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Abstract

The number of zeros in (−1, 1) of the Jacobi function of second kind Q
(�,�)
n (x), �, � >−1, i.e. the second solution

of the differential equation

(1 − x2)y′′(x) + (� − � − (� + � + 2)x)y′(x) + n(n + � + � + 1)y(x) = 0,

is determined for every n ∈ N and for all values of the parameters � > − 1 and � > − 1. It turns out that this
number depends essentially on � and � as well as on the specific normalization of the function Q

(�,�)
n (x). Interlacing

properties of the zeros are also obtained. As a consequence of the main result, we determine the number of zeros of
Laguerre’s and Hermite’s functions of second kind.
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1. Introduction

Consider the Jacobi differential equation

(1 − x2)y′′(x) + (� − � − (� + � + 2)x)y′(x) + n(n + � + � + 1)y(x) = 0, (1)

where n ∈ N, �, � > − 1. It is classically known that it has two linearly independent solutions, one of
them being the Jacobi polynomial P

(�,�)
n (x). The behaviour of the n zeros of this polynomial has been

thoroughly investigated, mainly because of their important role as nodes of Gaussian quadrature and
because of their nice electrostatic interpretation. Surprisingly enough, very little is known about the zeros
of the non-polynomial solution Q

(�,�)
n (x) of (1).

There are few results in the literature concerning the zeros of Q
(�,�)
n (x). Sturm’s theorem guarantees

that the zeros of P
(�,�)
n (x) and of Q

(�,�)
n (x) interlace. Stieltjes [9] (see also [10, Theorem 6.9.2]) proved

that the Legendre function of second kind Q
(0,0)
n (x) has exactly n + 1 zeros in (−1, 1). Moreover,

he established the inequalities ��/(n + 1
2 ) < � < (� + 1

2 )�/(n + 1
2 ), � = 0, 1, 2, . . . , n, for the zeros of

Q
(0,0)
n (cos �). Recently, Peherstorfer and Schmuckenschläger [6] calculated the number of zeros of the

function Q
(�,�)
0 (x) and proved that this number depends on the parameters � and �.

The reason for the lack of results might be the simple fact that, if Q
(�,�)
n (x) is a “second” solution,

then, for any value of the real constant C, the function

Q̃(�,�)
n (x) = Q(�,�)

n (x) + CP (�,�)
n (x), (2)

is also a solution of (1) and Q̃
(�,�)
n (x) may be called a “second” solution, too. Roughly speaking, the

problem is in the specific normalization which should be adopted. While the number and location of
zeros of the polynomial solution does not depend on the normalization, in the case of the second solution
both the number and location of the zeros of Q̃

(�,�)
n (x) depend essentially on the value of the constant C.

In this paper, we adopt a specific normalization of the second solution and determine the number of its
zeros in (−1, 1). Grosjean [4] proved that

Q(�,�)
n (x) = �(� + � + 2)(1 − x)−� (1 + x)−�

2�+�+1 �(� + 1) �(� + 1)
P

∫ 1

−1

P
(�,�)
n (s)(1 − s)�(1 + s)�

x − s
ds, (3)

where P denotes the Cauchy principal value and P
(�,�)
n (x) is the nth Jacobi polynomial normalized by

P
(�,�)
n (1)= (� + 1)n/n!, is a solution of (1) that is linearly independent to P

(�,�)
n (x). Let xn,k(�, �) be the

zeros of P
(�,�)
n (x), arranged in decreasing order,

−1 < xn,n(�, �) < · · · < xn,2(�, �) < xn,1(�, �) < 1.

We shall denote byqn,i(�, �) the zeros ofQ(�,�)
n (x) in (−1, 1), arranged also in decreasing order.According

to Sturm’s theorem about interlacing of zeros of linearly independent solutions of differential equations,
there is exactly one simple zero of Q

(�,�)
n (x) in each of the intervals surrounded by two consecutive zeros of

P
(�,�)
n (x). In other words, the inequalities xn,k+1(�, �) < qn,k(�, �) < xn,k(�, �) hold for k =1, . . . , n−1,

and Q
(�,�)
n (x) has at least n − 1 zeros in (−1, 1). In what follows we shall omit the parameters � and � in

the denotations of these zeros using the more succinct forms xn,k and qn,k . We shall prove the following
result.
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Table 1
Number of zeros of Q

(�,�)
n (x) in (−1, 1)

�\� −1 < �� − 1
2 − 1

2 < �

−1 < �� − 1
2 n − 1 n�

− 1
2 < � nr n + 1

Theorem 1. Let n ∈ N. The number of zeros of the Jacobi function of the second kind Q
(�,�)
n (x), defined

by (3), in the interval (−1, 1), is

(a) n − 1 when −1 < �, �� − 1
2 ;

(b) n when either −1 < �� − 1
2 , � > − 1

2 , or � > − 1
2 , −1 < �� − 1

2 ;
(c) n + 1 when �, � > − 1

2 .

Moreover, the following interlacing properties hold:

(A) The n − 1 zeros of Q
(�,�)
n (x) satisfy xn,k+1(�, �) < qn,k(�, �) < xn,k(�, �) for k = 1, . . . , n − 1.

(B′) When −1 < �� − 1
2 , � > − 1

2 , except for the zeros, described in (A), Q(�,�)
n (x) has one additional

zero qn,n ∈ (−1, xn,n).
(B′′) When � > − 1

2 , −1 < �� − 1
2 , except for the zeros, described in (A), Q

(�,�)
n (x) has one additional

zero qn,0 ∈ (xn,1, 1).
(C) When �, � >− 1

2 the function Q
(�,�)
n (x) has n+1 zeros satisfying the interlacing properties described

in (A), (B′) and (B′′).

The results of the theorem are summarized in Table 1. There n� means that the additional zero of
Q

(�,�)
n (x) appears to the left of the smallest zero xn,n of P

(�,�)
n (x), and nr means that the extra zero of

Q
(�,�)
n (x) appears to the right of the largest zero xn,1 of P

(�,�)
n (x).

The cases when either � = −1
2 or � = −1

2 are of particular interest. Our analysis yields the following:

Proposition 2. The equalities limx↑1 Q
(−1/2,�)
n (x) = 0 and limx↓−1 Q

(�,−1/2)
n (x) = 0 hold for any �,

� > − 1.

Moreover, when � = � = −1
2 , for the second kind Chebyshev function is given by

Q
(−1/2,−1/2)
n (x) =

√
1 − x2Un−1(x),

where Un(x) is the Chebyshev polynomial of the second kind (see [4]).
The above-mentioned version of Sturm’s theorem implies that Q

(�,�)
n (x) may possess eventually ad-

ditional zeros, but at most one in each of the intervals (−1, xn,n) and (xn,1, 1). Despite that this analysis
depends only on the behaviour of the Jacobi function of the second kind close to the end-points of (−1, 1),
Theorem 1 provides the first complete and correct characterization of the number of zeros of Q

(�,�)
n (x). It

might be worth mentioning that Lemma 2 in [11] erroneously states that Q(�,�)
n (x) always has n+1 zeros,
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no matter what the values of � and � are, while Theorem 1 in the present paper shows that it happens if
and only if � > − 1

2 and � > − 1
2 . We thank Professors Wong and Zhang for a discussion on this topic.

The paper is organized as follows. In Section 2 we recall some results obtained in [4,6]. Theorem 1
is proved in Section 3. In Section 4 we investigate the positions of zeros of Q

(�,�)
n+1 (x), relative to those

of (d/dx)Q
(�,�)
n (x), Q

(�,�)
n−1 (x) and Q

(�,�)
n (x). In the last section we determine the number of zeros of the

Laguerre and Hermite functions of the second kind in (0, +∞) and (−∞, +∞), respectively.

2. Preliminaries

Let � > − 1, � > − 1, and n�0. As it was already mentioned, except for the case n = 0, � + � + 1 = 0,
which was considered in [10, Theorem 4.61.1], in what follows we consider the solution y(x)=Q

(�,�)
n (x)

of (1) as given in (3). Grosjean [4, Eq. (41)] proved that, for every x ∈ (−1, 1),

Q(�,�)
n (x) = P (�,�)

n (x)

[
(� + � + 1)

∫ x

0

dt

(1 − t)�+1(1 + t)�+1

+ �(� + � + 2)

2�+�+1�(� + 1)�(� + 1)
���

]
− W

(�,�)
n−1 (x)

(1 − x)�(1 + x)�
, (4)

where [4, p. 268, Eq. (32)]

��� = (� − �)

∞∑
n=1

1

(n + �)(n + �)
+ �

� + 13F2

(
1 − �, 1, 1
� + 2, 2

∣∣∣∣− 1

)
− �

� + 13F2

(
1 − �, 1, 1
� + 2, 2

∣∣∣∣− 1

)
,

and, for n ∈ N,

W
(�,�)
n−1 (x) = �(� + � + 2)

2�+�+1�(� + 1)�(� + 1)

∫ 1

−1

P
(�,�)
n (x) − P

(�,�)
n (s)

x − s
(1 − s)� (1 + s)� ds,

are the first associated polynomials [4,5,10].
Note that, for n ∈ N,

d

dx
Q(�,�)

n (x) = 2(1 + �)(1 + �)(1 + � + � + n)

(2 + � + �)(3 + � + �)
Q

(�+1,�+1)
n−1 (x). (5)

Also, in Grosjean [4, p. 286, Eq. (87)], we have

W(�,�)
n (x) = (� + � + 1)(n + � + � + 2)

2

n∑
k=0

P
(−�,−�)
k (x)P

(�,�)
n−k (x)

(k + 1)(n − k + � + � + 1)
.

On using the normalization

P (�,�)
n (1) = (� + 1)n

n! , (6)
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we obtain

W(0,�)
n (1) = (1 + �)(2 + � + n)

2

n∑
k=0

1

(k + 1)(n − k + � + 1)
, (7)

when � = 0 and

W(�,�)
n (1) = 1

2�

(
(1 + � + �)�(n + � + 2)

�(� + 1)�(n + 2)
− �(� + � + 2)�(n + � + 2)

�(� + 1)�(n + � + � + 2)

)
, (8)

otherwise. Obviously, we have W
(�,�)
n (1) = (−1)nW

(�,�)
n (−1) and

Q(�,�)
n (−x) = (−1)n−1Q(�,�)

n (x), for every n ∈ N. (9)

It follows from [4, (39)] that, for �, � > − 1, and x ∈ (−1, 1), we have

Q
(�,�)
0 (x) = (� + � + 1)

∫ x

0

dt

(1 − t)�+1(1 + t)�+1
+ �(� + � + 2)

2�+�+1�(� + 1)�(� + 1)
���

= �(� + � + 2)

2�+�+1�(� + 1)�(� + 1)(1 − x)�(1 + x)�
P

∫ 1

−1

(1 − t)� (1 + t)�

x − t
dt . (10)

It was proved in [6] that

lim
x↑1

Q
(�,�)
0 (x) =

{
− ��(� + � + 2)

2�+�+1�(� + 1)�(� + 1)
cot(��), � < 0,

+∞, ��0,
(11)

provided � + � + 1 �= 0.
We shall make use of the reflection formula for the Gamma function [1, p. 256, Eq. (6.1.17)]

�(� + 1)�(−�) = − �

sin(��)
, −1 < � < 0, (12)

and of the sum

∞∑
k=1

1

(k + �)(k − � − 1)
= −� cot(��)

2� + 1
, � /∈ Z, � �= −1

2
. (13)

3. Number of zeros of Q
(�,�)
n (x) in (−1, 1)

Proof of Theorem 1. From (4), if xn,k(�, �) is a zero of the nth degree Jacobi polynomial, then

Q(�,�)
n (xn,k(�, �)) = − W

(�,�)
n−1 (xn,k(�, �))

(1 − xn,k(�, �))�(1 + xn,k(�, �))�
.
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Since the zeros of W
(�,�)
n−1 (x) and P

(�,�)
n (x) interlace [3, p. 86], then

sign(Q(�,�)
n (xn,k(�, �))) = sign

(
− W

(�,�)
n−1 (xn,k(�, �))

(1 − xn,k(�, �))�(1 + xn,k(�, �))�

)
= (−1)k . (14)

The behaviour of Q
(�,�)
n (x) close to the end points ±1 remains to be investigated. The identity

Q(�,�)
n (x) = P (�,�)

n (x)Q
(�,�)
0 (x) − W

(�,�)
n−1 (x)

(1 − x)�(1 + x)�
, x ∈ (−1, 1), (15)

follows from (4) and (10). We study the behaviour of Q
(�,�)
n (x) as x ↑ 1, taking the limit, as x ↑ 1, in the

above expression. Let us begin with the case � + � + 1 = 0, (�, �) �= (−1
2 , −1

2 ). Since in this case � < 0,
then either by using (4) and the explicit expression for ��,−1−�, or by employing (15) and (10), we obtain

lim
x↑1

Q(�,−1−�)
n (x) = P (�,−1−�)

n (1)
2� + 1

�(� + 1)�(−�)

∞∑
k=1

1

(k + �)(k − � − 1)
.

Then Eqs. (12) and (13) immediately yield

lim
x↑1

Q(�,−1−�)
n (x) = (� + 1)n cos(��)

n! .

Therefore the sign of this limit is negative for � ∈ (−1, −1
2 ) and positive for � ∈ (−1

2 , 0).

Now we proceed the study of limx↑1 Q
(�,�)
n (x) for the general situation when � + � + 1 �= 0. We shall

distinguish the cases: � < 0, � = 0 and � > 0.

(1) � < 0
By using (11), (6) and (8) we have

lim
x↑1

Q(�,�)
n (x) = lim

x↑1

{
P (�,�)

n (x)Q
(�,�)
0 (x) − W

(�,�)
n−1 (x)

(1 − x)�(1 + x)�

}
= P (�,�)

n (1) lim
x↑1

Q
(�,�)
0 (x) = −(� + 1)n

n!
��(� + � + 2)

2�+�+1�(� + 1)�(� + 1)
cot(��).

Obviously the right-hand side of the latter expression depends on �:

(1.1) −1 < � < − 1
2

lim
x↑1

Q(�,�)
n (x) < 0.

Therefore Q
(�,�)
n (x) does not vanish in (xn,1(�, �), 1).

(1.2) −1
2 < � < 0

lim
x↑1

Q(�,�)
n (x) > 0.

Hence, Q
(�,�)
n (x) has exactly one zero in the interval (xn,1(�, �), 1).
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(1.3) � = −1
2

In this case limx↑1Q
(−1/2,�)
n (x) = 0.

(2) � = 0
It follows from (11), (6) and (7) that

lim
x↑1

Q(0,�)
n (x) = lim

x↑1

{
P (0,�)

n (x)Q
(0,�)
0 (x) − W

(0,�)
n−1 (x)

(1 + x)�

}

= lim
x↑1

Q
(0,�)
0 (x) − (1 + �)(2 + � + n)

2�+1

n∑
k=0

1

(k + 1)(n − k + � + 1)
= +∞.

Therefore, Q
(0,�)
n (x) has exactly one zero qn,0(0, �) in the interval (xn,1(0, �), 1). This result gen-

eralizes [10, Theorem 6.9.2], which provides the number of zeros of the Legendre functions of the
second kind in (−1, 1).

(3) � > 0
Multiplying (4) by (1 − x)�, we obtain

Q(�,�)
n (x)(1 − x)� = P (�,�)

n (x)

[
(� + � + 1)(1 − x)�

∫ x

0

dt

(1 − t)�+1(1 + t)�+1

+(1 − x)�
�(� + � + 2)

2�+�+1�(� + 1)�(� + 1)
���

]
− W

(�,�)
n−1 (x)

(1 + x)�
.

Since

lim
x↑1

(1 − x)�
∫ x

0

dt

(1 − t)�+1(1 + t)�+1
= 1

�2�+1
,

then the sign of Q
(�,�)
n (x) at the points from (−1, 1) that are close to 1 is the same as the sign of

(� + 1)n

n!
� + � + 1

�2�+1
− W

(�,�)
n−1 (1)

2�
= 2−1−��(2 + � + �)�(1 + � + n)

��(1 + �)�(1 + � + � + n)
,

which is always positive. Thus, Q
(�,�)
n (x) has a zero qn,0(�, �) in (xn,1(�, �), 1).

Thus, we proved that Q
(�,�)
n (x) has one zero, qn,0(�, �), in the interval (xn,1(�, �), 1) if and only

if � ∈ (−1
2 , +∞). Then the symmetry relation (9) implies that Q

(�,�)
n (x) has one zero, qn,n(�, �), in

(−1, xn,n(�, �)) if and only if � ∈ (−1
2 , +∞). This completes the proof of the theorem. Moreover, we

established Proposition 2. �

At the end of this section we return to the comments we made in the introduction about the dependence
of the number of zeros of a specific solution of (1) on the normalization adopted. It is clear from the proof
of Theorem 1 that, if we choose the constant C in the representation (2) of Q̃

(�,�)
n (x), to be sufficiently

large, then Q̃
(�,�)
n (x) would have n + 1 zeros, independently on the values of � and �. Indeed, it certainly
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happens if

C >
� �(� + � + 2)

2�+�+1�(� + 1)�(� + 1)
cot(��),

because in this case we have limx↑1Q̃
(�,�)
n (x) > 0 for all n ∈ N, �, � > − 1.

4. Relative position of zeros of Q
(�,�)
n+1 (x), (d/dx)Q

(�,�)
n (x), Q

(�,�)
n−1 (x) between two consecutive

zeros of Q
(�,�)
n (x)

We begin this section with the following interlacing property of zeros of the Jacobi functions of second
kind.

Theorem 3. Let n ∈ N. Then there is exactly one zero qn+1,i+1(�, �) of Q
(�,�)
n+1 (x) and exactly one

zero qn−1,i(�, �) of Q
(�,�)
n−1 (x) in each interval (qn,i+1(�, �), qn,i(�, �)) between two consecutive zeros of

Q
(�,�)
n (x).

This fact can be established in various ways. One is to use Sturm’s comparison theorem (see [10,
Theorem 1.82.1]). Indeed, since the function

u(x) = (1 − x)(�+1)/2 (1 + x)(�+1)/2Q(�,�)
n (x)

is a solution of (see [10, Eq. (4.24.1)])

d2

dx2 u(x) + f (x, n)u(x) = 0, (16)

where

f (x, n) = 1

4

{
1 − �2

(1 − x)2 + 1 − �2

(1 + x)2 + 4
n(n + � + � + 1) + (� + 1)(� + 1)/2

1 − x2

}
,

and obviously f (x, n) < f (x, n + 1), then the interlacing property follows.
It can be justified also by the recurrence relation (see [4, (16)])

Q
(�,�)
−1 (z) = 1,

zQ(�,�)
n (z) = AnQ

(�,�)
n+1 (z) − BnQ

(�,�)
n (z) + CnQ

(�,�)
n−1 (z), n�0, (17)

where Q
(�,�)
0 (z) is given by (10), C0 := 1, and

An = 2(n + 1)(n + � + � + 1)

(2n + � + � + 1)(2n + � + � + 2)
,

Bn = �2 − �2

(2n + � + �)(2n + � + � + 2)
,

Cn = 2(n + �)(n + �)

(2n + � + �)(2n + � + � + 1)
.
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Hence the Jacobi functions of second kind satisfy a Christoffel–Darboux formula which yields the inter-
lacing property [3].

In order to study the location of the zeros of the derivatives, we shall use the following structure
relations. From [5, Eq. (1.2.13)] and [2] we have

�(x)
d

dx
Q(�,�)

n (x) = 	(�,�)
n (x)Q(�,�)

n (x) − 2(n + � + � + 1)(n + 1)

2n + � + � + 2
Q

(�,�)
n+1 (x), (18)

where �(x) = 1 − x2 and

	(�,�)
n (x) = − n + � + � + 1

2n + � + � + 2
(� − � − (2n + � + � + 2)x) .

Then, from (18) and (17), we obtain

�(x)
d

dx
Q(�,�)

n (x) = 
(�,�)
n (x)Q(�,�)

n (x) + 2(� + n)(� + n)

2n + � + �
Q

(�,�)
n−1 (x), n ∈ N, (19)

where


(�,�)
n (x) = n

(
� − �

2n + � + �
− x

)
.

By the previous result, in every interval (qn,i+1(�, �), qn,i(�, �)) between two consecutive zeros of
Q

(�,�)
n (x) there is exactly one zero of Q

(�,�)
n+1 (x) and of Q

(�,�)
n−1 (x). By Rolle’s theorem, and by Theorem

1, in that interval there is exactly one zero tn,i of (d/dx)Q
(�,�)
n (x). Now we study the mutual location of

qn+1,i+1(�, �), qn−1,i(�, �), and tn,i .

Theorem 4. For any fixed n ∈ N and �, � > − 1, let

c∗ = � − �

2n + � + � + 2

and

d∗ := � − �

2n + � + �
.

(i) If, for some index i, we haveqn+1,i+1(�, �) < c∗, thenqn+1,i+1(�, �) > tn,i . Otherwise, ifqn+1,i+1(�, �)

> c∗, then qn+1,i+1(�, �) < tn,i .
(ii) If, for some index j , we haveqn−1,j (�, �) < d∗, thenqn−1,j (�, �) < tn,j . Otherwise, ifqn−1,j (�, �) > d∗,

then qn−1,j (�, �) > tn,j .

Proof. First we shall establish the statement (i). Let us restrict our considerations only to x ∈ I , where
I := (qn,i+1(�, �), qn,i(�, �)). Since the zeros of Q

(�,�)
n (x) and of its derivative are simple, and �(x) =

1 − x2 is positive in (−1, +1), then

�(x)
(d/dx)Q

(�,�)
n (x)

Q
(�,�)
n (x)

> 0 for x ∈ (qn,i+1(�, �), tn,i)
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and

(d/dx)Q
(�,�)
n (x)

Q
(�,�)
n (x)

< 0 for x ∈ (tn,i , qn,i(�, �)).

Then relation (18) implies immediately that

	(�,�)
n (qn+1,i+1(�, �)) > 0 if and only if qn+1,i+1(�, �) ∈ (qn,i+1(�, �), tn,i),

and

	(�,�)
n (qn+1,i+1(�, �)) < 0 if and only if qn+1,i+1(�, �) ∈ (tn,i , qn,i(�, �)).

The latter statement is equivalent to (i). The proof of (ii) is similar. It uses the relation (19). �

It is worth mentioning that for � = � we have c∗ = d∗ = 0 for all n ∈ N, and then the inequalities

qn+1,i+1(�, �) < tn,i < qn−1,i(�, �)

hold for the positive zeros of Q
(�,�)
n+1 (x) and of Q

(�,�)
n−1 (x). In particular, in the Legendre case these coincide

with results given in [7,10]. The corresponding result for the zeros of Jacobi polynomials and of their
zeros was obtained in [8].

5. Laguerre and Hermite cases

In this section, we obtain the number of zeros of Laguerre and Hermite functions of second kind in the
intervals where the corresponding polynomials are orthogonal.

5.1. Zeros of Laguerre functions of the second kind

The change of variables

x = 1 − 2s

�
, � > 0,

in (1) yield the following hypergeometric differential equation:

s

(
1 − s

�

)
y′′(s) +

(
� + 1 − s

(
1 + � + 2

�

))
y′(s) + n

(
1 + n + � + 1

�

)
y(s) = 0.

When � tends to infinity, we obtain the Laguerre differential equation

sy′′(s) + (� + 1 − s)y′(s) + ny(s) = 0,

whose polynomial solution is the Laguerre polynomial L
(�)
n (x), and denoted by Q

(�)
n (s) is its second

solution which is obtained by the limit relation (see [2])

lim
�→+∞

(−�

2

)n−2

Q(�,�)
n

(
1 − 2s

�

)
= Q(�)

n (s).
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The linear change of variables

x(s) = 1 − 2s

�

transforms the zeros xn,k(�, �) of P
(�,�)
n (x) to the zeros xn,k(�) of L

(�)
n (x), and the zeros qn,k(�, �) of

Q
(�,�)
n (x) are mapped to the zeros qn,k(�) of the second kind Laguerre functions Q

(�)
n (x). Moreover, the

mapping reverses the order of the zeros and it also maintains the interlacing properties of the zeros.
Now Table 1 immediately implies the following facts about the number of zeros of Q

(�)
n (s):

(1) If � > − 1
2 , then Q

(�)
n (x) has n + 1 zeros in (0, +∞).

(2) If −1 < �� − 1
2 , then Q

(�)
n (x) has n zeros in (0, +∞).

5.2. Zeros of Hermite functions of the second kind

By using limit relations between Jacobi and Hermite functions of the second kind, obtained in [2], we
conclude that the Hermite function of second kind Qn(x) has exactly n + 1 zeros in (−∞, +∞).
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