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then they are lower semicontinuous and therefore, continuous. The
continuity is obtained in LP and H! norms.
© 2008 Elsevier Inc. All rights reserved.

1. Introduction

This paper is concerned with the continuity of the asymptotic dynamics of a dissipative reaction-
diffusion equation in a dumbbell type domain as the channel degenerates to a line segment. Here we
conclude the analysis started in [3], where we studied the continuity of the equilibria, and contin-
ued in [4], where we studied the limiting problem. We refer to the introduction in [3] for a broad
perspective of the problem.

More precisely, we consider a reaction—-diffusion equation of the form

ur—Au+u= f(u), xe82,
au (11)

— =0, X € 082,
on &

where, for N > 2 and ¢ € (0,1], £, c RV is a typical dumbbell domain; that is, two disconnected
domains, denoted by £2, joined by a thin channel, denoted by R.. The channel R, degenerates to a
line segment as the parameter ¢ approaches zero, see Fig. 1. We refer to 3, Section 2], for a com-
plete and rigorous definition of the dumbbell domain that we are considering. We mention that the
channels R, considered here are fairly general and are not required to be cylindrical. We refer to [15]
for a general study on the behavior of solutions of partial differential equations in thin domains and
to [11] for an analysis of the nonlinear dynamics of (1.1) in thin domains.

The limit “domain” consists of the fixed part £2 and the line segment Ry. Without loss of general-
ity, we may assume that Ro = {(x,0,...,0): 0 <x < 1}, see Fig. 2 of [4].

The limit equation is given by

wr—Aw+w=f(w), xe82, t>0,

ow
— =0, xe€052,
on

1
w—;@wh+V=ﬂw,xewJL
v(0) =w(Pg), v(1)=w(Py),

(1.2)

where w is defined in £2, v is defined in Ry and Py, P are the points where the line segment touches
the boundary of 2. Observe that the boundary conditions of v in (0, 1) are given in terms of a con-
tinuity condition, so that the whole function (w, v) is continuous in the junction between §2 and Rg.
The function g:[0,1] — (0,00) is a smooth function related to the geometry of the channel R,
more exactly, on the way the channel R. collapses to the segment line R, see [3]. For instance,
if the channel is given by R, = {(x,&X'): (x,X') € Ry}, for some fixed reference channel Ri, then
g(x) =|{xX: (x,x") € R1}|n_1, where |- |y_1 is the (N — 1)-dimensional Lebesgue measure, see [3].

In [3] we have studied how the equilibria of (1.1) behave as the parameter ¢ tends to zero. Since
the spaces to which the equilibria belong also vary with &, we developed an appropriate functional
analytical setting to compare these functions as well as deal with this singular perturbation problem.
We have constructed the family of spaces UZ, 0 < & <1, in £2¢, which is the space LP(£2;) with the
norm

1
P _ p p
||ug||U5—f|u| o f|us| :
Q Re



J.M. Arrieta et al. / J. Differential Equations 247 (2009) 225-259 227

A O
\ \/\ ]

Fig. 1. Dumbbell domain.

Observe that the integral in R, has the weight 1/eN=1, which amplifies the effect of a function in
the channel. As observed in [3] a constant function in R, will converge to zero if we do not introduce
the appropriate weight (1/&N=1). In this setting, we showed that the appropriate limit space should
be Up = LP(.Q)EBLP(O 1); that is, (w, v) € U iff w e LP(£2), v € LP(0, 1). The norm in Ug is given by

Jow, v>|}up—f|w|" fg|v|"

If A;:D(As) C U? — U? is given by Ag(u) = —Au+u for 0 <e <1, and Ag: D(Ag) C Up — U’J is

given by Ag(w, v) = (—Au+u, — 3 (gvx)x+v), we proved in Proposition 2.7 of [3] that A =0 a50
Moreover, considering the equillbrla of (1.1) and (1.2), in an abstract way, as the solutlons of

Agu=Fs(u), €¢€[0,1],

with F¢ being suitable Nemitskil maps, or as fixed points of the nonlinear maps A;l oFs:U? > UE,
we showed the convergence of the equilibria, see Theorem 2.3 of [3]. Also, if the equilibria of the
limiting problem (1.2) are hyperbolic, we proved the convergence of the resolvent of linearizations
around the equilibria and the convergence of the linear unstable manifolds.

In [4] we studied in detail the properties of the limiting problem in terms of generation of linear
singular semigroups by the operator Ap, local well-posedness and existence of attractor for the as-
sociated singular nonlinear semigroup. We also show that, when all equilibria are hyperbolic, the
attractor of the limiting problem (which is not gradient) can be characterized as the union of the
unstable manifolds of the equilibria.

As we mentioned in the introduction of [3], our final objective is to compare the whole dynamics
of problems (1.1) and (1.2). That is, to prove the continuity of the attractors as € tends to zero. To
accomplish this goal, we proposed an agenda based on a deep and thorough study of the linear part
of the problems consisting on the study of the convergence properties of the resolvent operators.
That agenda was established in the introduction of [3] and consisted of six items. The first three were
covered in [3].

In this paper we consider the last three items of that agenda and complete the analysis. Hence, we
show the convergence of the resolvent operators (A +Ag)~! to (A+Ap)~! and use this information to
obtain the convergence of the linear semigroups. With the variation of constants formula and the con-
vergence of linear semigroups we show the convergence of the nonlinear semigroups, from which the
upper semicontinuity of the attractors follows easily. This is done in a very similar manner as in [2].
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Finally, if each equilibria of the limiting problem is hyperbolic, with the convergence of the equi-
libria and of its linear unstable manifolds, we show the convergence of the local nonlinear unstable
manifolds of equilibria. Using the gradient-like structure of the limiting equation we prove lower
semicontinuity (and therefore the continuity) of the attractors.

Next, we describe contents of the paper. In Section 2 we recall the general setting of the problem
and state the main results of this paper; that is, the upper and lower semicontinuity of the attractors.
In Section 3 we study the convergence of the resolvent operators associated with the linear operators
obtaining rates of convergence of equilibria and of resolvent operators associated to the linearizations
around equilibria. Based in the resolvent estimates obtained in Section 3, we analyze in Section 4 the
convergence of the linear semigroups. In Section 5 we obtain the continuity of the nonlinear semi-
groups and the upper semicontinuity of the attractors. In Section 6 we prove that the local unstable
manifolds behave continuously as ¢ tends to zero, under the assumption that all the equilibria of the
limiting problem are hyperbolic. The continuity of local unstable manifolds is the key step to show the
continuity of the attractors. Finally in Section 7, we analyze the continuity properties of the attractors
in other norms.

2. Setting of the problem and statement of the main results

The setting is the same as the one we established initially in [3]. We recall some of the terminology
which will be needed to study the continuity of attractors.
Consider the spaces UZ and Ug defined in Section 1, see also [3]. Let 0 < & <1 and let

A¢ :D(Ag) cUP — UP, 1 < p < o0, be the linear operator defined by
D(Ag) = {u e WP (2:): AueUP, du/dn=0in 382},
Acu=—Au+u, ueD(A). (21)

Also, for p > 5§, let Ag:D(Ag) C US — U} be the operator defined by

D(Ao) = {(w,v) e UE: we D(AR), (gv') €LP(0,1), v(0)=w(Po), v(1)=w(P1)}, (2:2)

Ao(w,v) = (—AW +w, —é(gv/)/ + v), (w, v) € D(Ap), (2.3)

where Aﬁ is the Laplace operator with homogeneous Neumann boundary conditions in LP(£2) with
D(AS)={ueWrP(2): 2% =0in 082}.

We note that, for p > % we have that D(Aﬁ) is continuously embedded in C(£2). In that case, the
functions in D(Aﬁ) have well-defined traces at Py and Pj.

Recall that we have defined in [3] the operator M, : Uf — Ug, as follows

Ve @), e,
wee(mgws)(z)z{ vy, ze, (24)

where I'/ ={y: (z,y) € R¢}. It is easy to see, from Fubini-Tonelli Theorem and Hoélder inequality,
that M is a well-defined bounded linear operator with ”M«S”L(ug’,ug) =1.

Also consider the family of extension operators E; : Ug — UF defined by

_ w(x), xe€2,
ES(W’V)(X)_{V(S), .)€ Ry (2.5)

It is very easy to see that ||E¢(w, V)||u£ = |[(w, v)||Ug.
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The operator A, generates an analytic semigroup {e4¢!: t >0} on U? whereas, from the results
in [4], the operator Ay generates a singular semigroup in Ug that we will denote by {e~%of: ¢ > 0},
see [4].

We rewrite (1.1) and (1.2) in the abstract form

Ue + Actie = fe(ug),
{ ug(0) =uf e ub (2.6)
and
u+ Aou = fo(u),
{u(O):uerg. (2.7)

With respect to the nonlinearity f, we will assume that

(i) f:R— R is a C? function,
(i) [f@I+1f @l +1f" @] <C forallueR.

Remark 2.1. From the point of view of studying the asymptotic dynamics (continuity of attractors),
the assumption (ii) does not imply any restriction on the nonlinearities. Since we are assuming that f
is dissipative, under the usual growth assumptions, the attractors are bounded in L°°(§2;) uniformly
with respect to € € [0, 1] (see [5]) and one may cut the nonlinearities to make them satisfy the above
assumptions (see Remark 2.2 of [3]).

Under these assumptions, the nonlinear semigroups {T¢(t): t >0} in U associated with (2.6) and
the singular semigroup {To(t): t >0} in UL, p > N/2, associated with (2.7), have compact global
attractors A, c UY and A C U(’)’ respectively (see [4]). In general, the attractors lie in more regular
spaces and in particular, from comparison arguments, they lie in UZ® and Ug°.

The following concept of E-convergence has been proved to be very appropriate when dealing
with sequences of functions in different spaces, see [3,7,16].

Definition 2.2. We say that a sequence {ug}ec(0,1], Ue € UP, E.-converges to ug € Ug if |ug —

—0 e . .
E5u0||U£ o (see (2.5) for the definition of E.). We write this as u, LN ugp.
This notion of convergence can be extended to sets in the following manner (see [7]).

Definition 2.3. Let A, c U?, ¢ €[0,1], and 4g=AC Ug. Denote by dist(-,-) the metric induced by
the norm in U?, & € [0, 1], i.e. dist(ug, ve) = ||us — vellyp-

(1) We say that the family of sets {A¢}¢e[0,1] iS Ec-upper semicontinuous at ¢ =0 if

sup dist(ug, E¢.A) 220,
ugeAg

(2) We say that the family of sets {A¢}cc[0,1] is Ec-lower semicontinuous at ¢ =0 if

sup dist(E.u, Ag) =0.
ue A

Remark 2.4. In order to show the upper or lower semicontinuity of sets, the following characteriza-
tions are useful:
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(1) If any sequence {u.} with u, € A, has an E.-convergent subsequence with limit belonging to A,
then {A.} is Ec-upper semicontinuous at zero.

(2) If A is compact and for any u € A there is a sequence {u.} with u, € A, which E.-converges
to u, then {A.} is E.-lower semicontinuous at zero.

With all these concepts in mind, our main result is the following.

Theorem 2.5. The family of attractors {Ag}eccio,1] IS E¢-upper semicontinuous at € = 0 in U? for every
1<p<oo

Moreover, if every equilibria of the limit problem is hyperbolic, then the family of attractors is also E.-lower
semicontinuous at € = 0 in U? forevery 1 < p < oo.

Remark 2.6. Observe that once the statement of Theorem 2.5 is shown for a particular p > 1, then
from the boundedness of the attractors in UZ® and Ug°, it will also be proved for all 1< p < oo.

Now consider the spaces U}? = W1-2(2) @ W1-2(R,) with the norm
luell? 12 = lluell; e (28)
&€ U;'Z - & Wl,Z(Q) 8[\]7] & Wl'z(Rg) o

and Ué’z =Wh2(2)® W'2(0,1) with the norm
1
2
Jw. g1z = 1wl 120, +/g(|vx|2 +1vP).
0

Observe that the spaces U;’z do not coincide algebraically with the spaces W1-2(£2,) since we are
allowing the functions of U;‘z to be discontinuous at 92 N dR,.
We also prove that

Theorem 2.7. The family of attractors { A¢}ec0,1] iS E¢-upper semicontinuous at & = 0 in U;’2.
Moreover, if every equilibria of the limit problem is hyperbolic, then the family of attractors is also E.-lower
semicontinuous at € =0 in UE'Z.

3. Convergence of resolvent operators

In this section we analyze the convergence of the resolvent operators associated to the elliptic
operators A, defined in Section 2, that is, we study the convergence of (As +A)~!' — (Ag +21)~! as
& — 0 with A in some region of the complex plane.

The convergence of resolvent operators is used, in Section 4, to analyze the convergence properties
of the linear semigroups e~ 4! — e—40! a5 ¢ — 0, with the aid of the expression

1
e—Asf=—,/e“(A8+x)—1dx, t>0,
2mi
r

where I” is an appropriate unbounded curve in the complex plane.

Moreover, since we need to analyze also the convergence properties of the linear semigroups as-
sociated to linearized equations around equilibria, that is e~(Re=f' WDt g e=(Ao=f' Ut 55 ¢ tends
to 0, where u} and ug are equilibria for (2.6) and (2.7), respectively, we will also need to study the
convergence properties of the resolvent operators (As + Ve +A)~! — (Ag+ Vo + 1)1 as € — 0 for
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the potentials V¢ (x) = — f'(u}(x)) and Vo(x) = — f'(u§(x)). To show this convergence we will need to
obtain some rates of convergence of the equilibria u to ug.

We have divided the section in several subsections. In Section 3.1, we analyze the convergence
of the resolvent operators for a fixed potential and in Section 3.2 we analyze the case of a poten-
tial which depends on the parameter €. In Section 3.3 we obtain some rates of convergence of the
equilibria and use these rates to obtain the convergence of the resolvent operators of the linearized
operators around the equilibria.

3.1. Rate of convergence of resolvent operators: The case of a fixed potential

Consider a complex potential Vo = (Vg, Vg,) € Ug°. Often, we write Vg for EVo € L*°(£2). Con-
sider also the operator in £(LP(£2.)) and in E(Ug) which is the multiplication by the potential V. We
denote this operator again by Vg, that is, Vo(ug) = (E¢Vo)ueg = Voue and Vo(w, v) = (Vow, Vg,v).

Let us assume that Reo (Ag + Vo) > & > 0. It follows from of [3, Proposition 3.13, Corollary 3.14]
that, for all suitably small €, Reo (Ag + Vo) > 8 > 0.

The operator A + Vg is sectorial and the following estimate holds.

[+ A + VO™ L vy < for 1 € Xy, 3.1)

C
A+ 17

where Xy = {1 € C: |arg(A))| <7 —6},0<6 <% and C is a constant that does not depend on &,

although it depends on p and blows up as p — oo. This estimate follows from the fact that the
localization of the numerical range in the complex plane can be done independently of &, see [14].

We know that, for any 0 < & < 1, the operator A; + Vg is a sectorial operator in U? and the
following result holds.

Lemma 3.1. For any bounded linear operator | : LP (£2;) — LP(§2¢) we have

—N+1
1T zwey < W zpian,upy <€ P Illzap - (3.2)

Proof. The proof of this result follows immediately from the norm estimate
=N+1
I-llye<e P - llr2es (3.3)

which follows directly from the definition of the norm in UY. O

In particular, from Lemma 3.1 and from estimate (3.1), we have that for all » € Xy
ZN+1
I3

p
C——, forirelXy. 34
A+ 1 o (34

G+ A + Vo)™ HL(UE) <[+ Ae + Vo) ”z:(Lp(.QS),Uﬁ) <

As for the limit problem, from [4], we have the following result.

Proposition 3.2. The operator Ay + V defined by (2.2) has the following properties

(i) D(Ag + Vo) is dense in U?,

(ii) Ao+ Vo is a closed operator,

(iii) Ao + Vo has compact resolvent, and

(iv) Ao + Vo:D(Ag + Vo) C U — U} is such that p(Ag + Vo) D Ty where Xy = {1 € C: |arg(y)| <
T —0},0<0 <%, andforp>q> %
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_ C
[+ Ao + Vo) lng(ug,ug) < e (3.5)
C
-1
16+ A0+ Vo) gy < gy (36)
|+ Ao+ Vo)™ << (3.7)
0 0 E(USO,US') X e 1’ .

foreachO0 <o <1— ﬂ—1(%—%) <1land e Xy,
(v) if Bg is the realization of Ag in C(§2) @ LP (0, 1) we have that By is a sectorial operator in C(2) & Lg(O, 1)

with compact resolvent. Therefore — B generates an analytic semigroup e~ 580t in C(2) ® Lg(O, 1).

The following result is crucial to the remaining results in this section and to the whole program
of the paper.

Proposition 3.3. If p > N and 2 < q < oo, there is a constant C, independent of €, such that

|AS fe = EcAG Mo fe |l 1 @yomi v,y < CE™ I fellyps (3.8)
|AS" fe = EcAg ' Me fe [ 1agq,, < CeM fellye, (3.9)

and
| AT fe = EcAg " Me fe [l yo < e/l fellye (3.10)

forall fo € UP.

Proof. The inequality (3.8) was proved in Proposition A.8 in [3]. This estimate is the key estimate for
[3] and also for the complete analysis we are performing in the dumbbell domains.
Observe that in particular, from (3.8), we obtain that
|AS fe — EeAg " Me fe | 20, < CEN2 fellyp- (€A1)
From [3, Lemma A.11], for p > N/2 we have
-1
145" el oo ) < Cll el (312)

Also we know that if p > N/2, ||A81Mgfg Lo 2y@r(0,1) < ClIMe fellLr(2)@Lp(0,1) then

|EcAg " Me fe |l o g, < Cll fellye (313)
which implies that
|AS fe = Ee A" Me fe [ 1o g,y < Cll fell - (3.14)

For g > 2, (3.9) follows from (3.11) and (3.14) and interpolation. The estimate (3.10) follows from
(3.9)and (3.3). O

To obtain the resolvent convergence of Ag + Vo we strongly use the previous result and the fol-
lowing uniform (with respect to ¢) estimate.
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Lemma 3.4. If Vg is such that (Ag + V) is invertible, for p > % we have

|Ec (Ao + Vo)™ 'Me| 1 yp) < C (3.15)

and, for each p > %, there is a constant C, independent of €, such that

| Ee (Ao + Vo) "M C. (3.16)

”ﬁ(LP(.QE)) <

Proof. Statement (3.15) follows from ||E€||L(U§,U§’) = ”Ms”ﬁ(uf,ug) =1 (see [3]) and from Proposi-

tion 3.2.
For (3.16) we proceed as follows. Let f, € LP(§2;) and ug = (We, ve) = (Ag + Vo) ! Mg fe, then

—AWe +We +VoX)we = fe, £,
oW
an

1
—E(g(ms)s + Ve + Vro($)ve =M fe, (0, 1),
ve(0) =we(Po), V(1) =we(Py).

=0, 042,

. N
Since p > 7, we have that
Iwellir2) < Cllfellrey and  lwelleg) < Cllfellir(e)-
In particular |wg(Po)| + [we (P1)| < Cll fellLr (). Also
IVellir©.1) < [we(Po)| + [We(P1)| + IMe fellLoo,1)
and
N1 N1 N-1
IEevellrre =€ P lIvellro.y <& 7 (|we(Po)| + |we(P1)|) +& 7 Mg fellro.1)

< | we(Po)| + [we(P1)| + [l fellLr re)

< Cll felltr (g,
N-1
where we have used that ||[M¢ fellp0,1) <€ P | fellp(r,). The proof is now complete. O

The next two lemmas are resolvent identities which allow us (together with the previous lemma)
to transfer information from the resolvent convergence of A to the resolvent convergence of Az + V.

Lemma 3.5. If (Ag + Vo) and (A¢ + Vo) are both invertible the following identity holds

(Ae + Vo) ™' — Ec(Ao + Vo) ' Mg
=[I— (A + Vo) Vo (A" — Ec Ay 'M¢)[I — EsVo(Ag + Vo) ' Mg ]. (3.17)

Proof. Since (I — (As + Vo)~!'Vo)(I + A7 1Vg) = I, the identity (3.17) is equivalent to

(A7 = EeAg"Me) (I — EcVo(Ao + Vo) ™' M)

= (I+A;"Vo)((As + Vo) ™' — Ec(Ag + Vo) ' Mg). (3.18)
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Using that V(Ao + Vo) ™! =1 — Ag(Ag + Vo)~ ! and expanding the left-hand side of (3.18) we have

(A7 — EcAy "M ) (I — EcVo(Ao + Vo) ™" M;)
=A;"— A;VEcVo(Ao + Vo) 'Me — EcAg ' Mg + Ec Ay (I — Ao(Ao + Vo) ™' )Me

=A;' — A;'EcVo(Ao + Vo) 'Me — Ec (Ao + Vo) ' Me.

On the other hand, using that Ag1 =T+ A;'Vo)(As + Vo)~! and expanding the right-hand side of
(3.18), we have

(I+A; Vo) ((Ae + Vo) ™" — Ec(Ao + Vo) ' Me)
=A;" = Ec(Ao+ Vo) 'Me — A TE: Vo(Ag + Vo) ™' Me,
which proves (3.18). O
In a very similar way we also have
Lemma 3.6. If (Ag + Vo) and (A¢ + Vo) are both invertible, the following identity holds
(Ae + Vo)™ — Ec(Ag + Vo) ' Me
=[I—Ec(Ag+ Vo) "VoM.] (A" — Ec Ay 'Me)[I — Vo(Ae + Vo) 1. (3.19)
Proof. The proof is similar to the one provided for the previous lemma. O
We are now ready to prove the main results of this section.
Proposition 3.7.1f p, g > N, (Ao + Vo) : D(Ag) C U} — UJ has bounded inverse and f € U?, then
[(Ae + Vo)™ fo = Ee(Ao+ Vo) ™" M fe | g, < CEMII fellgp (320)
where C depends on ||(Ag + Vo) ~! ||L(U5’U§) and on ||Vg|| e, but not on € or fe.

Proof. Let us start pointing out that if (Ag + Vp) is invertible, from [3] we also have that (A, + V)
is invertible for all suitably small €. Hence (3.20) makes sense.
Adding and subtracting the appropriate term in (3.17) we have

(Ae + Vo)™ — Ec(Ao+ Vo) ' M
= (—(Ae + Vo) "+ Ec(Ao + Vo) "Me)Vo(A; " — EcAg " M) (I = VoEe (Ao + Vo)~ M)
+ (I = Ec(Ao+ Vo) "M, Vo)(A; ' — Ec Ay 'Me)(I — VoEs (Ao + Vo) ' My).
Let us first estimate
O = ((As + Vo) " — Eg(Ao + Vo) ' Mg) Vo (A; ' — Es Ay "M ) (I — VoEs (Ao + Vo) " Mg).
Note that, from inequalities (3.10) and (3.9) we have that

”As_l - ESA(;1M5 HL(U?,USP) < ce/P  and ”1‘\8_1 — EgAall\/[g < cel/a.

” LU 19(2:))
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Since
Vol caaey < CliVollzewe,y and  [[Vollzyry < CliVolli (e,
it follows from (3.15) that

1 -1 -1
1€l £wp taaeyy < CEVP[[(Ae + Vo)™ = Ec(Ao+ Vo) Me £ yp 1o, )

where C = C(||Voll1=(2,)) is independent of ¢. Choosing &¢ such that cel/p g % for all ¢ € [0, &),
we have that

[ (Ae + Vo)™ = Ee(Ao+ Vo) "Me | £ yp 1o

<2[[(1 = Ee (Ao + Vo)™ M Vo) (A7 — EcAg ' Me) (I = VoEe (Ao + Vo)™ Me) | £ 2 1o @

Now, from (3.15) and (3.16) there is a constant C, independent of ¢, such that

|(1 = VoEe(Ao + Vo) ' Me) | £ yp) <1+ ClIVollx ey

[(1 = Ee(Ao + Vo) "MeVo) | £sa(q,yy < 1+ CllVollie(e,)-

Therefore, using (3.9),

[(Ae + Vo)™ —Ec(Ao+ Vo) 'Me 1 yp 1a(q,) < CeMY
where the constant C depends on ||Vollr(g,). This shows the proposition. O

3.2. Rate of convergence of resolvent operators: The case of a varying potential

We are going to study now the convergence properties of resolvent operators of the form (A; +
W)~ to (Ag + Wo)~ !, where W, converges to Wy in a sense to be specified. We need to perform
this study since we want to compare the resolvent operators of the linearizations around equilibria.
Hence, we will have a family of equilibria u} which will converge to an equilibria of the limiting
problem uf and we will need to consider the operators A, — f'(u}) and Ag — f’(uf) and analyze the
convergence properties of their resolvent.

Having this in mind, let us consider the following setting for the potentials,

(H) Ve € L®(£2¢), Vo= (Vq. Vg,) € Uy be two potentials which satisfy that |V,|, |Vo| <a for some
a > 0 and such that for N < g < oo we have

—=N+1
£ 0 [[Ve—EeVolllae,) — 0. as&— 0. (321)

Denote by W =V +a, Wo=Vo+a= (Vg +a, Vg, +a) so that W, and Wy are positive and
they also satisfy an estimate like (3.21) substituting V and Vo by W, and Wy respectively.

As we did in Section 3.1, let us identify the potentials W, W with their corresponding multipli-
cation operators.

With this notation and writing A = A; + W, we have that the operator A; is sectorial and the
following estimate holds

H(A + Ag) 7! “g(Lp(Qg)) < , for xe Xy, (3.22)

C
[A]+1
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where Yy ={A € C: |arg(A)|<7T —0},0<0 < % and C is a constant that does not depend on ¢
(that follows form the fact that the localization of the numerical range in the complex plane can be
done independently of &), however it depends on p and blows up as p — oo, see [14].

We know that, for any 0 < & < 1, the operator A, is a sectorial operator in U? and the following
result holds.

Lemma 3.8. For all . € Xy we have that

=N+1
g P

|+ 407" ”ﬁ(ug) <o+ 407! ||£(LP(S2£),U5) < Cm'

(3.23)

Proof. It follows immediately from (3.22) and from Lemma 3.1. O

The following result follows easily from the properties of resolvent operators. It is crucial to obtain
convergence properties for resolvent operators from the convergence properties of Ag] to Ay 1

Lemma 3.9. As an immediate consequence of (3.5)-(3.7), there is a constant C such that, for all » € Xy,
p>q>Yado<a<1-L -1l -1y

2q 2'q p
|Ec O+ A0)™" Mg | < (3.24)
3 0 £ E(Ug,Ug) X Mla T 1’ .
-1 <° 2
HES()‘-J’_AO) MS ||£(C(§5),L"°(Qé)) X ms (3' 5)
and
-1
[EcA(h + A0) "' Mg ||c<c<§S),ug> <, (3.26)
where C is a constant that does not depend on €.
We have now the following key result, which is analogous to Propositions 3.3 and 3.7.
Proposition 3.10. For p,q > N and f. € UL we have
N
A5 fe = EcAg " Me fe]l 1a g, < (9 + IWe — EsWoMelliaceo) Il fellyp (3.27)

with C independent of € and f,.

Proof. Let f, € U} and let u; = A;! fo = (Ag + W)™ fe. Consider the auxiliary function, i = (A; +
E:Wo) ' fe, e,

—Aug +ug +Weug = fe, 82,

u 3.28
—£=0, 982, (3.28)
on

—Aﬁg+ﬂs+woﬁs:f57 -QSs

il (3.29)

— =0, 082%.
an €
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From comparison results, it is easy to see that |iis| < U, where

_Aﬁs +L_l£ = |f£|s st

douUg
— =0, 082.
an
Applying Lemma A.11 of [3], we have that
ltellie2e < Clifellyp. for p>N/2, (3.30)

which implies
e Nl () < Cll fellyp-
Next, observe that
Ue = (Ae + EsW0) ™ fe + (Ae + E«Wo) ™ (Es Wo — W)u,,
up = (Ag + Wo) ' Mg fe.
Hence,
lue — Estiolliae,) < [[(Ae +EsWo) ™" — Ee(Ag +Wo) ™' Me fe 1qq,)
+ [ (A + EeWo) ' (We — EsWolg | g .
<Ce Tl fellyp +C(Ae + EeWo) ™| £ o IWe — EeWolliacan e i,y
<C(eT + IWe — EeWolliacan)ll felyp.

where we have used (3.20) and the fact that there is a constant C, independent of ¢ and of g € [1, o¢],
such that ||(Ag + Wo) ™! ll£a2.)) < C. This shows the lemma. O

As an immediate corollary, we have
Corollary 3.11. For p,q > N we have

e A7 — Ee g Me | £ 0, ase—0. (331)

192
Proof. We just need to apply the previous proposition and hypothesis (H). O

Now consider a compact subset K of the complex plane which is contained in the resolvent set of
the operator Ag. Let c(K) be a positive constant such that

-1
sup .+ 40) ™" £ g, up) < €(K).

Also, let Xy :={z€C: |arg(z)| <m — 0}, for 0 <0 <7 /2.
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Proposition 3.12. For p, q > N, there exist a constant C = C(K, 0), a number &9 > 0 and a function n(¢) — 0
as & — 0 such that foreach A, € K U Xy and 0 < € < &g we have

T Gt AT =BGt A0 e iy 0y < C(1+ (@), (3:32)

whereO<oz<1—%<1.

Proof. Observe first that the spectrum of the operators A, and Ag are subsets of [1, +00). Hence, if
X e Xy both (A + Ag)~1 and (A + Ag)~! make perfect sense for 0 < & < &o.

Moreover, by the compact convergence of A7! — Ay ! the convergence of W, — W and since
I+ AO)_1||L:<ug.ug> =||(A + Vo + Ag) ! ||£(U5’Ug) < c(K) for each A € K which is a compact set
in C, we have that (A + Ag + V¢) and (A + A + V) are invertible for 0 < & < &g and A € Ay and
(4 A~ ||£(quug) < ¢(K), for some constant ¢(K) and for all A € K. If this is not the case, then we
could get a sequence of &, — 0 and A, — A € K such that ||(A, + Agn)*1 ”/:(Ug,ug) — +o00. But this is

in contradiction with the compact convergence of (A + Ag,)~! to (i + Ag)~!, see Lemma 4.7 of [3].
Hence, with this argument and with (3.22) and (3.24) we obtain

||A(A+A8)—1||L(Lq(gs)) <C, forreKU Xy, (3.33)

|EcA(h + Ag) "M, }|£(U£,U5) <C(1+ A7), forreKUZ, (3.34)
withO<oa <1-— % < 1. Applying Lemma 3.5 with Ag in place of Ap and A in place of Vg, we have

H A+ A€)71 —Es(A+ A0)71 M, ”ﬁ(U?,Lq(QS))

<10+ A0 iy 47— Eetg M| 11~ B+ A0~ M]

p
LWL 19(2¢)) ||£(U€)

<C(1+ )| A7 = EcAg ' M, | | <Ce'T (14 1117 n(e),

LWUP 190

_N-1
where n(e) =¢ ¢

proposition. O

||A;1 — EgAalMgHE(Ug_Lq(QE)) — 0 as € — 0 by Corollary 3.11. This proves the

Remark 3.13. The results of Proposition 3.12 also hold for the operator A instead of Ag, that is with
We=Wp=0.

Corollary 3.14. In the conditions of Proposition 3.12, we have the following estimates

|+ 40) ™" = B+ A0) ™ Me | £ yp yo, < C(1+ 12" e), (3.35)

[+ 47! |}£(quug) <C(1+ ™). (3.36)

Proof. To prove (3.35) we just use that ¢~ 7 | - ||£(U§ L2,y S I - ”L‘(Uf ud in (3.32). To prove (3.36)
we just use (3.35) and (3.24), to obtain

<C(1+ 1'%,

[+ 4)7" Hc<u5,u§> SC(+ 1)) + 1S

as we wanted to show. O
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These results play a fundamental role on the convergence of the linear semigroups for it will
ensure the uniform convergence of the integrals defining them and will allow us to pass to the limit.

3.3. Rate of convergence of hyperbolic equilibria and of its linearizations

In this subsection we will obtain rates of convergence of hyperbolic equilibria which, besides being
interesting by themselves, show that if we consider the potentials V. = —f"(u}), Vo = —f'(uf) then
hypothesis (H) from Section 3.2 is satisfied, with a = sup{|f’(s)|: s € R}. This will ensure that all the
results from Section 3.2 apply for A, = A; — f'(u}) +a and Ag = A¢ — f'(uf) +a.

Proposition 3.15. Let ug be a hyperbolic equilibrium for (1.2) and (from the results in [3]) let u} be the se-
quence of hyperbolic equilibria for (1.1) satisfying that u} E-converges to ug. Then, for ¢ > N, we have

N
q

|luf = Eeug|| oo, < Ce (3.37)

and

e7T uf — Eeuglp >0, ase—o0. (3.38)

Proof. Let uf = (wg, v§) be a hyperbolic equilibrium point for (1.2) and u} an equilibrium point for

(1.1) with JJu} — E£u3||uf g0 0. For Vo(x) = — f'(uj(x)), we write

uf = (A + Vo) (fud) + Voul) and uf=(Ao+ Vo) ' (f(uf) + Voup).

Hence, taking norms in L9(£2), we get

Hu: ~ EguZSH e = H(Ag + V) ! (f(ug) + Vouz) —Ec(Ao+Vo)™! (f(ué‘)) + Vgu?)) ” L9(£2)
<[ ((Ae + Vo)™ — Ee (Ao + Vo) Me) (f (uZ) + Vous) | a0
- Ee (Ao + Vo) Mo [ £(u) — Vous — Ee (£ (1) + VoMo Ecti3) oo
< e fup) + Vous | og,
+ [[Ee (Ao + Vo) " Me[ £ (uf) — Ee f (ug) — Vo(uf — Ecug)]] o)

< CeM 4 |Ee (Ao + Vo) ' Meze | g )

where z; = f(u}) — f(uj) + Vo(uj —uf) and we have used Proposition 3.7, the boundedness of f’

and that uj is also bounded in the sup norm uniformly in &.
We have

|ze 0| = |f(ui®) — Fug®) + f'(Esuf®) (ui(x) — Esugx)]
<[F (X2 @) = f(Ecug0)](ui(x) — Ecug(x)

)

where x; (%) =0X)uj(x) + (1 —0(x))Ecuj(x) and 0 <O(x) <1, x € £2.
Using that | f'(-)| < C we have

Izelire) < Cllug = Estig|| ) ¥1 <1< 400
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Also,

1 1 1
Izellra) < | F' (%) = ' (Eeug) s o |uE — Eetig] 1o g Tste

But
I f'(x2) = f'(Esug) HLOC(Q) <C
If'(x2) = f'(Esug) ”L‘(.Q) <Cfxd — EEUSHL‘(.Q) < Clug - E5u8|’L‘(Q)'

1/s

Hence, using interpolation || f'(x5) — f'(Ecuf)llzs(2) < Clluj — Egu3||L,(m. So
1/s 1+1
Iz Iy < Cllug — ES”S”LI(Q) |uf — Ecug @) S Cllui — Ecug| (@)

But if we define w, = E¢(Ag + B)"!M,z,, we know from (3.16) that
IwWella2) < Cllzellir(), for some r <gq.

Hence we can choose 1 ={ +1 (t=q,{ =7 -

1+1-1
|Ec(Ao+ B) ™ Meze | g ) < Cllzellire) < Cllug — ug ) -

Hence

1+1-1
||”§ - ug”LQ(Q) < ceN/d + CH”: - uzk)”Lq(;Z) !

Since we know that |uj — ugllLe(e) — 0 (since |[uj — “Snuf — 0 as ¢ — 0) then ||u} — ugli2) <
CeN/a, which shows the first statement of the lemma. For the second one, we just realize that

N-1 N-1
q q

Hu:—ugum(m—kHufg—ug”Lq(Rs)<C8N/q+C0(£ )y=o(s 7).

That is,
N-1
e 7 |ui —ug|q, =0 ase—0. O

Corollary 3.16. In the conditions of Proposition 3.15, if we denote by V. = —f'(u?), Vo = —f'(uf) and
a = sup{|f'(s)|; s € R}, then hypothesis (H) from Section 3.2 is satisfied. Hence, all the results of that section
can be applied to the case where the potentials are given by V. = — f'(u}) and Vo = — f'(uf).

Proof. Since

N-1
IVe = EeVolliao = || '(uz) = Ee £ (ug) | o,y < 1" e [u7 = Eetig | 1o,y =0(¢ 7).

the result follows. O
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4. Convergence of linear semigroups

In this section we analyze the convergence properties of the linear semigroups generated by the
operators Ag + V¢, Ag+ Vo where the potentials V., Vg satisfy hypothesis (H) from Section 3.2. Later
on we will be interested in applying the results from this section to the semigroups generated by A,
Ag and also by A — f’(u}) and Ag — f'(uf), where uj, uf are hyperbolic equilibria of the perturbed
and limit problem respectively.

As in Section 3.2, let W, =V, +a >0, Wg=Vy+a> 0 (see hypothesis (H)) and A = A, + Wq,
Ag = Ag + Wo.

As we have already seen in [4], the operators —Ag, —(Ag + Vo) and —Ag do not generate strongly
continuous semigroups in Ug . Nonetheless they generate certain singular semigroups as we briefly
recall.

Let Yy ={reC: |JargW)| < —0},0<0 < % and let I be the boundary of X, oriented such
that the imaginary part grows as A runs in I". Notice that the semigroups generated by —Ag and by
—(Ag + Vp) are related by a multiplicative factor of the form e®.

Proceeding as in [4] we define

1
e~ Aot — _,/e“(,\ + Ag)"ldr, t>0. (41)
2mi

r

Then, e—40f satisfies the semigroup properties but strong continuity fails at t = 0 for data which
are not sufficiently smooth. Nonetheless, several of the properties of analytic semigroup will still hold
for sufficiently regular data. We say that {e~4of: t > 0} is the semigroup generated by —Ag and do
not make any allusion to continuity. We refer to [4] for a detailed study of the semigroup generated
by —Ag.

In what follows we recall some simple properties of the semigroup {e~40!: t > 0} that we will
employ later in this paper.

The next result investigates the singularity of {Ece=49'M,: t > 0} at t =0 in £(U?). Its proof is a
consequence of Proposition 3.12 and (4.1).

Lemma4.1.Forany p>q> Y andfor0 <o <1-JL — —(% — 1y <1, there is a constant C, independent

of &, such that g
|Ece™ " Meu| up < ct ! lullys, t>0, ueU, (4.2)
and
|Ece™ " Meu| vp <Clully, ¢>0, ucUL. (4.3)

From Lemma 3.8 it follows that —A, generates an analytic semigroup {e~4¢: t >0} in U? given

by

1
e et — / e+ Ag)"Tdr, t>0, (44)
2mi
r

where I C p(—Ag) is the boundary of Xy oriented such that the imaginary part grows as A runs
in I". Note that I" is independent of &. It follows from (3.22), (3.23) and (4.4) that the following
estimates hold

N+1

||e_A5tw||Ug<C€_P Iwlye, t>0, weU?, (4.5)

—Agt

e w|}Lp(QE)<C||w||Lp(9£), t>0, welP(R2,), (4.6)
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and
e w]yp < Clwly. >0, we U, @7

for some constant C > 0 that does not depend on ¢. That is, the linear semigroup e#¢! is bounded in
L(LP(£2¢)) uniformly with respect to &.

We analyze now the convergence properties of the semigroups. To accomplish this task we will
use extensively the resolvent estimates of the previous section applied to the integral expression of
the semigroup.

Proposition 4.2. There are y > 0, B € R, p,q > N and function p :[0, 1] — [0, co) with p(¢) >0 0 such
that

et etV — Ece ot VoM, o o) < CePt7 p(e), > 0. (4.8)

Proof. Observe first that e~(Ae+Velt _E e—(AotVolt g — el (p—Acl _E =40l M), so that it is sufficient

to prove an estimate of the type (4.8) for the difference e~4et — E e~ 4ot )M,
Since

1
e~ Al _ F e~ 0IM, = P /((A +A) 7N = Ec(A + Ag) "M, )eM da, (4.9)
Tl
r

it follows from Proposition 3.12 that
_N-1 _ C _
e e —Eee A“MSH,C(Ug,Lq(QSﬁg\ [ ) e anfnce)
r

<@ n(e)

and consequently
le= e — Eee™ Mo £ yp yo, < CE™E" (o).
On the other hand, by comparison (maximum principle) we have
—Agt —Apt —Agt —Apt
et — Ece™"0'M, ”L(ugo) < Jlem HL(USO) + |[Ece™ 0" M, ”L(US") <C
Noting that || - Hug <c|l - lyge for some ¢ > 0 independent of ¢, it follows that

le€t — Ece= ' M, <C.

” LUX,UH

By interpolation (see [8, Theorem 6.27])

Heng _ EgeonfMe ) < Ct—@(Zfa)nQ (8),

”ﬁ(ué",uz

where p < p < oo and 0 <6 < 1. Taking 6 small we can make 62 — &) < 1.
That is

|e=4et — Eqe= 40t M, ) < ccrne), y<1

Hz:(ug,ug
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Hence, if we define p(g) = 1(¢)?, we have

||e(Ag+v5)t — Ee(AotVor _ eat”e—AEt — Ege— oty < Cet™ p(e),

“,c(uf,ug) ”L(u{?,UZ)

which shows the result with p(¢) =7n(e)? and B=a. O

Let us consider now a real number b with the property that there exists a § > 0, small, such that
[b—38,b+81No(—(Ag + Vp)) =¢@. That is, the spectrum of the operator —(Ag + V), which is all
real, is divided in two parts, 00+ which is above b+ and it is a finite set and o, which is below
b —§ and it is an infinite set (a sequence that goes to —oo). From the continuity properties of the
spectrum (see [3]), we have that for & small enough [b — §,b+ 8] No(—(Ag + V¢)) =@ and the
spectra of —(Ag + V), which is also real, is divided in two parts o, above b+ § and o, below
b — 3. Moreover, we can choose a fixed closed curve I“lf C {z € C: Re(2) > b + 8} which encloses o
for all 0 < & < &g for some &g small. Moreover, we denote by I',” ={ze€ C: arg(z— (b —9)) =7 — 6}
for some 0 <0 < /2.

We decompose U? using the projection

0 = Qo) = zim / G+ As + Vo) d. (4.10)

+
Iy

Proposition 4.3. For p, q > N large enough, we have that there are constants C > 0, y < 1, independent of &
and a function p(g), with p(¢) — 0 as & — 0, such that fort > 0

”e—(Ag+Vg)t(1_ Q(a;')) E e—(Ao+V0)f(1 ( ”L(up uh) < < cetr Y p(e), (4.11)
[ Ece™A0tVoX(1 - Q (o5 Me HW oy S €M (412)
e AVt (1 = @ () £y sy < Ce™e (413)

Proof. We have

e—(Ao+vO)r(, - Q(og)) = L /(A + Ao+ Vo(x))_le“ da.

2mi

ry

Plugging norms and using estimate (3.5) we get
—(Ao+Volt + 1 |eM|
”e (I_Q(UO ))H[:(U(’;,Ug)< g 1+|A|1_°‘ da
ry
and elementary integration shows

”e<Ao+vO>t(1 _ Q(Uo )) o < cebtr—, (4.14)

Huug, )

which shows (4.12) with y = «.
In a similar way,

APV (1 (o) — Boe R (1 (o),

= [ (A +Ac+ Ve@) ™ — Ee (A + Ao+ Vo)™ Me)e* di.
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So
”e—(A£+v£)t(1 - Q(G;r)) - Eee_(AHVO)t(I - Q(UJ))MS ”L(U{;,Ug)
1 -1 -1
< E‘ / le* [ (A + As + Vo)™ — Eg(A+ Ao+ Vo(x) ™ M ||z:<ug,ug)d)\
Fb_
1 _
<5 / ™[ (1 + [A]'~%) drn(e) da
Fb’

c
< e E e,

where we have applied Proposition 3.12. Therefore,

le= A+ (1 = Q (o)) — Ese™ MtV (1 — Q (o)) Me | yp yo, < Ce™t™@ (o). (415)

This estimate does not show yet the proposition since the exponent 2 — o > 1. We will do an
interpolation argument to conclude with the correct estimate. For this, let us see now that Q (o;") :
UP — U? satisfies || Q((T;)Hﬁ(ug uP) S C independent of €. To see this, just observe that

1
Qo) = oPT /(A+A€ + Vo) tda.

rt
Applying now the estimate of Proposition 3.12, we obtain that
[t Ae +Ve) ™ £ yp yr, <C

for » € I, and with C independent of ¢. From this last expression and using the boundedness of I~
we get ||Q(Ua+)||c(u§ upy SC forall0<e<1.
Moreover, for the limit semigroup and for 0 <t < 1, we obtain from (4.14)

|EceAo+VoX (1 — @ (o)) Me Huug’,ug) <ce

Hence for 0 <t <1, we get that

Je=AerVer(r — Q(Gj))”[:(ug,ug) < ||ei(A8+vS)[“[:(u§,ug)(l + ”Q(U;r)nc(ug,ug’))’

C(||e—(As+Vs)t _ Ege_(AO+VO)tM5 —(A()-*—Vo)fME

< C(t—y + t—a—o—l)’

Hz(ug,ug) + |[Ece ”c(ug’.ug))

where we are using the bounds given by Proposition 4.2.
Hence, for 0 <t <1,

e~ At (1 - Q(07) ~ Eee™ APV (1 = Qo M| gy ST (416)

where y = max{y,1—«}.
Interpolating (4.15) and (4.16) we obtain, for 0 <t <1,

e= @Y1 = Qo)) = Eee™ YO (1 = Q (00 ))Me | e s,

< (@)’ (CeT) ™0 < 1= e,
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where we have used that ePt < C for 0<t < 1. Choosing 6 > 0 small enough so that (2 — )6 + (1 —
0)y <1, we obtain the estimate for 0 <t < 1.
Now for t > 1, from (4.15) we get

He*(As‘f’Ve)t(I _ Q(O’;L)) _ Ese*(AmLVo)t(I _ Q(oo+))M5 “L(UE,UE) < Ceb[n(s).

Putting together both estimates, we prove (4.11). To prove (4.13) we just use (4.11) and (4.12). This
concludes the proof of the proposition. O

We also have

Corollary 4.4. For the case V. = Vo = 0 and with b € (=1, 0) a fixed number, we have that Q (o;") =0 for ¢
small enough and we have

et — Ece=4' M, Hz(ué’,uﬁ) <CET p(e).

Remark 4.5. Observe that we can consider the case where Vo = —f'(uj), Ve = —f'(u3) with uj and
uy hyperbolic equilibria satisfying u} converging to uj (see [3]). In this case, we can always apply
Proposition 4.3 with b < 0, a number dividing the spectrum among the stable part, that is with
negative real part, and the unstable spectrum, that is with positive real part.

Let us conclude the section with the following useful uniform estimates of the semigroup on the
linear unstable manifold:

Proposition 4.6. There are constants C > 1 and 8 > 0 such that

|e-tetVer g Hau?,ué’) <ceft, t<o.

Proof. Observe that

e_(As+Vg)tQ2-=/ekt(A+A£+V£)—l dx.
r+

Using (3.36) and noticing that the curve I'" is bounded, we have

le= AV QE | s, < c‘ / \e“]dk‘ < ce,
r+

which shows the result. O

5. Continuity of nonlinear semigroups and upper semicontinuity of attractors

Now that we have obtained in the previous section the continuity of linear semigroups we proceed
to obtain the continuity of nonlinear semigroups using the variation of constants formula. After we
obtain the continuity of nonlinear semigroups we will proceed to obtain the upper semicontinuity of
the family of attractors {A: & €[0, 1]}.

To this end we will follow the ideas in [1] that relate the continuity of the linear semigroups
with the continuity of the nonlinear semigroups for dissipative parabolic equations by using the vari-
ation of constants formula. This in turn will imply the upper semicontinuity of the attractors and the
stationary states.
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For ¢ € [0, 1], let {T¢(t): t >0} be the semigroups defined in UZ by the variation of constants
formula

t
Te(t, up) = e Aelu, +/e—f‘s“—s) fo(Te(s, ug))ds. (5.1)
0

If & denotes the set of stationary states (2.6), € € [0, &), it has been obtained in [3, Section 5]
that {£:: & €[0, o]} is upper semicontinuous at £ =0 in U?; that is,

sup [ inf {Huj—EguSHUEp}]—>0, as ¢ — 0. (5.2)

uze& “upe€o

We are now in position to prove the following result.

Proposition 5.1. There exist a 0 < y < 1 and a function c(¢) with c(¢) e 0 such that, for each T > 0 we
have

|Te(t, ue) — EcTo(t, Meug)|| pr SM@c@t™, te(0,7], ue € Ae. € € (0, &) (5.3)
Moreover, the family of attractors {A.: ¢ € [0, &o]} is upper semicontinuous at € = 0 in UE, in the sense that

sup [ in}; {"“8_58”0"115}]_’0’ ass — 0. (5.4)

ugeAg -Uo€A0

Proof. To prove this result we follow [1,7]. Notice that the nonlinear semigroups T.(t) are given by
(5.1). Hence, estimating T.(t, us) — E.To(t, Mgue) and with some elementary computations we obtain

| Te (6, ue) = EeTo(t, Meue) |y
< e etu, — Ece ' Mu, lur

t

+/ [(e= %" — Ece™ "' My) fo (To (s, ug)) e ds
0
t

+/ | Ece " (Mg fe (T (s, ue)) — fo(To(s, Mgug)))uug ds, £e€l0,s].
0

Note that

t
/ ||E937A0t(Msfs(T€(sv ue)) - fo(To(S, Meus))) ” u? ds
0

t

=/ |Ece™ " (Mg fe(Te (s, ug)) — MeEe fo(To(s, Mgug)))”Ug ds
0
t

= f | Ece™ " Me (fe(Te (s ue)) — fe(EcTo(s. Meue))) [ p ds,
0
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where we have used that M E, = I and that f.(Ecu) = E¢ fo(u). Applying now Corollary 4.4 and

Lemma 4.1 we have, for 0 <t < T,

t
|Te (€ ue) = EeTo(t, Meug) | yp < Ce™t™7 p(e) lue llyp + Cp(e) [(t =)V fo(Te(s ue)) | o
0

t
+ C/(t — ) Te (s, ug) — EcTo(s, Meue) | yo-
0

But since we have uniform bounds in L°°(£2;) of all the attractors, the first two terms in the above
inequality can be bounded by Cp(g)t~7. The result now follows applying the singular Gronwall’s
lemma (see [12]).

To show the upper semicontinuity of the attractors .A., we notice first that by the uniform L% (£2;)
bounds of the attractors we have

U Mg Ag

0<e<e

is a bounded set in Ug°. Hence, by the attractivity properties of Ao, for a fixed n > 0 there exists a
time 7 > 0 such that

distyp (To(r)(Mege). Ao) = inf | To(r)(Mege) — @llyp <71 Voe € As. 0<e <o,
0

which implies that
distyp (Es To(T)(Me@e), EsAo) <1, Ve € A, 0< e < éo.

Using the convergence of the nonlinear semigroups (5.3) with t = 7, there exists €1 > 0 such that
for 0 <e <eéq,

”Ts(fa @e) — EcTo(7, Ms‘/’s)”Ug <N, Vge e Ag, 0<e< e,
Hence,
distyp (Te (T, @e), EsAo) <1, Ve € Ae, 0<e<er.
From the invariance A, we have that
distUg (¢, EeAg) <1, Ve e Ag, 0<e<ey,
which implies (5.4). O

Remark 5.2. Observe that Proposition 5.1 proves the upper semicontinuity part of Theorem 2.5.
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6. Continuity of local unstable manifolds and of attractors

We already know that, if all equilibrium points of (2.7), which is the abstract version of (1.2), are
hyperbolic then they are all isolated and there is only a finite number of them, say & = {e},, el
In this case, we also know that there is an g9 > 0 such that the set of equilibria of (2.6), which is

. i E .
the abstract version of (1.1), & = {e;, ...,e} for all 0 <& < g and e, — e{) for 1 <i<m (see

Theorem 2.3 of [3]). Moreover, we also know that the linear unstable manifolds associated to ejf

converge to the linear unstable manifold of e?, see Theorem 2.5 of [3]. For each eﬁ €&, e€[0,1], we
define its unstable manifold

W”(ei) = {n, € UE: there is a global solution & : R — U} of (2.6) with &:(0) =1,

such that & () " ==° e;é},
and its §-local unstable manifold as

WY (el) = {ne € B(el,5) C UP: there is a global solution & : R — U? of (2.6) with £ (0) = 7,

£(t) € B(eé,a), Vt <0, and & (t) 2=° el}.

These definitions are standard and we refer to [9] for further properties of local unstable manifolds.
In this section we show that the local unstable manifolds of el, for j =1,...,m fixed, behave
continuously with & in U?.

Proposition 6.1. Assume that eg € &y is hyperbolic; that is, 0 ¢ o (Ag — f’(eo)I). By Theorem 5.8 and Ex-
ample 5.9 in [3], there are § > 0 and &g such that there is a unique e, € &, with |le; — Egeol\uf < 4, for all
0 < & < &g. Then, there is § > 0 such that

=0

disty; (Wi (ee), Ec W (e0)) + dist;;p (EcW§ (eo), W§ (ee)) — 0,
that is,

sup inf |lug — Eguigllyp +  sup inf |lug — Ecuollyp — 0, ase— 0.
U eWY (ep) UoEW§ (U0) £ upeWl (up) U €W (ee) €

Before proving this result, let us see how we can proceed to give a proof of our main result,
Theorem 2.5.

Proof of Theorem 2.5. The upper semicontinuity has already been proved in Proposition 5.1 from Sec-
tion 5. Observe that to obtain the upper semicontinuity of the attractors, we have used the continuity
of the nonlinear semigroups, but no gradient structure of the flows have been used.

To obtain the lower semicontinuity, we need to show that for each ¢ € Ay we have a sequence of
@ € Ag, with the property that ¢ — anollug — 0 as € — 0. To accomplish this, we follow similar
arguments as the one developed in [9,10] or [2].

We are assuming that each equilibrium of the limiting problem &y is hyperbolic. This implies that
we have a finite number of them and that the flow Ty(t) has a gradient structure, see [4] and in
particular, given ¢ € Ag it will lie in the unstable manifold of some ey € &. This implies that there
exist an element ¢o € W (eg) and a T > 0 such that To(7, ¢o) = ¢, where § > 0 is the one from
Proposition 6.1. Using the continuity of the local unstable manifolds obtained in Proposition 6.1, we
have that there exists a sequence of elements ¢, € W§ (e;) such that [¢, — Eg¢0||U5 — 0. But, from
the invariance of the attractor .4, under the flow T,, we have ¢, = T (7, ¢¢) € A;. Moreover,
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llpe = Ecgollyp = [ Te(t. de) — EeTo(T. o) | 2
< HTs("Z ¢e) — EcTo(z, qujs)“l]g + ” EeTo(T, Mepe) — EcTo(T, o) ” u?
<M@T () + [ To(t, Mede) — To(T, $0) | 7

where we are using (5.3) and the fact that ||E¢ ||[:(ug up) = 1.

The continuity of the map T(t,-): Ug — Ug, the fact that ||¢g — ngﬁgHUg — 0 as € — 0 and that
c(¢) — 0, shows that |¢: — Es(pollug — 0 as & — 0. This concludes the proof of Theorem 2.5. O

Proof of Proposition 6.1. Let {e.} with e, € &, ¢ € [0, 1], be such that e, — E£e0||U§ 0 0. Rewriting
(2.6) for we, =u, — e, to deal with the neighborhood of e, we arrive at

Wi+ Asw — filea)w = f(w +ep) — fee) — files)w. (6.1)

Let us denote by Vg = —f’(eg), V. = —f’(e.). Using the hyperbolicity of eg, e, we consider b < 0
and define o, Q (o) as in (4.10), see Remark 4.5.

Decomposing (6.1) with the aid of projection Q (o,;/) and denoting by A, the restriction of Ag + V,
to the kernel of Q (0,;"), by B the restriction of A; + V. to the range of Q (o;") and making Sg] V=
Qo Hw, z=(— Q(o;))w we rewrite (6.1) as

V+Bev=0Q (0, )Fe(Sev, 2),

Z+Agz=(1-Q(0]))Fe(Sev,2), (6.2)

where F¢(0,0) =0 and F/(0,0) = 0. Proceeding as in Example 5.9 in [3] we have that, given p >0
there is a § > 0 such that

|Fe(Sev. 2] ya < p.

“Fs(se‘/, Z) — Fe(Sev, 2) ”UZ < p(”V — V]gn + ||z —2”115), (6.3)
for all (v,z) € Bs(0,0) and for all € € (0,1]. Since we are interested only in the behavior of the
solutions near (0,0) we cut F, outside Bs(0,0) in such a way that it satisfies (6.3) globally.

Proceeding as in [2,7] we can show that for a suitably small p > 0, there is an unstable manifold
for e,

S ={(v,2): z=Xf(v), veR"},
where X : R" — Ker(Q¢) is bounded and Lipschitz continuous. Furthermore

sup || 52 (v) — Ee 55|y =0.
veR"

Let us sketch the proof of existence of the unstable manifold as a graph and prove its continuity.
Let X, : R" — Ker(Qg) be such that

Il Zell := sup || Ze(v)|,» < D, [ Ze(v) — Ze ()| g SLilv = V]gn. (6.4)
veRn €

If ve(t) =¥ (t, T,7n, Xe) denotes the solution of

dve
ks Beve = Fe(Seve, Ze(ve)), fort<t, ve(r) =1,
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we seek for a fixed point X} of

T

qb(zg)(n):/e*;‘e“*”(l—Q(a;))Fs(ssvg(s),xg(vg(s)))ds, e el0,1], (6.5)

—00

in the class of Lipschitz maps X, : R" — Ker(Q¢) which are globally bounded with bound D and
globally Lipschitz with Lipschitz constant L.
Note that, from (4.13),

T

loamly, = [ pcc—s7e b9, (66)

—00

and for suitably chosen p we have that [|@(Z)ll| < D.
Next, suppose that X and X, are functions satisfying (6.4), 1,7 € R" and denote v.(t) =
Y (t,T,n, Xe), Ve(t) =¥ (¢, T, 17, Z¢). Then,

t
Ve(t) — Ve (t) =e B0 — i) + / e B9 Q[Fe(Seve, Ze(ve)) — Fe(Seve, e (V)] ds,
T

and

[ve® = Ve(®) ] gn < CEPPIn — Flln
T
+C / b9 H QeFe (Ss Ve, Es(Vs)) — Q¢F; (Ss Ve, ff‘s(f/s)) ”Rn ds
t
<€’ — F||gn
T
+pC / e (| Ze(ve) = Ze(@e) | yo + lIve — Vellrn) ds
t
<€’ — F|lgn
T
+pC / (| Ze(@e) = e (Vo) | yp + (A + Dllve — Vellpn) ds
t
<€’ — 7|l
T
+0C / PI(A+ DIve = Vellrn + 11T — Zellye) ds
t
<€’ — 7|l
T T
b(t—s) = = b(t—s)
+pC(1 +L)/e Ve — Ve llmn ds + pCl| Ze — Eslllug/e ds.
t t
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Let ¢ (t) = e P |y, (t) — V¢ (t)||rn. Then,

T T

¢(©) < Clln — 7illen + pC / T ds|| e — Sellyp + Cp(1+1) f $(s)ds.
t t

By Gronwall’s inequality

T
[ve® = ¥e® o< [Clln — illzne" " 4 pC / 9 ds| 5, — 5 |||ug}"’c“+““‘”
t

< [Clln = 7illrn + pCb™H | Ze — Zelyp JlePCIFDET.

Thus,
[®(Z)D = @(E) D | o

T
<C / (r— S)—ye—b(r—s) HFS(SSVEs EE(VE)) - Fs(ssf/sy Z~‘8(‘7s)) ”Lz(gg)ds

—00

T
<pC [ (T =9)77e P TI ([ Zeve) = Ze ()| yp + lIve — Vellzn) ds

—00
T

<pC / (T —5)VePTI[(A + L)llve — Vel + | Ze — Zell] ds.
—00

Using the estimates for ||v. — V¢||gn We obtain

pC(1+1L)
b(b—pC(1+ L)1~V

pC2(14+ L)1 —y)

[®(Ze)(m) — 2(Ze)@)| < pCT(1 — y)[b—”y + :||||Es — Zell

(b—pCA +L))~1+r 17— 7llwn.
Let
= — —l+y pCA+1)
Is(p)=pCT'1 J/)[b + B pca Ty
and

_pC*A+ LI —y)
T (b-pCA+L)yt-v’

Iy(p)

It is easy to see that, given 6 < 1, there exists a pg such that, for p < po, Is(p) <0 and I;(p) <L
and

|@(Ze) ) — @ (Z)@]| pr SLIn—n'llen + 0112 — Zell- (6.7)
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The inequalities (6.6) and (6.7) imply that G is a contraction map from the class of functions that
satisfy (6.4) into itself. Therefore, it has a unique fixed point X} = @ (X) in this class. The invariance
follows in the usual manner.

The fact that the graph is the whole unstable manifold follows (taking the limit as to tends to —oo)
from the following: If w(t) = (v(t), z(t)), t € R, is a global solution of (6.1) which is bounded as
t — —oo, there are constants M > 1 and v > 0 such that

|z®) — = (vd) | up < M(t — to) Ve~ 710 z(tg) — X (v(to)) ng, to <t. (6.8)

The proof of (6.8) can be carried out following the steps in the proof of (A.8) in [6], using the singular
Gronwall’'s inequality instead of the usual one, and noting that & can be considered fixed for this
purpose.

It remains to prove the continuity of the unstable manifolds. This is accomplished in the following
manner. If 0 < & < &g is such that the unstable manifold is given by the graph of X}, 0 < & < g, we
want to show that

sup | £ ) — Ee 55| yo = || 22 — E 55 |-
neRn"

It follows from Proposition 4.3 that

| Z2me) — Ec X5 ()| 2

< / e~ (1 = @ (07)) Fe (Seve, Zx(ve)) — Eee =9 (1 = @ (o7')) Fo(Sovo, T3 (vo)) | yp ds
< / |e=A=T=9 (1 — Q (o)) [Fe (Se v, 52(ve) — EcFo(Sovo, 55(vo))] | yp ds

+ / [[e=%=9(1 = Qo)) = Eee ™™= (1 = Q (o)) Me JEe Fo(Sovo, Tg(vo)) | yp ds
< / e~ (1 — @ (07)) [Fe (Se ve, 52 (ve)) — Fe(Ee (Sevo, £5(v0)))] | yp ds

+ / [[e™4=9 (1 — @ (07)) — Ece™™=)(1 — @ (05))Me ]Ec Fo(Sovo. 55 (vo)) | yp ds

T

<C f eb(ris)(f —-s)77 ”Fs (Sé‘vé‘a 2:(‘/8)) —F¢ (ES (50‘/0’ ES(VO))) ” ul ds

—00

T
+Cp(s) / eb™=s) [ Fe(Seve, Zi(ve)) ”C(ﬁg) ds

—00

<pCb~'p(e) + pCb" T IT (1 = )| £F - Ee S5 |

T
+pC(A+1L) / e P9 (7 —§)7Y||vy — vollrn ds. (6.9)

—00
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Thus, it is enough to estimate ||v¢ — vg|/rn. Note that

T
Ve — vollrr < f e et — e BoI || Fo (Seve, ZF (ve))||gn ds
t

T

+ f le B[ Fe(Seve, T (ve)) — Fo(Sovo, Zg (Vo)) | gnds
t

T
<pMb~Ho() + ||| 2% - E5[|] + pC1+ 1) / "9 ve — vollgn ds.
t

Therefore
llve = vollgn < pCb~'[o(1) + [[| =7 — g [|JePC+0E0,

which shows that

e—0

sup | Z5(m) — Zg )| yp 0.
neRn?

This proves the result. O

7. Continuity of attractors in other norms

In this section we study the continuity of attractors in other norms and very specially in the
norm of the space u;’z, see (2.8). This continuity is obtained as a consequence of the regularization
properties of the nonlinear semigroups. As a matter of fact, in many instances the attractors 4., A
live in better spaces X, and Xg respectively for which the linear map E; : Xo — X, is well defined as
well. We would like to give conditions that, once the continuity of the attractors in UZ is obtained,
will guarantee the continuity results for the attractors in these better spaces. In fact, the following
result holds.

Proposition 7.1. If there exists a T > 0 fixed such that for each sequence of &, — 0, ¢, € Ag, and ¢o € Ao
with ||gs, — Eg,dollyp — O implies that

|Ten (T. @) — Ec, To(t. $0) |, — 0. (7.1)

then the upper semicontinuity of the attractors in U implies the upper semicontinuity in X, and the lower
semicontinuity of the attractors in U? implies the lower semicontinuity of the attractors in X.

Proof. Assume we have a family of ¢, € A;. From the invariance of the attractors under the semi-
group T, we have that there exist ¢ € A: with To(T, ¢) = .

If the attractors are E.-upper semicontinuous in UZ, we have that for each sequence &, — 0,
there will exist a subsequence, that we still denote by &, and an element ¢g € Ag such that
lpe, — E€n¢0||u§n — 0 as & — 0. With (71) we get that if we define ¢g = To(T, ¢o), we have
l@e, — Ec—ngollx,, — 0, which shows the E.-upper semicontinuity in X.

Assume now that the attractors are E.-lower semicontinuous in Uf . If o € Ao and if we define
¢o € Ap with To(T, ¢o) = @, then there will exist a sequence of ¢, € A, with ¢ — EE¢0||U5 — 0 as
& — 0. Using (7.1) again, we get that [|¢s — Ec@ollx, — 0 which shows the E.-lower semicontinuity
in X,. O
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With this result we can provide now a proof of Theorem 2.7.
Proof of Theorem 2.7. We will apply Proposition 7.1, proving first that
|Tew (7, $e) = Ee, To(T, ¢0) | 22 = O,

for some 7 > 0 fixed, sequences ¢, — 0, ¢¢, € Ag, and ¢g € Ag with |l¢g, — Esn¢’0||ug — 0.
Observe first that

” Te, (T, ¢s,) — Ee, To(T, ¢0) Hug,nz

<Tey (T, ¢e,) = Ee, To(T, Mege,) [ 1.2 + | Ec To(T, Mede,) = Ee, To(T, o) | 1.2 (72)
and for a fixed 7 > 0,

|EeTo(z, Mee,) = Ee, To(T, ¢0) | y1.2 < | To(T, Megse,) — To (T, do) | y1.2 — 0

since To(T,): Ug — U(l,’2 is continuous, see [4].
To estimate the first term of the second line of (7.2) we use the variation of constants formula
(5.1) for € € [0, 1] and with simple computations we obtain

| T (¢, pe) = EcTo(t, Megpe) | 1.2

&

t
< [le7 et e — Ece "0 Megpe [ 12 + f [(e= A= — Ece UMy fo (Te (s, 6e)) || 1.2 ds
0

t
+ f | Ece 40 M (fe(Te(s. ée)) — fe(EeTo(s, Mepe))) | 125, e €10, eol. (73)
0

But note that A, C C(£2¢) for 0 < & < &9, Ag C C(£2)®C([0, 1]) and that we have uniform bounds
in these spaces.
If we are able to obtain the following two estimates:

”e—AEt — Ege—hot 2 < Ct™7v(e), t>0, (7.4)

Me | £ camecie,ut

for some 0 <y <1 and with v(¢) > 0 as ¢ — 0, and
—Apt —
le=* pp iz <t >0, (75)

for some 0 < B < 1, then using (7.4) and (7.5) in (7.3) and using the convergence of the nonlinear
semigroup in Ug we obtain that || T¢(t, ¢o) — EcTo(t, M5¢8)”ug~2 —>0ase—0.

The proof of (7.5) is in [4, Remark 3.2]. '

Hence we just need to show (7.4). To obtain this estimate we need some extra resolvent esti-
mates, similar to the ones obtained in Section 3.1. To that end we introduce the continuous extension
operator

EC:C(2)@C(0,1) — C(2)
We, X€82,Z, (7.6)

(We, ve) — ES(We, ve) = { N
Ve, XE€Rg,
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where
Ve(X) = ve(s) +he(5)(We (0, y) = ve(0)) +he (1 —5)(We(1,y) = ve(1)), x=(s,y) €Re, (7.7)
and the function hs(s) = h(%), where h: Rt — [0, 1] is a C* function such that

1, forse[0,1/4],

h(s) = 0, fors>3/4

and |h'(s)| < C.

Observe that with this definition Eg(ws, ve) is always a continuous function in £2, if (we, ve) €
C(£22) ® C(0,1). Moreover, if (Wg, ve) € U(])‘2 then Esc(wg, ve) € HU(82,).

We also need the following lemmas whose proofs will be provided later.

Lemma 7.2. Let A € p(Ag) N p(Ap), then the following holds
O+ A0 —EcO+A0) "M = (I = h(Ae + ) 1) (A — E§ AG M) (I — AEe(Ag +2) ™ M)
+ (I = A(Ap + 1) (ES = Ee) (Ao + 1) Ms.

Lemma 7.3. There is a constant C > 0 such that for each ). € Xy we have

EC — E.)(Ao+ )M < et
I(Es — Ee)(Ao+2) 5”,C(C(?))EBC(RS),Hl(Q)EBHl(Rg)) St T i
[ (1= 2(Ae +2)7")(ES — Ee) (Ao + 1) Me | cca@ecio.m@en ey < cel/2. (7.8)

Lemma 7.4. There is a constant C > 0, independent of €, such that

(i) IEe — A(Ao + )L)il)MSfanc(ﬁ)@c(Rg) <Clfe ”C(ﬁ)@c(kg)'
(il) 11 = A(Ae +2) " Dgellu1 g, < Cllgell @,

Lemma 7.5. There exists a constant C > 0 such that for all > € Xy and all fo € C(2) ® C(Ry),
((Ae + 07" = Ec(Ao +M7"Me) fe | i1 oo vy < CEV M felle@ecr.)- (7.9)

Clearly, from Lemma 7.5 and the expression of the differences of the semigroups in terms of the
integral of the difference of the resolvents as in (4.9), we have that there is a constant C > 0 such
that

Je~At — Ece™ <ceN2l (7.10)

Aot
"Me| £ c@rocirem @ R

On the other hand,
—Agt —Aot
He et _ E.e Aoty HL(LOC(QE),Hl(Q)@Hl(RS))

<Je” n T |Ece~ " M, ||£(L°°(QS),H1(Q)SBH1(RS))

ct=*, (7.11)

At
oo m@en k.

< “e_Agr”L(LZ(.QE),Hl(QS)) + “e_Aot ||[:(U§,H1(:2)63H1(0,1)) S
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for some B with 1/2 < 8 < 1, see [4, Remark 3.2]. Interpolating (7.10) and (7.11), we have that, for
any n <1,
CeIN2¢=(+(1=mp) (7.12)

et — Ece™ "' M, ||£<L°°<:zg>,m<meaHl<Rg>> S

Choosing ¥ <7 <1 so that nN/2 > (N — 1)/2, the result follows with ¥ =+ (1 — n)g < 1. This
shows estimate (7.4) and the theorem is proved. O

Remark 7.6. We may also obtain the convergence of the attractors in some other norms. As a matter of
fact if K is a compact subset of 2 \ {Pg, P1} we can easily obtain uniform bounds of all the attractors
for instance in C'-7(K). This estimate may be obtained with an appropriate cut-off function and using
standard regularity properties of the nonlinear semigroups (we are far away from the channel R;).
Hence, since we have obtained already the continuity (lower or upper) of the attractor in LP(K),
with the compact embedding of C17(K) in C1"" (K) we also get the continuity (lower or upper) in
cln(K).

We provide now the proofs of the different lemmas we have stated above.
Proof of Lemma 7.2. This lemma is obtained in a similar way as Lemma 3.5. O

Proof of Lemma 7.3. Let f; € C(2) ® C(Re) and define K; := (ES — E¢)(Ag + )" 'Mfe = Z — ze,
where Z; = Ec(Ag + 1)~ IMf, and z¢ = E¢(Ag + 1)~ Mfe.
Observe that (Ag + A)~'Mf. = (wg, v¢) where

—AWe + AW, = fo, X€ 82,
oW
an

—%(gVSS)erkvs:Mfa, s€(0,1),
ve(0) =we(0), ve(1)=we(1),

=0, x€082,
(713)

Ve(s,¥) = ve(s) + he(s)(We(0, y) —ve(0) + he (1 — 5)(we(1,y) —ve(1)), V(s,y) € Rg and z:(s,y) =
ve(s), Y(s,y) € Re.

Also note that since K, =0 in £2, we have [|[K¢ g1 (@)on1r,) = K¢ ||%

H(Re)" Moreover,

&
IKeRa, <2 [ [ e |we(©.) = ve(o)Pdsay
0rg
1
+2//|h8(1—s)}2|wg(1,y)—v5(1)|2dsdy

1-er§

<CeMwel? -
Now note that h(s) = e "'h'(x/¢), (1 —s) = —e~'h’((1 — 5)/¢). Hence, with similar estimates as
above,

&€

2 2
IVKe g, <2 [ IO [ [w:0,5) = ve(@ P dsdy
0 rs



J.M. Arrieta et al. / J. Differential Equations 247 (2009) 225-259 257

1

+2/ |h;(1—s)|2f|w£(1,y)—v£(1)|2dsdy

1-¢ Ig
& 1
+2/]hg(s)|2/|Vyw5(0,y)]2dsdy+2/ |h£(1—s)|2/‘vyw£(l,y)|2dsdy
0 rs 1—¢ rs

N 2
<CeNwel2, g,

where we have used that [y Jrsrdsdy = 0(e").

The following estimates hold (see [13]), for some C > 0,

||W8||c(§) < r| 1 ||fe”c(§), (7.14)
Iwellerg@) < m”fa le@)- (7.15)
Using (7.15) we have that
eN/2
IKellp1ry) < le\f& ey (7.16)

which shows the first inequality of (7.8).
On the other hand we also have that

1 eN/2
-1
[A(Ae + 1)K, HHI(QS) < M'W IKellp2(r,y < Cm I felle@) (717)

and

[(1=2CAe + 07 (EE = Ee) (Ao + 07 Mfe | i e,

< IKellgt@)yon1 (R + [1(As + MK ||H1(_Q£)
eN/2

<C7|M]/2+1||f8”c(§)~ g

Proof of Lemma 7.4. It follows easily from the definition of the extension E. and of the projection M,
that |E¢ || = @)@Lo0,1), 1020 = 1 and [[Mg |l 2= (2,), 12 @)@L>0,1)) < 1. Hence,

-1 -1
” E¢Ao(Ao + 1) M”[,(L”(.QS),LO"(.QE)) < C”AO(AO +4) HL(LOO(%)@LOO(O,]))‘ (718)
Let f = (fa, fr,) € C(£2) ® L®(0, 1) be such that

(Ao + 1)1 f = (w, ), (7.19)
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or equivalently

—Aw+Aw = fo, in £2,

aw .
™ =0, inoJs2,
q _ (7.20)
_E(g"s)s +Av=fg,, in (0,1),
v(0)=w(0), v(1)=w(1).
Proceeding as in the proof of Proposition 3.2(iv), we have that
C < C
Wl < m”fﬂ”c(ﬁ), IVle@) < |MT(”fQ le@) + I fro ||C(0.1))-
Since Ag(Ao+1)"1=1—A(Ao+ 1)1, then
-1 _ -1
HAU(AO +4) f”c@)eam(o,n = ”f — (Ao +4) f”C(ﬁ)eaLoo(o,u
< ”f”C(S_2)€BL°°(O,l) + C”f”C(_(_;)@Lec(oJ)
< 6||f||(j(§)@;[_00(0_1)-
Applying this to (7.18), we have that
-1
” EcAo(Ao+A) M”‘C(LOO(QE)‘LDO(QE)) <C, (721)

where C is independent of A and ¢.
Part (ii) is immediate from the fact that A; is positive and self-adjoint. O

Proof of Lemma 7.5. The proof follows from Lemmas 7.2-74 and statement (3.8) from Proposi-
tion 3.3. O
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