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SZEGŐ POLYNOMIALS

FROM HYPERGEOMETRIC FUNCTIONS

A. SRI RANGA

(Communicated by Peter A. Clarkson)

Abstract. Szegő polynomials with respect to the weight function ω(θ) =
eηθ [sin(θ/2)]2λ, where η, λ ∈ R and λ > −1/2 are considered. Many of the
basic relations associated with these polynomials are given explicitly. Two
sequences of para-orthogonal polynomials with explicit relations are also given.

1. Introduction

With the publications of [20] and [21] in the early 20th century, Szegő introduced
the orthogonal polynomials on the unit circle. For many interesting results on these
polynomials we refer to the classical book [22] of Szegő, the first edition of which
was published in 1939. Since then, these polynomials which bear the name of
Szegő have been extensively studied by many. We cite, for example, [3], [4], [5],
[8], [14], [15], [16] and [19] as some of the very recent contributions. The recent
publications of the two excellent volumes [17] and [18] by Simon have given, apart
from a thorough perspective of the subject, a new boost to the interest in these
polynomials.

Given a positive measure μ(z) = μ(eiθ) on the unit circle C = {z = eiθ : 0 ≤ θ ≤
2π}, the associated sequence of “monic” Szegő polynomials {Φn} can be defined by

∫
C
z̄jΦn(z)dμ(z) =

∫ 2π

0

e−ijθΦn(e
iθ)dμ(eiθ) = κ−2

n δnj , 0 ≤ j ≤ n− 1,

where κ−2
n = ‖Φn‖2 =

∫
C |Φn(z)|2dμ(z). Since the integration is along the unit

circle, there holds
∫
C z̄

jΦn(z)dμ(z) =
∫
C z

−jΦn(z)dμ(z). The orthonormal Szegő
polynomials are ϕn(z) = κnφn(z), n ≥ 0. Results up to (1.2) given below are some
of the well known results on Szegő polynomials.

(1.1)
Φ∗

n(z) = an zΦn−1(z) + Φ∗
n−1(z),

Φn(z) = anΦ
∗
n(z) + (1− |an|2)zΦn−1(z),

n ≥ 1,

where an = Φn(0) and Φ∗
n(z) = znΦn(1/z̄). The numbers an, n ≥ 1, were tradi-

tionally known to mathematicians working in this area as the Szegő or reflection
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4260 A. SRI RANGA

coefficients. However, in Simon [17] they have been referred to as the Verblunsky
coefficients (in the form of αn = −ān+1). The coefficients an satisfy

|an| < 1 and

n∏
m=1

(1− |am|2) = κ−2
n =

Dn

Dn−1
for n ≥ 1,

where the Toeplitz determinants Dn are such that

D0 = μ0 and Dn =

∣∣∣∣∣∣∣∣∣

μ0 μ−1 · · · μ−n

μ1 μ0 · · · μ−n+1

...
...

...
μn μn−1 · · · μ0

∣∣∣∣∣∣∣∣∣
, n ≥ 1.

Here, the so-called moments μn have been defined by μn =
∫ 2π

0
e−inθdμ(eiθ) and

satisfy μ−n = μn, n ≥ 1.
It is also well known that the Szegő polynomials are completely characterized by

the coefficients {an}, as given by the following theorem.

Theorem 1.1. Given an arbitrary sequence of complex numbers {an}∞n=1, with
|an| < 1, n ≥ 1, associated with this sequence there exists a unique measure μ on
the unit circle such that the polynomials {Φn} generated by (1.1) are the respective
Szegő polynomials.

This theorem, previously known as Favard’s theorem for the circle, is referred
to as Verblunsky’s theorem in Simon [17], where many proofs of this theorem can
also be found.

Moreover, the zeros of Φn(z) are in D = {z : |z| < 1} and if

Ψn(z) =

∫
C

z + w

z − w
[Φn(z)− Φn(w)]dμ(w), n ≥ 1,

then

(1.2) lim
n→∞

Ψ∗
n(z)

Φ∗
n(z)

= F (z) =

∫
C

w + z

w − z
dμ(w),

uniformly on compact subsets of D (see Geronimus [7]). The function F (z) is called
the Carathéodory function of the measure μ.

There are very few examples of measures where the associated Szegő polynomials
or their basic relations have explicit formulas. Most of the known examples with
such desired property come from examples of real orthogonal polynomials on [−1, 1]
through the Szegő (or Joukowski) transformation x = z + z−1.

The current paper deals with the Szegő polynomials with respect to the measure
dμ(eiθ) = ω(θ)dθ, where ω(θ) = eηθ[sin(θ/2)]2λ, defined for η, λ ∈ R and λ >
−1/2. We give these Szegő polynomials and many of their basic relations explicitly.
However, polynomials that correspond to the case η = 0 are well known, as they
come from the Gegenbauer or Ultraspherical polynomials.

2. Three term recurrence relations for Szegő polynomials

As already given in [7, p. 91], if an �= 0, then the Szegő polynomials satisfy a
three term recurrence relation. Results in this section provide some information on
Szegő polynomials given by such a three term recurrence relation. These results
permit us to derive easily the remaining results in the paper.
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SZEGŐ POLYNOMIALS FROM HYPERGEOMETRIC FUNCTIONS 4261

Theorem 2.1. Let {Φn} be a sequence of polynomials given by the three term
recurrence relation

Φn+1(z) =
(
z + βn+1

)
Φn(z)− αn+1zΦn−1(z), n ≥ 1,

with Φ0 = 1 and Φ1(z) = z + β1. If

(2.1) βn+1 �= 0, αn+1 �= 0 and 0 <
αn+1

βn+1
= 1− |Φn(0)|2, for n ≥ 1,

then there exists a positive measure μ on the unit circle such that {Φn} are the
associated Szegő polynomials.

Proof. Let an = Φn(0), n ≥ 1. From Φn+1(0) = βn+1Φn(0), n ≥ 0, and (2.1) we
have

(2.2) β1β2 · · ·βn = an, αn+1 = βn+1(1− |an|2), n ≥ 1,

and |an| < 1, n ≥ 1. Hence, by Theorem 1.1 there exists a unique measure μ
associated with the sequence {an} and that the polynomials generated by the cor-
responding recurrence system (1.1) are the Szegő polynomials with respect to this
measure.

If β1 �= 0, observing that an �= 0, from (1.1) we can identify these Szegő poly-
nomials as the polynomials given by the three term recurrence relation (2.1) with
coefficients satisfying (2.2).

On the other hand, if β1 = 0, then an = 0 and αn+1 = βn+1, n ≥ 1, thus
giving the sequence of Chebyshev-Szegő polynomials. This sequence of polynomials
is treated as the example “free case” in [17]. This completes the proof of the
theorem. �

Having established the existence of the measure μ and the orthogonality of the
polynomials {Φn}, the following results in this section can be easily derived from
known results in the literature.

The coefficients of the three term recurrence relations satisfy β1 = −μ−1/μ0,

αn+1 =

∫
C zΦn(z)dμ(z)∫

C zΦn−1(z)dμ(z)
and

αn+1

βn+1
=

∫
C z

−nΦn(z)dμ(z)∫
C z

−(n−1)Φn−1(z)dμ(z)
, n ≥ 1.

Hence, κ−2
0 =

∫
C |Φ0(z)|2dμ(z) = μ0,

κ−2
n =

∫
C
|Φn(z)|2dμ(z) =

∫
C
z−nΦn(z)dμ(z) = μ0

α2α3 · · ·αn+1

β2β3 · · ·βn+1
, n ≥ 1,

and

∫
C
zΦn(z)dμ(z) = μ0β1α2α3 · · ·αn+1, n ≥ 1.

If one considers the sequence of polynomials {Qn} given by

(2.3) Qn(z) = −
∫
C

Φn(z)− Φn(w)

z − w
wdμ(w), n ≥ 0,

then

Qn+1(z) =
(
z + βn+1

)
Qn(z)− αn+1zQn−1(z), n ≥ 1,

with Q0 = 0, Q1(z) = μ0β1 and μ0 =
∫
C dμ(z). Note that Qn is a polynomial of

degree n− 1 with leading coefficient μ0β1.
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4262 A. SRI RANGA

From (2.3) and the theory of continued fractions (see [12, 13]),

(2.4)

Φn(z)L0(z)−Qn(z) = μ0
α2 · · ·αn+1

β2 · · ·βn+1
zn +O(zn+1),

L∞(z)− Qn(z)

Φn(z)
= μ0β1α2 · · ·αn+1

1

zn+1
+O(

1

zn+2
),

and

Qn(z)

Φn(z)
=

μ0β1

z + β1
− α2z

z + β2z
− · · · − αnz

z + βnz
,

for n ≥ 1, where L0(z) =
∑∞

j=0 μjz
j and L∞(z) = −

∑∞
j=1 μ−jz

−j are the series

expansions of the function
∫
C(w − z)−1wdμ(w).

Finally, from (2.3) and (1.2),

(2.5) lim
n→∞

zQ∗
n(z)

Φ∗
n(z)

=
1

2
μ0 −

1

2
F (z),

uniformly on compact subsets of D.

3. Szegő polynomials from hypergeometric functions

For a, b, c ∈ C and c �= 0,−1,−2, . . . , the hypergeometric function 2F1(a, b; c; z)
is defined by the series expansion

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!

for |z| < 1 and by analytic continuation for other values of z ∈ C. We refer to the
book of Andrews, Askey and Roy [1].

A representation of the Hypergeometric function for Re z < 1/2 is given by the
Pfaff transformation

(3.1) 2F1(a, b; c; z) = (1− z)−a
2F1(a, c− b; c; z/(z − 1)).

If Re c > Re b > 0, then for z �∈ [1,∞),

(3.2) 2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− zt)−adt,

known as Euler’s integral for hypergeometric functions. Here Γ represents the
gamma function. If a is an integer, then (3.2) holds for all z ∈ C.

Two “distinct” hypergeometric functions 2F1(a1, a2; a3; z) and 2F1(ã1, ã2; ã3; z)
may be called contiguous if |ai − ãi| = 0 or 1. There are interesting relations
between contiguous hypergeometric functions, called contiguous relations. Of the
many contiguous relations obtained by Gauss, we consider the following three term
relations given as (2.5.3) and (2.5.16) in [1]:
(3.3)

2F1(a, b; c; z) =
(
1 +

a− b+ 1

c
z
)

2F1(a+ 1, b; c+ 1; z)

− (a+ 1)(c− b+ 1)

c(c+ 1)
z 2F1(a+ 2, b; c+ 2; z)
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and
(3.4)

(c− a) 2F1(a− 1, b; c; z) =
(
c− 2a− (b− a)z

)
2F1(a, b; c; z)

+ a(1− z) 2F1(a+ 1, b; c; z).

Let, 2Re(b) �= −1,−2,−3, . . . . Then from the contiguous relation (3.4),

(b+ b̄+ 1 + n) 2F1(−n− 1, b+ 1; b+ b̄+ 1; 1− z)

=
(
b̄+ n+ (b+ 1 + n)z

)
2F1(−n, b+ 1; b+ b̄+ 1; 1− z)

− nz 2F1(−n+ 1, b+ 1; b+ b̄+ 1; 1− z).

Hence, the monic polynomials

(3.5) Φn(b; z) =
(b+ b̄+ 1)n
(b+ 1)n

2F1(−n, b+ 1; b+ b̄+ 1; 1− z), n ≥ 0,

satisfy the three term recurrence relation

Φn+1(b; z) = (z + β
(b)
n+1)Φn(b; z)− α

(b)
n+1zΦn−1(b; z), n ≥ 1,

with Φ0(b; z) = 1 and Φ1(b; z) = z + β
(b)
1 , where

(3.6) β(b)
n =

b̄+ n− 1

b+ n
, α

(b)
n+1 =

n(b+ b̄+ n)

(b+ n)(b+ n+ 1)
, n ≥ 1.

Note that β
(b)
n+1 �= 0, α

(b)
n+1 �= 0,

α
(b)
n+1

β
(b)
n+1

=
n(b+ b̄+ n)

(b+ n)(b̄+ n)
and 1− |Φn(b; 0)|2 = 1−

∣∣∣ (b̄)n
(b+ 1)n

∣∣∣2 =
n(b+ b̄+ n)

(b+ n)(b̄+ n)
,

for n ≥ 1. Hence, these coefficients satisfy the conditions of Theorem 2.1, provided
that Re(b) > −1/2.

Together with the polynomials {Qn(b; z)} given by

Qn+1(b; z) = (z + β
(b)
n+1)Qn(b; z)− α

(b)
n+1zQn−1(b; z), n ≥ 1,

with initial polynomials Q0(b; z) = 0 and Q1(b; z) = β
(b)
1 , we can now state the

following.

Theorem 3.1. Let Re(b) > −1/2. Then {Φn(b; z)} are the monic Szegő polyno-
mials defined by

(3.7)

∫
C
z̄jΦn(b; z)dμ(b; z) = (κ(b)

n )−2δnj , 0 ≤ j ≤ n,

with respect to a positive measure μ(b; z) on the unit circle. The coefficients κ
(b)
n =

‖Φn(b; z)‖−1 and a
(b)
n = Φn(b; 0) associated with these polynomials satisfy

κ(b)
n =

√
|(b+ 1)n|2

(b+ b̄+ 1)n n!
and a(b)n =

(b̄)n
(b+ 1)n

n ≥ 1.

Moreover,

Φn(b; z)L0(b; z)−
Qn(b; z)

Φn(b; z)
=

(b+ b̄+ 1)n n!

(b+ 1)n(b̄+ 1)n
zn +O(zn+1),

L∞(b; z)− Qn(b; z)

Φn(b; z)
=

b̄ (b+ b̄+ 1)n n!

(b+ 1)n(b+ 1)n+1

1

zn+1
+ O(

1

zn+2
),

n ≥ 1,
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4264 A. SRI RANGA

where L0(b; z) =
∑∞

j=0 μ
(b)
j zj and L∞(b; z) = −

∑∞
j=1 μ

(b)
−jz

−j, with

μ
(b)
0 =

∫
C
dμ(b; z) = 1 and μ

(b)
−j = μ

(b)
j =

∫
C
z−jdμ(b; z) =

(−b)j
(b̄+ 1)j

, j ≥ 1.

Proof. We only need to show μ
(b)
j = (−b)j/(b̄+1)j , j ≥ 0, as the remaining results

follow from results given in section 2.
If b = 0, since Φn(0; z) = zn, the results are clearly true. So we also assume

b �= 0.
From the contiguous relation (3.3),

2F1(a+ 1,−b; b̄+ 1; z)

2F1(a,−b; b̄; z)

=
1

1 +
a+ b+ 1

b̄
z − (a+ 1)(b+ b̄+ 1)

b̄(b̄+ 1)
z

2F1(a+ 2,−b; b̄+ 2; z)

2F1(a+ 1,−b; b̄+ 1; z)

.

Hence, if we write Rn(a, b; z) =
2F1(a+ n+ 1,−b; b̄+ n+ 1; z)

2F1(a+ n,−b; b̄+ n; z)
, n = 0, 1, 2, . . .,

then

R0(a, b; z) =
1

1 + g1z
− f2z

1 + g2z
−· · ·− fn−1z

1 + gn−1z
− fnz

1 + gnz − fn+1zRn(a, b; z)
,

where gn =
a+ b+ n

b̄+ n− 1
, fn+1 =

(a+ n)(b+ b̄+ n)

(b̄+ n− 1)(b̄+ n)
, n ≥ 1.

If we restrict ourselves to the case in which a = 0, then

R0(0, b; z) = 2F1(1,−b; b̄+ 1; z)

=
1

1+g1z
− f2z

1 + g2z
− · · · − fn−1z

1 + gn−1z
− fnz

1+gnz−fn+1zRn(0, b; z)
,

where gn =
b+ n

b̄+ n− 1
, fn+1 =

n(b+ b̄+ n)

(b̄+ n− 1)(b̄+ n)
, n ≥ 1.

Equivalently, we can also write

R0(0, b; z) =
β1

z + β1
− α2z

z + β2
− · · · − αnz

z + βn
− αn+1z Rn(0, b; z)

βn+1
,

where

(3.8) βn =
1

gn
= β(b)

n αn+1 =
fn+1

gngn+1
= α

(b)
n+1, n ≥ 1.

Using the theory of continued fractions, we then observe that

R0(0, b; z)−
Qn(b; z)

Φn(b; z)
=

β
(b)
n+1Qn(b; z)− α

(b)
n+1zRn(0, b; z)Qn−1(b; z)

β
(b)
n+1Φn(b; z)− α

(b)
n+1zRn(0, b; z)Φn−1(b; z)

− Qn(b; z)

Φn(b; z)

=
β
(b)
1 α

(b)
2 · · ·α(b)

n α
(b)
n+1z

nRn(0, b; z)

[β
(b)
n+1Φn(b; z)− α

(b)
n+1zRn(0, b; z)Φn−1(b; z)]Φn(b; z)

=
(b+ b̄+ 1)n n!

(b̄)n(b̄+ 1)n
zn +O(zn+1).
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Hence L0(b; z) = 2F1(1,−b; b̄+ 1; z), and the theorem follows. �

From μ
(b)
−j = μ

(b)
j , we also have

(3.9) L∞(b; z) =
b̄

b+ 1
z−1

2F1(1,−b̄+ 1; b+ 2; z−1).

The following asymptotic results also hold.

Theorem 3.2.

lim
n→∞

κ(b)
n =

√
Γ(b+ b̄+ 1)

|Γ(b+ 1)| and lim
n→∞

nb−b̄+1a(b)n =
Γ(b+ 1)

Γ(b)
.

Proof. In the expressions given in Theorem 3.1 for κ
(b)
n and a

(b)
n , use Γ(z) =

lim
n→∞

n!nz−1

(z)n
. �

Some orthogonal Laurent polynomials generated by the contiguous relations (3.3)
and (3.4) are considered in Hendriksen and van Rossum [9], where they obtain or-
thogonality for these Laurent polynomials in terms of a non-positive-definite mo-
ment functional.

The contiguous relation (3.4) also gives rise to the Meixner-Pollaczek polynomi-

als P
(λ,θ)
n (x) = (2λ)n

n! einθ 2F1(−n, λ + ix; 2λ; 1 − e−2iθ) , which are orthogonal on
(−∞,∞). For more information on these polynomials see for example [10].

4. More on the measure and related functions

Unless stated otherwise, we assume that Re b > −1/2. The following theorem
gives the exact expression for the measure μ(b; z).

Theorem 4.1. The measure μ(b; z) can be given by dμ(b; eiθ) = ω(b; θ)dθ, where

ω(b; θ) = τ (b) e(π−θ)Im b [sin(θ/2)]2Re b, 0 ≤ θ ≤ 2π.

The constant τ (b) =
2b+b̄ |Γ(b+ 1)|2
2π Γ(b+ b̄+ 1)

is such that μ
(b)
0 = 1.

Proof. Since, μ
(b)
j =

∫ 2π

0
e−ijθω(b; θ)dθ =

∫ 2π

0
eijθω(b; θ)dθ = μ

(b)
−j , we only have to

show that

μ
(b)
j = τ (b)

∫ 2π

0

e−ijθe(π−θ)Im b[sin(θ/2)]2Re bdθ =
(−b)j
(b̄+ 1)j

, j ≥ 0.

With 2i sin(θ/2) = eiθ/2 − e−iθ/2,

μ
(b)
j = τ̃ (b)

∫ 2π

0

e−i(j+b̄)θ[eiθ − 1]b+b̄dθ, j ≥ 0,

where τ̃ (b) = (2i)−2Re(b)eIm(b)πτ (b). Thus, observing that we can also write this in

the form μ
(b)
j = τ̃(b)

∫ 2π

0
(i)−1e−i(j+b̄+1)θ[eiθ − 1]b+b̄ieiθdθ, j ≥ 0, by integration by

parts we establish that

μ
(b)
j+1 =

−b+ j

b̄+ 1 + j
μ
(b)
j , j ≥ 0.
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Figure 1. Contour Λ

Therefore, the proof will be complete if we can prove μ
(b)
0 = 1, equivalently, if

we can show that μ
(b)
j = (−b)j/(b̄ + 1)j or μ

(b)
−j = (−b̄)j/(b + 1)j for some other

particular value of j.
With z = eiθ, one can write

(4.1) μ
(b)
−j =

i

2b+b̄
τ (b)

∫
C
zj(−z)−b̄−1(1− z)b+b̄dz,

where the branch cuts in (−z)−b̄ and (1− z)b+b̄ are along the positive real axis.
Hence, we choose a j such that Re(j−b̄) > 0 and evaluate the integral by contour

integration using the contour Λ as given in Figure 1. Thus,

μ
(b)
−j =

i

2b+b̄
τ (b)2i sin(b̄π)

∫ 1

0

tj−b̄−1(1− t)b+b̄dt.

Hence, from the definitions of the gamma function, the beta function and the Euler’s
reflection formula, we obtain the required result. This completes the proof of the
theorem. �

The idea used here to calculate the integral (4.1) is the same as employed in [9],
where the authors consider a general set of parameters for the exponents of z and
1− z, but restricting the values of the parameters to be real.

Theorem 4.2. If Re b > 0, then for all z ∈ C the polynomials Φn(b; z) and their
reciprocals Φ∗

n(b; z) can be given by

Φn(b; z) =
Γ(b+ b̄+ n+ 1)

Γ(b+ n+ 1) Γ(b)

∫ 1

0

tb(1− t)b̄−1[1− (1− z)t]ndt,

Φ∗
n(b; z) =

Γ(b+ b̄+ n+ 1)

Γ(b̄+ n+ 1) Γ(b̄)

∫ 1

0

tb−1(1− t)b̄[1− (1− z)t]ndt,

n ≥ 1.

Proof. The expression for Φn(b; z) follows immediately from (3.5) with the use of

(3.2). To obtain the other, we can directly evaluate znΦn(b; 1/z̄) from the above
Euler integral for Φn(b; z) or use (3.5) together with (3.1) to get

Φ∗
n(b; z) =

(b+ b̄+ 1)n
(b̄+ 1)n

2F1(−n, b; b+ b̄+ 1; 1− z), n ≥ 0,

and then use (3.2). �
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We can now give an expression for the associated Szegő function

D(b; z) = exp

(
1

4π

∫ 2π

0

eiθ + z

eiθ − z
log(ω(b; θ))dθ

)
.

Theorem 4.3.

D(b; z) =
|Γ(b+ 1)|√
Γ(b+ b̄+ 1)

(1− z)b.

Proof. First we assume that Re b > 0 and use the knowledge that κ
(b)
n Φ∗

n(b; z) →
D(b; z)−1 uniformly on compact subsets of D. With the substitution u = nt, we
have from Theorem 4.2 that

κ(b)
n Φ∗

n(b; z) = κ(b)
n

Γ(b+ b̄+ n+ 1)

Γ(b̄+ n+ 1) Γ(b̄)

1

nb

∫ n

0

ub−1
(
1− u

n

)b̄(
1− (1− z)

u

n

)n
du.

Using

Γ(z) = lim
n→∞

n!nz−1

(z)n
and ez = lim

n→∞

(
1 +

z

n

)n
,

together with the help of the Lebesgue’s dominated convergence theorem, we then
have

lim
n→∞

κ(b)
n Φ∗

n(b; z) =

√
Γ(b+ b̄+ 1)

|Γ(b+ 1)|
1

Γ(b)

∫ ∞

0

ub−1e−(1−z)udu

for 0 < z < 1. Hence the theorem follows from the integral representation for a
gamma function. The result for remaining values of z follows by analytic continu-
ation. The result can also be analytically extended for Re(b) > −1/2. �

From (2.5) and (3.9) for the associated Carathéodory function,

1− lim
n→∞

2zQ∗
n(b; z)

Φ∗
n(b; z)

= F (b; z) = −1 + 2 2F1(1,−b+ 1; b̄+ 1; z)

for z on compact subsets of D.

Using [1, Eq. (2.3.14)], since Φn(b; z) =
(b̄)n

(b+1)n 2F1(−n, b+ 1; 1− n− b̄; 1− z), a

generating function for these Szegő polynomials is G(b; z, t) = (1−t)−b̄(1−tz)−b−1,
and one can verify that

G(b; z, t) =
∞∑

n=0

(b+ 1)n
n!

Φn(b; z) t
n.

This generating function shows that the Szegő polynomials considered here are very
similar to orthogonal functions considered by Gasper [6].

5. Para-orthogonal polynomials

As defined by Jones, Nj̊astad and Thron [11], for any ρ such that |ρ| = 1, the
polynomial

Bn(b, ρ; z) =
Φn(b; z) + ρΦ∗

n(b; z)

1 + ρΦn(b; 0)

is a monic para-orthogonal polynomial of degree n. The zeros of these polynomials
are simple and lie on the unit circle C. This is different from the Szegő polynomials
which have their zeros, not necessarily simple, but which lie within the open unit
disk D.
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Since Φn(0; z) = zn, we clearly have Bn(0, ρ; z) = zn + ρ, which clearly has n
distinct zeros on the unit circle.

Now, assuming b �= 0, let

ρ
(b)
n1 =

(b̄)n+1

(b)n+1
and ρ

(b)
n2 = − (b̄+ 1)n

(b+ 1)n
, n ≥ 1.

Then the following can be easily established for the sequences of monic para-

orthogonal polynomials {Bn(b, ρ
(b)
n1 ; z)} and {Bn(b, ρ

(b)
n2 ; z)}.

Theorem 5.1. With Re b > −1/2 and b �= 0, if Φ
(1)
n (b; z) = Bn(b, ρ

(b)
n1 ; z), then

Φ(1)
n (b; z) =

(b+ b̄)n
(b)n

2F1(−n, b; b+ b̄; 1− z), n ≥ 1, for Re b �= 0,

Φ(1)
n (b; z) =

n!

(b)n
(z − 1) 2F1(−n+ 1, b+ 1; 2; 1− z), n ≥ 1, for Re b = 0.

Moreover,

Φ
(1)
n+1(b; z) =

(
z +

b̄+ n

b+ n

)
Φ(1)

n (b; z)− n(b+ b̄+ n− 1)

(b+ n− 1)(b+ n)
zΦ

(1)
n−1(b; z), n ≥ 1,

with Φ
(1)
0 (b; z) = 1 and Φ

(1)
1 (b; z) = z + b̄/b.

Similarly with Re b > −1/2, if (z − 1)Φ
(2)
n−1(b; z) = Bn(b, ρ

(b)
n2 ; z), then

Φ(2)
n (b; z) =

(b+ b̄+ 2)n
(b+ 1)n

2F1(−n, b+ 1; b+ b̄+ 2; 1− z), n ≥ 0,

and

Φ
(2)
n+1(b; z) =

(
z +

b̄+ n+ 1

b+ n+ 1

)
Φ(2)

n (b; z)− n(b+ b̄+ n+ 1)

(b+ n)(b+ n+ 1)
zΦ

(2)
n−1(b; z), n ≥ 1,

with Φ
(2)
0 (b; z) = 1 and Φ

(2)
1 (b; z) = z + (b̄+ 1)/(b+ 1).

Again, the three term recurrence relations follow from the contiguous relation
(3.4).

6. Concluding remarks

From the properties of the zeros of Szegő polynomials and para-orthogonal poly-
nomials, we can also state the following.

Remark 6.1. If Re b > −1/2, then the zeros of the nth degree hypergeometric
polynomial 2F1(−n, b+ 1; b+ b̄+ 1; 1− z) lie within the ring |b+ n|−1|b| ≤ |z| < 1
and, also if Re b �= 0, then the zeros of the nth degree hypergeometric polynomial

2F1(−n, b; b+ b̄; 1− z) are distinct and lie on the unit circle.

For the lower bound of the zeros of 2F1(−n, b+1; b+b̄+1; 1−z) see Corollary 1.7.3
of [17].

As we have already remarked in the introduction, if b = λ is real, then the poly-
nomials {Φn(λ; z)} are the monic Szegő polynomials associated with the weight
function [sin(θ/2)]2λ. Hence, these are the polynomials obtained from the Gegen-
bauer polynomials using the Szegő transformation.

Taking b = −iη, we can state the following.
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Remark 6.2. Let η ∈ R. Then

Φn(−iη; z) =
n!

(1− iη)n
2F1(−n, 1− iη; 1; 1− z), n ≥ 0,

are the monic Szegő polynomials associated with the weight function eηθ, with the
orthogonality given by

1

2π

∫ 2π

0

e−ijθΦn(−iη; eiθ) eηθdθ =
eηπ(n!)2

|Γ(1 + n− iη)|2 δnj , 0 ≤ j ≤ n.

Moreover, the Verblunsky coefficients a
(−iη)
n = (iη)n/(1− iη)n, n ≥ 1, are such that

|a(iη)n |2 = η2/(n2 + η2).

Similar orthogonality, however with an inclusion of a mass point at z = 1, was
recently obtained in Tsujimoto and Zhedanov [24].

Finally, communications with Prof. Richard Askey after the initial submission
of this paper has brought to our attention one of his comments regarding [21] on
page 304 of [2]. There he mentions the biorthogonality of {2F1(−n, x;x + y −
1; 1 − z)} and {2F1(−n, y;x + y − 1; 1 − z)} with respect to the weight function
ei(x−y)θ/2[sin θ/2]x+y−2, 0 ≤ θ ≤ 2π. Surprisingly, it seems no one has done this;
the orthogonality results in the current paper can be realized if we take x = b̄ + 1
and y = b+1. Professor Askey also informed me of the paper [23] on the asymptotic
expansion for these polynomials.
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