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ABSTRACT 

 

During seed maturation, germination, desiccation tolerance and 

longevity are acquired sequentially. Seed maturation is terminated by a desiccation phase 

that brings the embryo to a quiescent state. In the seed production chain, the stage of 

maturity at harvest is the first factor that influences seed longevity and crop establishment. 

After harvest, seeds are usually dried to water content compatible with long term storage 

and post-harvest treatments. However, there is a lack of understanding of how seed 

longevity is acquired during seed maturation and how premature drying impacts longevity 

and resumption of cellular activities during imbibition. This was addressed here by 

comparing transcriptome changes associated with maturation drying and imbibition of 

seeds of soybean and Medicago truncatula, harvested at an immature stage and mature dry 

stage. The immature stage corresponded to end of seed filling when longevity was not 

acquired while other vigor traits were acquired. Transcriptome characterization in soybean 

revealed that enforced drying was not similar to maturation drying in planta, which 

stimulated degradation of chlorophyll and synthesis of protective chaperones. Eighty-nine 

% of the differentially expressed genes during a 18h-imbibition period showed a similar 

pattern between immature and mature seeds, consistent with a comparable germination 

between stages. An analysis of the 147 transcripts that increased during imbibition of 

mature seeds but not in immature seeds suggested an activation of processes associated 

with shoot meristem development and DNA repair. These data were compared with 

imbibing immature and mature seeds of Medicago and revealed an overrepresentation of 

genes involved in phototropism, seed coat and innate immunity in mature seeds. This work 

should provide new tools to optimize harvest at maximum seed quality. 

 

Keywords: seed quality, seed development, germination, longevity, RNAseq. 
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RESUMO 

Durante a maturação da semente, a germinação, a tolerância à 

dessecação e a longevidade são adquiridos sequencialmente. A maturação da semente 

termina com a fase de dessecação que traz o embrião a um estado de repouso. Na cadeia de 

produção de sementes, o estádio de maturação no momento da colheita é o primeiro fator 

que influencia a longevidade das sementes e estabelecimento da cultura. Após a colheita, 

as sementes são normalmente secas para um teor de água compatível com os tratamentos 

pós-colheita e armazenamento a longo prazo. No entanto, há uma falta de compreensão de 

como a longevidade das sementes é adquirida durante a maturação da semente e qual o 

impacto da secagem prematura na longevidade e na retomada das atividades celulares 

durante a embebição. Esta questão foi abordada aqui, comparando alterações transcriptoma 

associados com a secagem maturação e embebição de sementes de soja e Medicago 

truncatula, colhidos em um estádio imaturo e estádio seco maturo. A fase imatura 

correspondeu final de enchimento de grãos, quando a longevidade não foi adquirida 

enquanto outros traços de vigor foram adquiridos. A caracterização do transcriptoma de 

soja revelou que a secagem forçada não era semelhante à maturação de secagem na planta, 

o que estimulou a degradação da clorofila e síntese de chaperones de proteção. Oitenta e 

nove % dos genes diferencialmente expressos durante um período de 18 horas de 

embebição mostrou um padrão similar entre as sementes imaturos e maduros, consistente 

com uma germinação comparáveis entre os estágios. Analisando os 146 transcritos que 

aumentam durante a embebição de sementes maduras, mas não em sementes imaturas 

sugeriu uma activação dos processos associados ao desenvolvimento de meristema e 

reparação do DNA. Esses dados foram comparados com sementes imaturas e maturas de 

Medicago durante a imbebição e revelou uma sobre-representação de genes envolvidos no 
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fototropismo, revestimento de sementes e imunidade inata em sementes maturas. Este 

trabalho deve fornecer novas ferramentas para otimizar a colheita de sementes no ponto 

máximo de qualidade. 

 

Palavras-chave: qualidade de sementes, desenvolvimento de sementes, germinação, 

longevidade, RNAseq. 
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RÉSUMÉ 

Pendant la maturation des graines, la germination, tolérance à la 

dessication et longévité sont acquises de manière séquentielle. La maturation s‘achève par 

la dessication qui amène l‘embryon à l‘état de quiescence. Au cours de leur production, la 

maturité des graines à la récolte est le premier facteur qui influence la longévité et 

l‘établissement de la culture lors du semis. Les graines récoltées sont ensuite séchées à une 

teneur en eau permettant leur conservation. On ne comprend pas comment la longévité est 

installée pendant la maturation et comment un séchage prématuré influence la longévité et 

la reprise des activités cellulaires pendant l‘imbibition. L‘objectif de la thèse était  de 

répondre à ces questions en comparant les transcriptomes de graines immatures et matures 

de soja et Medicago truncatula pendant la dessication et l‘imbibition. Les graines 

immatures furent récoltées après le remplissage avant la dessiccation, lorsque la longévité 

n‘est pas encore acquise. Chez le soja, la comparaison des transcriptomes des graines 

immatures et matures montre que le séchage forcé n‘est pas identique à la dessication in 

planta qui se caractérise par la synthèse de protéines chaperones. Plus de 89% des gènes 

différentiellement exprimés après 18 h d‘imbibition présentent des profils d‘expression 

identiques dans les graines immatures et matures, en accord avec la germination 

comparable de celles-ci. L‘analyse des transcrits dont la teneur augmente uniquement 

pendant l‘imbibition des graines mature suggère la mise en place de mécanismes de 

réparation. La comparaison de ces données avec Medicago montre que l‘imbibition des 

graines matures se caractérise par une sur-représentation des gènes liés au phototropisme, à 

la testa et réponse immunitaire. Ce travail doit permettre le développement d‘outil 

d‘analyse de la maturité des graines lors de leur récolte.
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1. INTRODUCTION  

 

Soybean (Glycine max, 2n = 40 chromosomes) is a native legume 

from East of Asia and the first reports of its use are from 2838 B.C. in China (MORSE, 

1950 according to BOZATO and BOZATO, 1987). In Brazil, the introduction of soybean 

took place in 1882 in the State of Bahia and the State of Sao Paulo (D‘UTRA, 1882; 

DAFFERT, 1893, according to BOZATO and BOZATO, 1987). Currently, Brazil is the 

second largest soybean producer in the world, preceded only by the United States and 

according to the latest information released by CONAB, soybeans are cultivated in an 

estimated area of 33 million of hectares with an estimated production of 100 million tons 

and an average yield of 3037 kg ha
-1

 (CONAB, 2016). Soybean is a rich source of protein 

and oil and has been traditionally used for oil production, food and feed (QIU and 

CHANG, 2010).  

With the continued increase in world demand for sources of plant 

oil and proteins, soybean production has spread rapidly to tropical regions. In Brazil, there 

is a continuous effort to increase its production, mainly by increasing its yield per area. 

Therefore, it is imperative to know the physical characteristics of the plant, its growth 

stages, the nutritional demand, requirements of water, thermal and photoperiodic for proper 

management practices to reach increasing in soybean yield. The proper establishment of a 

seed production field requires careful planning, including: the choice of the region, 

respecting the requirement of culture in relation the availability of water (ranging between 

450 and 800 mm per cycle, being higher during germination to emergence and flowering to 

seed filling) and temperature (ranging between 20 °C and 30 °C); the choice of the area, 
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considering the history, the crop rotation and the physical properties of the soil, such as 

fertility, drainage and topography; the choice of the cultivar analyzing the maturity group, 

always considering the latitude. Other care are also necessary, such as row widths, plant 

population (200–230 thousand plant per hectares, depending on cultivar), the weed control, 

pest insects control and diseases are also important in the management of culture. The 

sowing date is one of the factors that most influence the yield of soybeans. Seed 

germination and seedling emergence are favored by temperatures between 25 °C and 30 

°C. Soil temperature below 10 °C results in delay in seed germination and subject to the 

action of soil-borne pathogens. For good seedling emergence, the soil should not exceed 

85% of available water and not be less than 50%. In addition to the temperature and 

humidity requirements, it is necessary considered the photoperiod. Once the soybean is a 

term and photosensitive specie, it is subject to physiological and morphological changes 

when their demands are not met (SEDIYAMA et al., 1993; BERGAMIN et al., 1999; 

SANTOS 2008). The theoretical best time of soybean sowing in any area suitable to its 

cultivation, is between 30 and 45 days before the summer solstice, this time is considered 

sufficient for the plant meet its growing season and develop with height and size 

compatible to high productivity and mechanized harvesting. In general, the varieties 

adapted to Brazilian conditions are cycled between 90 and 150 days (EMBRAPA, 2011). 

Allied to the good management practices, the use of high quality 

seeds are the first critical factors leading to crop yield. Seed quality consists of genetic 

purity, physical and physiological quality and seed health (POPINIGS, 1985). All this 

attributes are important to determine the quality of the seeds, but one in particular, has 

received more attention: the physiological quality. Represented by germination, vigor and 

longevity, the physiological quality determines the performance in the field, affecting 

establishment of the seedlings, plants development and crop yield (BEWLEY and 

BLACK, 1994). 

The physiological quality traits are not acquired in the same time. 

The capacity to germinate is acquired prior to maximum dry weight. This is followed by 

the development of desiccation tolerance. Concomitantly, seed vigor is acquired, which is 

represented by greater speed of germination, uniform seedling establishment and tolerance 

of stressful conditions during germination. Good seedling establishment is essential for 

crop production to be sustainable and profitable and therefore, a critically important trait 

for farmers and growers. Finally, longevity increases in the last stages of development 
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(BEWLEY et al. 2013). Production of seeds with high physiological quality (or vigor) is a 

paramount to maintain soybean expansion. Ideally, the seed harvesting should occur when 

all the above characteristics reach their maximum levels. However, there is no consensus 

as to when this occurs during the maturation. On the one hand, agronomy and seed 

technology studies consider that physiological quality is maximum when the seed filling 

has ended (so-called mass maturity) and can decrease thereafter during the end of 

maturation drying or during seed processing (TEKRONY et al., 1979; OBENDORF et al., 

1980; FRANÇA NETO et al., 2007; REN et al., 2009). This occurs because, sometimes, in 

agronomic crops, such as soybean, the emphasis on seed production is associated with dry 

weight accumulation and crop yield. On the other hand, for seed physiologist, 

physiological maturity refers to the developmental stage at which seeds achieve maximum 

viability and vigor, which is not necessarily correlated with seed filling. In many species, 

further maturation drying to 45% moisture is necessary to achieve maximum germination 

speed and absence of abnormal seedlings (ELLIS et al., 1987; ZANAKIS et al., 1994; 

CHATELAIN et al., 2012). Seed longevity, another key factor implicated in physiological 

quality increase continuously after seed filling until dispersal or harvest (ELLIS et al., 

1987; ELLIS et al., 1993; PROBERT et al., 2007; CHATELAIN et al., 2012). For practical 

reasons, seeds are harvested during the maturation drying, otherwise they would be 

crushed during the harvest. Therefore, commercial harvest has to be delayed until the seed 

moisture decreases to levels that are compatible to harmless mechanical handling. During 

this period, the seeds that remain on the plant are highly prone to deterioration, particularly 

when humidity and/or temperature remain high, conditions that typically occur in tropical 

regions. 

The quality of soybean seeds is partly affected by the genetic of the 

plant. The trend in breeding programs was initially to develop genotypes able for 

cultivation in tropical regions, at different latitudes. Continuously, has been sought to 

develop genotypes with desirable traits for resistance to diseases and pests. In the last years 

have been sought genotypes with increased in oil content, protein and lignin in seed and 

tolerance to water stress, aiming to be a way of stabilizing the productivity. The genetic 

variability among genotypes for quality seed is information that should be considered by 

breeders during the strain selection process. Since the genotypes can express themselves 

differently in relation to seed quality. An example is the difference of soybean genotypes 

for resistance to mechanical damage (CARBONELL and KRZYZANOWSKI, 1995) 
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which has been related to the higher lignin content in soybean seed coat (CAPELETI et al., 

2005). Susceptibility to mechanical damage is associated to its lignin content, while 

longevity and potential deterioration in the field have been related to the degree of 

permeability of the integument (SOUZA and MARCOS FILHO, 2001). An example is the 

variability among soybean cultivars varying in color of the integument. The integument 

black coloring soybeans exhibit slower imbibition, increased resistance to deterioration in 

field, greater thickness antifungal properties, and higher lignin content compared to light-

colored seed coats (CHACHALIS and SMITH 2000; SANTOS et al., 2007; MERTZ et al., 

2009; DELLAGOSTIN et al., 2011).  

The genotype can influence the intensity of the deterioration 

process. However, the seed quality is more closely related to environmental factors than 

genetic factors. Several studies have demonstrated variability in soybean seed composition 

caused by field intemperism (KEIRSTEAD, 1952; KANE et al., 1997; WATANABE and 

NAGASAWA, 1990; OBENDORF et al., 1998; WILSON, 2004). Generally, the 

temperature variation is a considerable factor in the plant growth especially during seed 

development (DORNBOS JR., 1995; WILSON, 2004, REN et al., 2009). High 

temperatures linked to excessive rainfall during the maturation can result in seed 

deterioration, irreversibly affecting seeds germination and vigor (TEKRONY et al, 1980; 

COSTA et al, 1994).When soybean seeds develop under elevated temperature, it was 

observed an increase of total oil and oleic acid concentration in seeds, whereas linolenic 

acid decrease (REN et al., 2009; CARRERA et al., 2011) and there is a negative 

correlation between oil and protein in soybean seeds (WATANABE and NAGASAWA, 

1990).  

Difficulties on germination and reduced seed longevity may be 

associated with response to environmental stress during development. Variations are 

associated with low stachyose, sucrose, and other nonreducing soluble carbohydrates, and 

reduction of phosphorus stored in the form of phytic acid (myo-inositol-1-phosphate) 

(WILSON, 2004). At molecular level, it was observed changes associated with high 

temperature in FAD2 enzyme (HEPPARD et al., 1996) and heat shock proteins (HSPs) 

(NAGAO et al., 1995). Sucrose binding protein (SBP) plays a critical role in sucrose 

uptake in soybean seed (GRIMES et al., 1992). Through the proteomic analysis, Ren et al. 

(2009) were able to identify 20 proteins whose accumulations were changed due to high 
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temperature. The authors stressed that high temperature during seed development results in 

changes in the vigor and longevity and changes in seed protein expression profiles. 

The occurrence of green seeds at the end of the maturation process 

has been reported as another issue for Brazilian soybean growers. The green seed is a 

problem, because it reduces seed quality and oil quality (GOMES et al., 2003; ZORATTO 

et al., 2009, PÁDUA et al., 2009; TEIXEIRA et al., 2016). According to Teixeira et al. 

(2016) the chlorophyll retention is generally associated with pronounced increase in 

temperature, which leads to a rapid decrease in water content and impairment of the natural 

degreening. Therefore, the production of high quality seeds requires that the maturation 

and harvesting phases occur under mild temperatures (COSTA et al., 2003; FRANÇA-

NETO et al., 2007). In Brazil there are studies analyzing the appropriate regions for the 

production of high quality soybean seeds. Agroclimatic zoning for the state of Parana 

(COSTA et al., 1994) and state of Minas Gerais (PÁDUA et al., 2014), was already 

performed, and the agroclimatic zoning for other regions has being researched. 

While the late phase of seed development appears to be critical in 

order to harvest at maximum physiological quality and despite the lack of consensus as to 

when maximum seed vigor is acquired in soybean, we still lack basic knowledge of the 

molecular processes occurring during the late phase of maturation after seed filling when 

seed vigor is acquired. In soybean, transcriptome studies have generated a wealth of data 

describing seed development, mainly during embryogenesis and filling (HAJDUCH et al., 

2005; HUDSON, 2010; JONES et al., 2010, LIBAULT, 2010; SEVERIN et al., 2010; 

ASAKURA et al., 2012; SHA et al., 2012, SHAMIMUZZAMAM and VODKIN, 2012; 

AGHAMIRZAIE et al., 2013). However all these transcriptome studies never included 

developmental stages after seed filling, while 20-40 days can pass between mass maturity 

and dry mature seeds depending on the environmental conditions during cultivation. In 

order to optimize harvesting processes to ensure high quality seeds, it is therefore essential 

to revisit the molecular events occurring during seed maturation in association with the 

acquisition of various characteristics associated with seed quality.  

It is generally inferred that desiccation during seed maturation 

promotes the transition from a developmental mode to a germination-oriented program 

(BEWLEY and BLACK, 1994). In Arabidopsis, De novo transcription is not required for 

protein synthesis during early imbibition, suggesting that the initial phase of germination 

depends only on pre-existing ―stored‖ mRNA, which have accumulated during seed 
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development (RAJJOU et al., 2004). At maturity, dry seeds of Arabidopsis contain 

approximately 12000 transcripts which have been characterized (reviewed in 

WEITBRECHT et al., 2011). This implies that these transcripts must be synthesized during 

seed maturation. However, when this occurs has not been investigated. Also, not all stored 

transcripts are necessary for germination. The identity of the specific mRNAs required for 

germination and when they are synthesized during development is still not known. A 

recent study on arabidopsis showed that during the first 3h of imbibition seeds translate 

some mRNAs that were part of developmental program such as LEAs and storage proteins, 

indicating that a subset of stored mRNA in dry seeds are characteristic of the maturation 

program and did not disappear during maturation drying (GALLAND et al., 2014). It is not 

known whether an artificial drying treatment in immature seeds would induce a similar or 

entirely different profile of stored mRNA compared to maturation drying. Such 

information would be useful to provide putative molecular indicators to assess the maturity 

status of harvested soybean seeds and whether post-harvest drying during seed processing 

is sufficient to replace natural maturation drying.  

Considering the fact that the soybean genome is not small, that 

during soybean seed imbibition many genes are expressed, and that are not only genes 

related to seed(ling) performance, making it difficult to separate gene expression related to 

germination and seed vigor from genes involved in other functions. The soybean genome 

size approximately 975Mb is captured in 20 chromosomes, with 56044 protein-coding loci 

and 88647 transcripts have been predicted (SCHMUTZ et al., 2010). According to Mudge 

et al. (2005), there are highly syntenic regions in the genomes of soybean and Medicago 

truncatula, that is, regions of gene content conserved between both species. These authors 

reported that the up to 75% of soybean genes are colinear with M. truncatula, therefore, an 

interesting way towards understand the mechanisms involved in germination and seed 

vigor would be compare soybean genoma with M. truncatula. 

 Thus, there is a lack of understanding of how seed longevity 

is acquired during seed maturation and how premature drying impacts longevity and 

resumption of cellular activities during imbibition. This was addressed here by comparing 

transcriptome changes associated with maturation drying and imbibition of seeds of 

soybean and Medicago truncatula, harvested at an immature fresh stage and mature dry 

stage. 
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After a brief literature review and presentation of material and 

methods, we will first present and discuss the results obtained on soybean then on 

Medicago truncatula, following the order of the different objectives described above 
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6. CONCLUSIONS  

 

 The capacity to germinate was progressively acquired during early 

seed filling, between stages R5.5 and stage R6. ABA levels increased from stage R5.1 until 

R6, corresponding to a maximum. Thereafter, it declined progressively; 

 Desiccation tolerance was acquired at stage R7.2. All parameters 

used to assess seed vigor indicated that maturity was obtained at stage R7.2. Nevertheless, 

longevity was still not fully acquired at this stage as it nearly doubled between stage R7.2 

and R9; 

 The transcriptome analysis shows that there are differences at the 

molecular level between seeds of stage R7.2 (immature) and R9 (mature). Soybean mature 

seeds revealed a significant over-representation of genes related to response to heat, 

protein-folding, response to ER stress and genes related to light; 

 Degradation and synthesis of transcripts during imbibition are 

similar between immature and mature seeds; 

 Radicle growth competence through transcriptional regulation is 

activated early during seed imbibition; 

 Transcript associated with ABA-induced stress response, Chl 

degradation, phytate synthesis and chaperone function disappear rapidly during imbibition; 
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 Chloroplast-encoded transcripts that should disappear during 

maturation are rapidly degraded during imbibition of immature seeds; 

 Imbibition-induced transcriptome profile associated with longevity 

highlights a putative DNA repair; 

 The comparison of the transcriptome profile between soybean and 

Medicago truncatula during maturation showed a significant over-representation of genes 

such as PHY A, PHYB, NFXL-1, ABI1-like 1, and SCARECROW-like 14 

. 
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