bright soliton is similar to a recently studied
Bose-Bose bright soliton bound through an attractive inter-
species interaction [47].

In view of the recent experimental studies of a degenerate
1D ¥Rb gas [29,30] and the successful identification of the
quasi-BEC and TG regime in it and the observation of the
degenerate Bose-Fermi mixture in ®Li-"Li [16,17], “°K-*"Rb
[13], °Li-**Na [18], etc. by different groups, the experimen-
tal realization of a Bose-Fermi bright soliton seems possible
with present technology. The most attractive procedure
seems to make use of an experimentally observed Feshbach
resonance [48] in a Bose-Fermi mixture. The 1D Bose-Fermi
mixture must be created in an axial harmonic trap and the
Bose-Fermi interaction must be turned from repulsive to at-
tractive by manipulating a background magnetic field. At the
same time the axial harmonic trap on the system should be
removed. Upon removal of the axial trap, the result is the
formation of a single or a train of bright solitons as in the
experiment with the degenerate Bose system of 'Li atoms
[17] or as in a numerical simulation in a degenerate Bose-
Fermi mixture [19]. By choosing numbers of atoms and in-
teratomic strengths as suggested in the present paper, one
obtains a single Bose-Fermi bright soliton and can study its
static and dynamical properties.
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