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We consider a particle in the harmonic approximation coupled linearly to an environment modeled by an
infinite set of harmonic oscillators. The system �particle environment� is considered in a cavity at thermal
equilibrium. We employ the recently introduced notion of renormalized coordinates to investigate the time
evolution of the particle occupation number. For comparison, we first present this study in bare coordinates.
For a long elapsed time, in both approaches, the occupation number of the particle becomes independent of its
initial value. The value of the occupation number of the particle is the physically expected one at the given
temperature. So we have a Markovian process, describing the particle thermalization with the environment.
With renormalized coordinates, no renormalization procedure is required, leading directly to a finite result.
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I. INTRODUCTION

A thermalization process occurs in some cases for a sys-
tem of material particles coupled to an environment, in the
sense that after an infinitely long time, the matter particles
lose the memory of their initial states. This study is, in gen-
eral, not easy from a theoretical point of view, due to the
complex nonlinear character of the interactions between the
matter particles and the environment. To get over these dif-
ficulties, linearized models have been adopted. An account
on the subject of the evolution of quantum systems on gen-
eral grounds can be found in �1–6�. Besides, the main ana-
lytical method used to treat these systems at zero or finite
temperature is—except for a few special cases—the pertur-
bation theory. In this framework, the perturbative approach is
carried out by means of the introduction of bare noninteract-
ing objects �fields, to which are associated bare quanta�; the
interaction being introduced order by order in powers of the
coupling constant.

In spite of the remarkable achievements of the perturba-
tive methods, however, there are situations where they can-
not be employed or are of little use. These cases have led to
attempts to improve nonperturbative analytical methods, in

particular, where strong effective couplings are involved.
Among these trials, there are methods that perform resum-
mations of perturbative series, even if they are divergent,
which amounts in some cases to extending the weak-
coupling regime to a strong-coupling domain. One of these
methods is the Borel resummation of perturbative series
�7–12�.

In this paper, we follow a different nonperturbative ap-
proach. We investigate a simplified linear version of a par-
ticle field or particle-environment system, where the
particle—taken in the harmonic approximation—is coupled
to the reservoir modeled by independent harmonic oscillators
�2,3,5�. We will employ, in particular, dressed states and
renormalized coordinates introduced in �13� and already em-
ployed in �14–17�. Using this method, nonperturbative treat-
ments can be considered for both weak and strong couplings.
A linear model permits a better understanding of the need for
nonperturbative analytical treatments of coupled systems,
which is the basic problem underlying the idea of a dressed
quantum-mechanical system. Of course, the use of such an
approach to a realistic nonlinear system is an extremely hard
task, while the linear model provides a good compromise
between physical reality and mathematical reliability. The
whole system is supposed to reside inside a spherical cavity
of radius R in thermal equilibrium at temperature T=�−1. In
other words, we consider the spatially regularized theory �fi-
nite R� at finite temperature. The free space case is obtained
by suppressing the regulator �R→��. For a detailed com-
parison between this procedure and the one considering an a
priori unbounded space, see �13�.
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II. MODEL

Let us start by considering a particle approximated by a
harmonic oscillator, having bare frequency �0, linearly
coupled to a set of N other harmonic oscillators, with fre-
quencies �k, k=1,2 , . . . ,N. The Hamiltonian for such a sys-
tem is written in the form,

H =
1

2�p0
2 + �0

2q0
2 + �

k=1

N

�pk
2 + �k

2qk
2�� − q0�

k=1

N

ckqk, �1�

leading to the following equations of motion:

q̈0 + �0
2q0 = �

i=1

N

ciqi�t� , �2�

q̈i + �i
2qi = ciq0�t� . �3�

In the limit N→�, we recover our case of the particle
coupled to the environment, after redefining divergent quan-
tities, in a manner analogous to mass renormalization in field
theories. A Hamiltonian of the type �1� has been largely used
in the literature, in particular, to study the quantum Brownian
motion with the path-integral formalism �1,2�. It has also
been employed to investigate the linear coupling of a particle
to the scalar potential �13–17�.

The Hamiltonian �1� is transformed to the principal axis
by means of a point transformation,

q� = �
r=0

N

t�
r Qr, p� = �

r=0

N

t�
r Pr,

� = �0,	k
�, k = 1,2, . . . ,N, r = 0, . . . N , �4�

performed by an orthonormal matrix T= �t�
r �. The subscripts

�=0 and �=k refer, respectively, to the particle and the
harmonic modes of the reservoir and r refers to the normal
modes. In terms of normal momenta and coordinates, the
transformed Hamiltonian reads as

H =
1

2�
r=0

N

�Pr
2 + �r

2Qr
2� , �5�

where the �r’s are the normal frequencies corresponding to
the collective stable oscillation modes of the coupled system.
Using the coordinate transformation �4� in the equations of
motion and explicitly making use of the normalization of the
matrix �t�

r �, ��=0
N �t�

r �2=1, we get

tk
r =

ck

�k
2 − �r

2 t0
r , t0

r = �1 + �
k=1

N
ck

2

��k
2 − �r

2�2�−1/2

, �6�

with the condition

�0
2 − �r

2 = �
k=1

N
ck

2

�k
2 − �r

2 . �7�

We take ck=���k�u, where � is a constant independent of
k. In this case, the environment is classified according to u
�1, u=1, or u�1, respectively, as supraohmic, ohmic, or

subohmic. This terminology has been used in studies of the
quantum Brownian motion and of dissipative systems �2–6�.
For a subohmic environment, the sum in Eq. �7� is conver-
gent in the limit N→� and the frequency �0 is well defined.
For ohmic and supraohmic environments, this sum diverges
for N→�. This makes the equation meaningless, unless a
renormalization procedure is implemented. From now on, we
restrict ourselves to an ohmic system. In this case, Eq. �7� is
written in the form

�0
2 − 	�2 − �r

2 = �2�r
2�

k=1

N
1

�k
2 − �r

2 , �8�

where we have defined the counterterm

	�2 = N�2. �9�

There are N+1 solutions of �r, corresponding to the N+1
normal collective modes. Let us for a moment suppress the
index r of �r

2. If �0
2�	�2, all possible solutions for �2 are

positive, physically meaning that the system oscillates har-
monically in all its modes. If �0

2�	�2 then a single negative
solution exists. In order to prove this, let us define the func-
tion

I��2� = �0
2 − 	�2 − �2 − �2�2�

k=1

N
1

�k
2 − �2 , �10�

so that Eq. �8� becomes I��2�=0. We find that

I��2� → � as �2 → − �, I�0� = �0
2 − 	�2 � 0,

in the interval �−� ,0�. As I��2� is a monotonically decreas-
ing function in this interval, we conclude that I��2�=0 has a
single negative solution in this case. This means that there is
a mode whose amplitude grows or decays exponentially, so
that no stationary configuration is allowed. Nevertheless, it
should be remarked that in a different context, it is precisely
this runaway solution that is related to the existence of a
bound state in the Lee-Friedrichs model. This solution is
considered in the framework of a model to describe qualita-
tively the existence of bound states in particle physics �18�.

Considering the situation where all normal modes are har-
monic, which corresponds to the first case above ��0

2

�	�2�, we define the renormalized frequency

�̄2 = �0
2 − 	�2 = lim

N→�
��0

2 − N�2� , �11�

in terms of which Eq. �8� in the limit N→� becomes

�̄2 − �2 = �2�
k=1

�
�2

�k
2 − �2 . �12�

In this limit, the above procedure is exactly the analog of the
mass renormalization in quantum field theory. The addition
of a counterterm −	�2q0

2 allows one to compensate the infin-
ity of �0

2 in such a way as to leave a finite physically mean-
ingful renormalized frequency �̄. This simple renormaliza-
tion scheme has been introduced earlier �19�. Unless
explicitly stated, the limit N→� is understood in the follow-
ing.
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Let us define a constant g, with dimension of frequency,
by

g =
�2

2
�
, �13�

where 
�=�c /R. The environment frequencies �k are given
by

�k = k
�c

R
, k = 1,2, . . . , �14�

where R is the radius of the cavity that contains the whole
system. Then, using the identity

�
k=1

�
1

k2 − u2 =
1

2
� 1

u2 −
�

u
cot��u�� , �15�

Eq. �12� can be written in a closed form,

cot�R�

c
� =

�

�g
+

c

R�
�1 −

R�̄2

�gc
� . �16�

The solutions of the above equation with respect to � give
the spectrum of eigenfrequencies �r, corresponding to the
collective normal modes.

In terms of the physically meaningful quantities �r and �̄,
the transformation matrix elements turning the particle-field
system to the principal axis are obtained. They are

t0
r =

��r


��r
2 − �̄2�2 +

�2

2
�3�r

2 − �̄2� + �2g2�r
2

,

tk
r =

��k

�k
2 − �r

2 t0
r . �17�

These matrix elements play a central role in the quantities
describing the system.

III. THERMALIZATION PROCESS
IN BARE COORDINATES

We now consider the thermalization problem using bare
coordinates. For the model described by Eq. �1�, this prob-
lem was addressed in an alternative way in �20� with the
canonical Liouville–von Neumann formalism. We consider
the initial state described by the density operator,

��t = 0� = �0 � ��, �18�

where �0 is the density operator of the particle that in prin-
ciple can be in a pure or in a mixed state and �� is the density
operator of the thermal bath, at a temperature �−1, that is,

�� = Z�
−1 exp�− ��

k=1

�

�k�ak
†ak +

1

2
�� , �19�

with Z�=�k=1
N z�

k being the partition function of the reservoir,
and

z�
k = Trk�e−��k�ak

†ak+1/2�� =
1

2 sinh��k�k

2
� . �20�

The creation and annihilation operators given by

a� =
�̄�

2
q� +

i


2�̄�

p�, �21�

a�
† =
�̄�

2
q� −

i


2�̄�

p�, �22�

where �̄�= ��̄ ,�k�. The thermalization problem is addressed
by investigating the time evolution of the state ��t�.

The thermalization problem concerns the time evolution
of the initial state to thermal equilibrium. The subsystem
corresponding to the particle oscillator is described by an
arbitrary density operator �0. As we will show, the expecta-
tion value of the number operator corresponding to particles
will evolve in time to a value that is independent of the
initial density operator �0; the dependence will be exclu-
sively on the mixed density operator corresponding to the
thermal bath.

Our aim is to obtain expressions for the time evolution of
the expectation values for the occupation number and, in
particular, for the one corresponding to particles. We will
solve the problem in the framework of the Heisenberg pic-
ture. It is to be understood that when a quantity appears
without the time argument, it means that such quantity is
evaluated at t=0. The Heisenberg equation of motion for the
annihilation operator a��t� is given by

�

�t
a��t� = i�Ĥ,a��t�� . �23�

Due to the linear character of our problem, this equation is
solved by writing a��t� as

a��t� = �

=0

�

�Ḃ�
�t�q̂
 + B�
�t�p̂
� , �24�

where all the time dependence is in the c-number functions
B�
�t�. Then, Eq. �23� reduces to the following coupled
equations for B�
�t�:

B̈�0�t� + �̄2B�0�t� − �
k=1

�

��kB�k�t� = 0, �25�

B̈�k�t� + �k
2B�k�t� − B�0�t��

k=1

�

��k = 0. �26�

These equations are formally identical to the classical
equations of motion �Eqs. �2� and �3�� for the bare coordi-
nates q�. Then we decouple Eqs. �25� and �26� with the same
matrix 	t�

r 
 that diagonalizes the Hamiltonian �1�. In an
analogous manner, we write B�
�t� as
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B�
�t� = �
r=0

�

t

rC�

r �t� , �27�

such that from Eqs. �25� and �26�, we obtain the following
equations for the normal-axis functions C�

r �t�,

C̈�
r �t� + �r

2C�
r �t� = 0, �28�

which gives the solution

C�
r �t� = a�

r ei�rt + b�
r e−i�rt.

Then substituting this expression into Eq. �27�, we find

B�
�t� = �
r=0

�

t

r�a�

r ei�rt + b�
r e−i�rt� . �29�

The time-independent coefficients a�
r and b�

r are determined

by the initial conditions at t=0 for B�
�t� and Ḃ�
�t�. From
Eqs. �21� and �24�, we find that these initial conditions are
given by

B�
 =
i	�



2�̄�

,

Ḃ�
 =
�̄�

2
	�
. �30�

Using these equations, we obtain for a�
r and b�

r ,

a�
r =

it�
r


8�̄�

�1 −
�̄�

�r
� , �31�

b�
r =

it�
r


8�̄�

�1 +
��

�r
� . �32�

We write a��t� and a�
† �t� in terms of a� and a�

† using Eqs.
�21�, �22�, and �24�,

a��t� = �

=0

�

���
�t�â
 + ��
�t�â

†� , �33�

a�
† �t� = �


=0

�

���

� �t�â
 + ��


� �t�â

†� , �34�

where ��
�t� and ��
�t� are the Bogoliubov coefficients
given by

��
�t� =
1


2�


Ḃ�
�t� − i
�


2
B�
�t� �35�

and

��
�t� =
1


2�


Ḃ�
�t� + i
�


2
B�
�t� . �36�

Using the definition of B�
�t�, we get

��
�t� = �
r=0

� 
�


��

t�
r t


r

4�r
��r

�


���� − �r�ei�rt + ��� + �r�e−i�rt� + ���r − ���ei�rt + ��r + ���e−i�rt�� �37�

and

��
�t� = �
r=0

� 
�


��

t�
r t


r

4�r
��r

�


���� − �r�ei�rt + ��� + �r�e−i�rt� − ���r − ���ei�rt + ��r + ���e−i�rt�� . �38�

Now we study the time evolution of n��t�, the expectation
value of the number operator N��t�=a�

† �t�a��t�, that is,

n��t� = Tr�a�
† �t�a��t��0 � ��� . �39�

Using the basis �n0 ,n1 ,n2 , . . . ,nN�, we obtain

n��t� = �

=0

�

����
�t��2 + ���
�t��2�n
 + �

=0

�

���
�t��2, �40�

where

n0 = �
n=0

�

n�n��0�n� �41�

is the expectation value of the number operator correspond-
ing to the particle and the set 	nk
 stands for the thermal

expectation values corresponding to the thermal bath oscilla-
tors given by the Bose-Einstein distribution,

nk =
1

e��k − 1
. �42�

We are interested in evaluating the expectation value of
the number operator corresponding to the particle. Strictly
speaking all the modes of the system evolves in time, so that
all occupation numbers n��t� given by Eq. �40� should be
considered. However the mode �=0, corresponding to the
particle, is coupled to all of the reservoir modes; while each
reservoir mode ��=1,2 ,3 , . . .� is under the influence of the
particle only, since they are not supposed to interact directly
among themselves. Therefore, considering the weak-
coupling regime �see comments below Eq. �48��, we work in
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the approximation of neglecting the time evolution of the reservoir which remains in thermal equilibrium obeying Eq. �42�.
Thus taking �=0 in Eq. �40� and using Eq. �42�, we obtain

n0�t� = ���00�t��2 + ��00�t��2�n0 + �
k=1

�

���0k�t��2 + ��0k�t��2�
1

e��k − 1
+ ��00�t��2 + �

k=1

�

��0k�t��2, �43�

where the coefficients of this expression are �20�

�00�t� =
e−�gt/2

16�̄�
��2�̄ + 2� − i�g�2e−i�t − �2�̄ − 2� − i�g�2ei�t� , �44�

�00�t� =
�ge−�gt/2

8�̄�
���g + 2i��e−i�t − ��g − 2i��ei�t� , �45�

�0k�t� =
�k

2�̄

��̄ + �k�
g
�e−i�kt

��k
2 − �̄2 + i�g�k�

+
�k

�̄


2g
�

4�
� �2� + 2�̄ − i�g�

�2� − 2�k − i�g�
e−i�t +

�2�̄ − 2� − i�g�
�2� + 2�k + i�g�

ei�t�e−�gt/2 �46�

and

�0k�t� =
�k

2�̄

��k − �̄�
g
�ei�kt

��k
2 − �̄2 − i�g�k�

−
�k

�̄


2g
�

4�
� �2�̄ + 2� − i�g�

�2� + 2�k − i�g�
e−i�t +

�2�̄ − 2� − i�g�
�2� − 2�k + i�g�

ei�t�e−�gt/2, �47�

such that

� = 
�̄2 − �2g2/4. �48�

The parameter � measures the intensity of the interaction: if �2�0, i.e., g�2�̄ /�, we are in the weak-coupling regime. On
the contrary if �2�0, i.e., g�2�̄ /�, the system is in the strong-coupling regime. Here we will restrict ourselves to the
weak-coupling regime. This case includes the important class of electromagnetic interactions g=��̄, with � being the fine-
structure constant �=1 /137 �14�.

In the continuum limit 
�→0, the sums over k become integrations over a continuous variable � and we obtain for n0�t�,

n0�t� =
e−�gt

�̄2�2��̄4 +
�2g2

8
�2�̄2 − �2g2�cos�2�t� −

�3g3�

4
sin�2�t��n0

+
�2g2e−�gt

16�̄2�2 �2�̄2 + �2�̄2 − �2g2�cos�2�t� − 2�g� sin�2�t�� +
g

�̄
�

0

�

d��F��,�̄,g,t�
�e�� − 1�

+ G��,�̄,g,t�� , �49�

where

F��,�̄,g,t� =
���2 + �̄2�

���2 − �̄2�2 + �2g2�2��1 +
e−�gt

4�2 �4�̄2 − �2g2 cos�2�t� − 2�g�
��2 − �̄2�
��2 + �̄2�

sin�2�t��
−

e−�gt/2

�
�2� cos��t�cos��t� +

4��̄2

��2 + �̄2�
sin��t�sin��t� − �g

��2 − �̄2�
��2 + �̄2�

cos��t�sin��t��� �50�

and

G��,�̄,g,t� =
��� − �̄�2

���2 − �̄2�2 + �2g2�2��1 +
e−�gt

4�2 �4�̄2 +
2�2g2�̄�

�� − �̄�2 − �2g2 ��2 + �̄2�
�� − �̄�2 cos�2�t� − 2�g�

�� + �̄�
�� − �̄�

sin�2�t��
−

e−�gt/2

�
�2� cos��t�cos��t� − 2�̄ sin��t�sin��t� − �g

�� + �̄�
�� − �̄�

cos��t�sin��t��� . �51�
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It is to be noticed that the second and the third lines in Eq.
�49� are independent of the initial distribution. Also the inte-
gral over G�� , �̄ ,g , t� is logarithmically divergent. We can
understand the origin of these terms in the following way.
Suppose that initially, in the absence of the linear interaction,
we prepare the system in its ground state, that is, at t=0 we
have �0,0 , . . . ,0�. Then, we can compute—in the Heisenberg
picture—the time evolution for the expectation value of the
number operator corresponding to the particle, that is,
�0,0 , . . . ,0�â0

†�t�â0�t��0,0 , . . . ,0�. We obtain

�0,0, . . . ,0�â0
†�t�â0�t��0,0, . . . ,0� = ��00�t��2 + �

k=1

�

��0k�t��2,

�52�

which in the continuum limit gives the second and third lines
of Eq. �49�. Then, these terms appearing in Eq. �49� are
interpreted as the excitations produced from the unstable
bare �vacuum� ground state, as a response to the onset of the
linear interaction.

The result above is compatible with some results in �5� in
the context of quantum dissipative phenomena. In this
quoted paper, in the zero-temperature situation, the system is
represented by a set of harmonic oscillators. A detailed jus-
tification for representing the environment by a set of har-
monic oscillators is given in the Appendix C of this refer-
ence.

The divergent integral in G�� , �̄ ,g , t� can be dealt with
by a renormalization procedure. The suppression of this term
is analogous to the standard Wick ordering in field theory.
Thus we write the following renormalized expectation value
for the particle number operator:

n̄0�t� = K��̄,g,t� +
g

�̄
�

0

�

d�
F��,�̄,g,t�
�e�� − 1�

, �53�

where

K��̄,g,t� =
e−�gt

�̄2�2��̄4 +
�2g2

8
�2�̄2 − �2g2�cos�2�t�

−
�3g3�

4
sin�2�t��n0 +

�2g2e−�gt

16�̄2�2 �2�̄2

+ �2�̄2 − �2g2�cos�2�t� − 2�g� sin�2�t�� .

�54�

In the limit t→�, n̄0�t� has a well-defined value; that is,
the system reaches a final equilibrium state. Also, since
K��̄ ,g , t→��→0, this final equilibrium state is independent
of n0. The equilibrium expectation value of the number op-
erator corresponding to the particle is independent of its ini-
tial value, and the only dependence is on the initial distribu-
tion of the thermal bath; that is, the particle thermalizes with
the environment. Before the interaction enters into play for
t�0, n�t�0�=n0, then we have that K��̄ ,g , t�0�=1. Tak-
ing t=0 in Eq. �54�, we obtain K��̄ ,g , t=0�= 1

�̄2�2 ��̄4

+ �2g2

8 �2�̄2−�2g2��n0+ �2g2

16�̄2�2 �2�̄2+ �2�̄2−�2g2��. Thus
K��̄ ,g , t� is a discontinuous function of t; the discontinuity
appearing just at t=0. From the physical standpoint, this dis-

continuity can be viewed as a response to the sudden onset of
the interaction between the particle and the environment.

It should be mentioned that a very similar problem from
the mathematical point of view has been studied in �21�. In
this work, the authors studied the damped harmonic oscilla-
tor under the optics of a dissipation problem. They apply a
method that diagonalizes the Hamiltonian of the system and
derive the conditions of validity of the rotating wave ap-
proximation.

Although the integral in Eq. �53� cannot be computed
analytically, we can perform numerical calculations; for ex-
ample �in Fig. 1�, we display the time behavior for n0=1,
�̄=1, �=2 and g=0.1; �t�1�. In Sec. IV, we develop an
alternative approach based on the notion of dressed particles.
We will find that, in this new realm, no renormalization is
needed.

IV. DRESSED COORDINATES AND DRESSED STATES

Let us start with the eigenstates of our system
�n0 ,n1 ,n2 , . . .� represented by the normalized eigenfunctions
in terms of the normal coordinates 	Qr
,

�n0n1n2. . .�Q,t� = �
s
�
2ns

ns!
Hns

�
�s

�
Qs��

��0 exp�− i�
s

ns�st� , �55�

where Hns
stands for the nsth Hermite polynomial and �0 is

the normalized vacuum eigenfunction,

�0 = N exp�−
1

2�
r=0

�

�r
2Qr

2� . �56�

We introduce dressed or renormalized coordinates q0� and
	qi�
 for, respectively, the dressed particle and the dressed
field, defined by


�̄�q�� = �
r

t�
r 
�rQr, �57�

valid for arbitrary R and where �̄�= 	�̄ ,�i
. In terms of
dressed coordinates, we define for a fixed instant t=0 dressed
states ��0�1�2. . .� by means of the complete orthonormal set
of functions

FIG. 1. �Color online� Time behavior for n̄0�t� given by Eq. �53�
for �t�1�, n0=1, �̄=1, �=2, and g=0.1; arbitrary units are used.
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��0�1. . .�q�� = �
�
�
2��

��!
H��

�
�̄�

�
q�����0, �58�

where q�� = 	q0� ,qi�
, �̄�= 	�̄ ,�i
. Notice that the ground state
�0 in the above equation is the same as in Eq. �55�. The
invariance of the ground state is due to our definition of
dressed coordinates given by Eq. �57�. Each function
��0,�1,. . .�q�� describes a state in which the dressed oscillator
q�� is in its ��th excited state.

It is worthwhile to note that our renormalized coordinates
are objects different from both the bare coordinates q and the
normal coordinates Q. In particular, the renormalized coor-
dinates and dressed states—although both are collective
objects—should not be confused with the normal coordinates
Q and the eigenstates Eq. �55�. While the eigenstates � are
stable, the dressed states � are all unstable, except for the
ground state obtained by setting 	��=0
 in Eq. �58�. The idea
is that the dressed states are physically meaningful states.
This can be seen as an analog of the wave-function renor-
malization in quantum field theory, which justifies the de-
nomination of renormalized to the new coordinates q�. Thus,
the dressed state given by Eq. �58� describes the particle in
its �0th excited level and each mode k of the cavity in the
�kth excited level. It should be noticed that the introduction
of the renormalized coordinates guarantees the stability of
the dressed vacuum state, since by definition it is identical to
the ground state of the system. The fact that the definition
given by Eq. �57� assures this requirement can be easily seen
by replacing Eq. �57� in Eq. �58�. We obtain �0�q����0�Q�,
which shows that the dressed vacuum state given by Eq. �58�
is the same ground state of the interacting Hamiltonian given
by Eq. �5�.

The necessity of introducing renormalized coordinates
can be understood by considering what would happen if we
write Eq. �58� in terms of the bare coordinates q�. In the
absence of interaction, the bare states are stable since they
are eigenfunctions of the free Hamiltonian. But when we
consider the interaction, they all become unstable. The ex-
cited states are unstable, since we know this from experi-
ment. On the other hand, we also know from experiment that
the particle in its ground state is stable, in contradiction with
what our simplified model for the system describes in terms
of the bare coordinates. So, if we wish to have a nonpertur-
bative approach in terms of our simplified model, something
should be modified in order to remedy this problem. The
solution is just the introduction of the renormalized coordi-
nates q�� as the physically meaningful ones.

In terms of bare coordinates, the dressed coordinates are
expressed as

q�� = �



��
q
, �59�

where

��
 =
1


�̄�

�
r

t�
r t


r
�r. �60�

If we consider an arbitrarily large cavity �R→��, the dressed
coordinates reduce to

q0� = A00��̄,g�q0, �61�

qi� = qi, �62�

with A00��̄ ,g� given by

A00��̄,g� =
1


�̄
�

0

� 2g�2
�d�

��2 − �̄2�2 + �2g2�2 . �63�

In other words, in the limit R→�, the particle is still dressed
by the field, while for the field there remain bare modes.

Let us consider a particular dressed state ��1
��0�� repre-

sented by the wave function �00¯1���0¯�q��. It describes the
configuration in which only the dressed oscillator q�� is in the
first-excited level. Then the following expression for its time
evolution is valid �13�:

��1
��t�� = �




f�
�t���1

�0�� ,

f�
�t� = �
s

t�
s t


se−i�st. �64�

Moreover we find that

�



�f�
�t��2 = 1. �65�

Then the coefficients f�
�t� are simply interpreted as prob-
ability amplitudes.

In approaching the thermalization process in this frame-
work, we have to write the initial physical state in terms of
dressed coordinates or equivalently in terms of dressed anni-
hilation and creation operators a�� and a��

† instead of a� and
a�

† . This means that the initial dressed density operator cor-
responding to the thermal bath is given by

�� = Z�
−1 exp�− ��

k=1

�

�k�ak�
†ak� +

1

2
�� , �66�

where we define

a�� =
�̄�

2
q�� +

i


2�̄�

p�� �67�

a��
† =
�̄�

2
q�� −

i


2�̄�

p�� . �68�

Now we analyze the time evolution of dressed coordinates.

V. THERMAL BEHAVIOR FOR A CAVITY OF
ARBITRARY SIZE WITH DRESSED COORDINATES

The solution for the time-dependent annihilation and cre-
ation dressed operators follows similar steps as for the bare
operators. The time evolution of the annihilation operator is
given by

d

dt
a�� �t� = i�Ĥ,a�� �t�� �69�

and a similar equation for a��
†�t�. We solve this equation with

the initial condition at t=0,
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a�� �0� =
��

2
q�� +

i

2��

p�� , �70�

which, in terms of bare coordinates, becomes

a�� �0� = �
r,
=0

N �
�r

2
t�
r t


r q̂
 +
it�

r t

r


2�r

p̂
� . �71�

We assume a solution for a�� �t� of the type

a�� �t� = �

=0

�

�Ḃ�
� �t�q̂
 + B�
� �t�p̂
� . �72�

Using Eq. �1� we find

B�
� �t� = �
r=0

�

t

r�a��

rei�rt + b��
re−i�rt� . �73�

In the present case, the time-independent coefficients are dif-
ferent from those in the bare coordinate approach �Eq. �29��.
The initial conditions for B�
� �t� and Ḃ�
� �t� are obtained by
setting t=0 in Eq. �72� and comparing with Eq. �71�. Then

B�
� �0� = i�
r=0

�
t�
r t


r


2�r

, �74�

Ḃ�
� �0� = �
r=0

� 
�r

2
t�
r t


r . �75�

Using these initial conditions and the orthonormality of the
matrix 	t�

r 
, we obtain a��
r=0 and b��

r= it�
r /
2�r. Replacing

these values for a��
r and b��

r in Eq. �73�, we get

B�
� �t� = i�
r=0

�
t�
r t


r


2�r

e−i�rt. �76�

We have

a�� �t� = �
r,
=0

N

t�
r t


r�
�r

2
q̂
 +

i

2�r

p̂
�e−i�rt

= �
r,
=0

N

t�
r t


r�
�


2
q̂
� +

i

2�


p̂
��e−i�rt = �

=0

�

f�
�t�â
�,

�77�

where

f�
�t� = �
r=0

�

t�
r t


re−i�rt. �78�

For the occupation number n�� �t�= �a��
†�t�a�� �t��, we get

n�� �t� = Tr�a��
†�t�a�� �t��0� � ���� , �79�

where �0� is the density operator for the dressed particle and
��� is the density operator for the thermal bath, which coin-
cides with the corresponding operator for the bare thermal
bath if the system is in free space �in the sense of an arbi-
trarily large cavity� �13,14�.

To evaluate n�� �t�, we choose the basis �n0 ,n1 , . . . ,nN�
=��=0

� �n��, where �n�� are the eigenvectors of the number
operators a��

†a�� . From Eq. �77�, we get

a��
†�t�a�� �t� = �


,�=0

�

f��
� �t�f�
�t�â��

†â
�

= �

=0

�

�f�
�t��2â
�
†â
� + �


��

f��
� �t�f�
�t�â
�

†â��.

�80�

In the basis �n0 ,n1 ,n2 , . . .�, we obtain

n�� �t� = �f�0�t��2n0� + �
k=1

�

�f�k�t��2nk�, �81�

where n0� and nk� are the expectation values of the initial
number operators, respectively, for the dressed particle and
dressed bath modes. We assume that dressed field modes
obey a Bose-Einstein distribution. This can be justified by
remembering that in the free space limit R→�, dressed field
modes are identical to the bare ones, according to Eqs. �61�
and �62�. Now, no term independent of the temperature ap-
pears in the thermal bath. This should be expected since the
dressed vacuum is stable; particle production from the
vacuum is not possible. Setting �=0 in Eq. �81�, we obtain
the time evolution for the occupation number of the particle,

n0��t� = �f00�t��2n0� + �
k=1

�

�f0k�t��2nk�. �82�

VI. LIMIT OF ARBITRARILY LARGE CAVITY:
UNBOUNDED SPACE

In a large cavity �free space�, we must compute the quan-
tities f00�t� and f0k�t� in the continuum limit to study the time
evolution of the occupation number for the particle. Remem-
ber that in Eq. �17�, �k=k�c /R, k=1,2 , . . ., and �=
2g
�,
with 
�= ��i+1−�i�=�c /R. When R→�, we have 
�→0
and 
�→0 and then the sum in Eq. �78� becomes an inte-
gral. To calculate the quantities f�
�t�, we first note that, in
the continuum limit, Eq. �17� becomes

t0
r → t0

�

� � lim

�→0

�
2g
�


��2 − �̄2�2 + �2g2�2
, �83�

tk
r →

�
2g
�

�2 − �2 t0
�

� . �84�

In the following, we suppress the labels in the frequencies,
since they are continuous quantities.

We start by defining a function W�z�,

W�z� = z2 − �̄2 + �
k=1

�
�2z2

�k
2 − z2 . �85�

We find that the �’s are the roots of W�z�. Using �2

=2g
�, we have in the continuum limit,
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W�z� = z2 − �̄2 + 2gz2�
0

� d�

�2 − z2 . �86�

For complex values of z, the above integral is well defined
and is evaluated by using Cauchy theorem to be

W�z� = �z2 + ig�z − �̄2, Im�z� � 0

z2 − ig�z − �̄2, Im � 0.
� �87�

We now compute f00�t�=�r=0
� �t0

r�2e−i�rt which, in the con-
tinuum limit, is given by

f00�t� = �
0

�

�t0
��2e−i�td� . �88�

We find that

�t0
��2 =

1

W���
, �89�

and since the �’s are the roots of W�z�, we write Eq. �88� as

f00�t� =
1

i�
�

C

dze−izt

W�z�
, �90�

where C is a counterclockwise contour in the z plane that
encircles the real positive roots of W�z�. Choosing a contour
infinitesimally close to the positive real axis, that is, z=�
− i� below it and z=�+ i� above it with ��0 and �→0+, we
obtain

f00�t� =
1

i�
�

0

�

d��e−i�t� 1

W�� − i��
−

1

W�� + i��� . �91�

In the limit �→0+, Eq. �87� gives W��� i��=�2

− �̄2� ig�� which leads to

f00�t� = C1�t;�̄,g� + iS1�t;�̄,g� , �92�

where

C1�t;�̄,g� = 2g�
0

�

d�
�2 cos��t�

��2 − �̄2�2 + �2g2�2 , �93�

S1�t;�̄,g� = − 2g�
0

�

d�
�2 sin��t�

��2 − �̄2�2 + �2g2�2 . �94�

Notice that C1�t=0; �̄ ,g�=1 and S1�t=0; �̄ ,g�=0, so that
f00�t=0�=1 as expected from the orthonormality of the ma-
trix �t�

r �. The real part of f00�t� is calculated using the residue
theorem. For �2= �̄2−�2g2 /4�0, which includes the weak-
coupling regime, one finds

C1�t;�̄,g� = e−�gt/2�cos��t� −
�g

2�
sin��t�� ��2 � 0� .

�95�

Although S1�t ; �̄ ,g� cannot be analytically evaluated for all
t, however, for long times, i.e., t�1 / �̄, we have

S1�t;�̄,g� �
4g

�̄4t3 �t �
1

�̄
� . �96�

Thus, we get for large t

�f00�t��2 � e−�gt�cos��t� −
�g

2�
sin��t��2

+
16g2

�̄8t6 . �97�

Next we compute the quantity f0k�t�=�r=0
� t0

r tk
re−i�rt in the

continuum limit. It is

f0��t� = ���
0

� �t0
��2e−i�td�

��2 − �2�
=

��

i�
�

C

ze−izt

��2 − z2�W�z�
,

�98�

where �=
2g
�. Taking the same contour as that used to
calculate f00�t�, we obtain

f0��t� = −
��

i�
�

0

�

d�� �e−i�t

W�� − i����� − i��2 − �2�

−
�e−i�t

W�� + i����� + i��2 − �2�� . �99�

Thus, taking �→0+ f0��t� is written as

f0��t� = �

��C2��,t;�̄,g� + iS2��,t;�̄,g�� , �100�

where

C2��,t;�̄,g� = �2g�3/2�
0

�

d�
�2 cos��t�

��2 − �2����2 − �̄2�2 + �2g2�2�
,

�101�

S2��,t;�̄,g�

= − �2g�3/2�
0

�

d�
�2 sin��t�

��2 − �2����2 − �̄2�2 + �2g2�2�
.

�102�

Notice that the integrals defining the functions C2 and S2 are
actually Cauchy principal values.

The function C2 is calculated analytically using Cauchy
theorem; we find

C2��,t;�̄,g� = 
2g�e−�gt/2� �2 − �̄2

��2 − �̄2�2 + �2g2�2cos �t

−
�g

2�

�2 + �̄2

��2 − �̄2�2 + �2g2�2sin �t�
+

�g�

��2 − �̄2�2 + �2g2�2sin �t� . �103�

The function S2 cannot be evaluated analytically for all t; it
has to be calculated numerically. For long times, we have

S2�t;�̄,g� �
4
2g
g

�2�̄4t3 �t �
1

�̄
� . �104�

In the continuum limit, we get the average of the particle
occupation number,

RENORMALIZED COORDINATE APPROACH TO THE … PHYSICAL REVIEW A 79, 032105 �2009�

032105-9



n0��t� = �C1
2�t;�̄,g� + S1

2�t;�̄,g��n0� + �
0

�

d��2�C2
2��,t;�̄,g�

+ S2
2��,t;�̄,g��n���� , �105�

where n����=1 / �e��−1� is the density of occupation of the
environment modes, the functions C1 and C2 are given by
Eqs. �95� and �103� while the functions S1 and S2 are given
by the integrals �94� and �102�, respectively. In Fig. 2, we
display the behavior in time for n0=1, �̄=1, �=2, and g
=0.1; �t�1�.

The important point that is seen from Figs. 1 and 2 is that,
for long times, both the bare and dressed occupation num-
bers of the particle approach smoothly to asymptotic values
which are �0.160. Moreover, these values are expected on
physical grounds for the interacting particle, being slightly
higher than the one obtained from the Bose distribution at
the equilibrium temperature of the reservoir. In fact, taking
�=2 and �̄=1, as used in the plots, one has

n���̄� = 1/�e��̄ − 1� = 0.156.

Therefore both methods and, in particular, our dressed state
formalism describe correctly the thermalization process.

VII. FINAL REMARKS

We have considered a linearized version of a particle-
environment system and we have carried out a nonperturba-
tive treatment of the thermalization process. We have
adopted the point of view of renouncing to an approach very
close to the real behavior of a nonlinear system to study
instead a linear model. As a counterpart, an exact solution
has been possible. This realizes a good compromise between
physical reality and mathematical reliability. We have pre-
sented an ohmic quantum system consisting of a particle, in
the larger sense of a material body, an atom, or a Brownian
particle coupled to an environment modeled by noninteract-
ing oscillators. We have used the formalism of dressed states
to perform a nonperturbative study of the time evolution of
the system contained in a cavity or in free space. Distinctly
to what happens in the bare coordinate approach, in the
dressed coordinate approach, no renormalization procedure
is needed. Our renormalized coordinates contain in them-
selves the renormalization aspects. As far as the thermaliza-
tion process is concerned from a physical viewpoint, both
bare and dressed approaches are in agreement with what we
expect for this process. For long times, all the information
about the particle occupation numbers depends only on the
environment. Both curves in Figs. 1 and 2 approach steadily
to asymptotic values of the bare and dressed occupation
numbers of the particle, which are physically expected at the
given temperature.
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