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The absorption cross section of black holes has been investigated for various fields. Nevertheless, the
absorption cross section of Schwarzschild black holes for the electromagnetic field has been only
calculated in the low- and high-frequency approximations until now. Here we compute it numerically
for arbitrary frequencies.
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The absorption cross section of Schwarzschild black
holes in four dimensions has been computed for the mass-
less scalar [1] and fermion [2] fields for arbitrary frequen-
cies and for the electromagnetic field in the low- and high-
frequency regimes [3–5]. Some of these cases also have
been extended to spherically symmetric black holes in
higher dimensions using standard field theory in curved
spacetimes [6–8] and effective string model [9]. However,
the absorption cross section of Schwarzschild black holes
for the electromagnetic field has not been computed for
arbitrary frequencies so far. This may be because of addi-
tional difficulties associated with the gauge freedom of the
Maxwell field, which are not present in the Klein-Gordon
and Dirac fields. In this paper, we obtain the absorption
cross section for Schwarzschild black holes in four dimen-
sions for electromagnetic waves with arbitrary frequencies
through numerical computations.

Let us start by analyzing the classical solutions of the
Maxwell field in the Schwarzschild spacetime character-
ized by the line element

 ds2 � f�r�dt2 � f�r��1dr2 � r2d�2 � r2sin2�d�2;

where f�r� � 1� 2M=r. (Here we let c � G � 1.)
The Lagrangian density of the electromagnetic field in

the modified Feynman gauge is

 L �
�������
�g
p

��1
4F��F

�� � 1
2H

2�;

with g � det�g���, H � r�A� � K�A�, and K� �

�0; df=dr; 0; 0�. The corresponding Euler-Lagrange equa-
tions are

 r�F�� �r�H � K�H � 0: (1)

Schwarzschild spacetime is endowed with the timelike
Killing field @t in the region r > 2M. Thus, it is convenient
to look for solutions of Eq. (1) in the form

 A�"n!lm�� � �"n!lm� �r; �;��e�i!t; ! > 0:

Modes incoming from the past horizon H� are labeled by
n �! , whereas modes incoming from the past infinity
J� are labeled by n � . Here " � G, I, II, NP repre-
sent the four different polarization modes. Modes with " �
G are called pure gauge modes. They satisfy the gauge
condition H � 0 and in addition can be written as
A�Gn!lm�� � r�� with � being a scalar field. The physical
modes, with " � I, II, also satisfy H � 0 but are not pure
gauge modes. The label " � NP is for the nonphysical
modes, i.e., the ones which do not satisfy the gauge con-
dition. We shall only be concerned with the two physical
modes. (Further discussions on pure gauge and nonphys-
ical modes can be found elsewhere [8,10].)

The physical modes can be written as
 

A�In!lm�� �

�
0;
’In!l�r�
r

Ylm;
f

l�l� 1�

d
dr
�r’In!l�r��@�Ylm;

f
l�l� 1�

d
dr
�r’In!l�r��@�Ylm

�
e�i!t; (2)

 A�IIn!lm�� � �0; 0; r’IIn!l �r�Y
lm
� ; r’

IIn
!l �r�Y

lm
� �e

�i!t; (3)

with l 	 1. For l � 0 there are no modes satisfying the
gauge condition which are not pure gauge. The functions
Ylm and Ylma are the scalar and vector spherical harmonics
[11], respectively.

The angular components of the physical modes in
Eqs. (2) and (3) can be written as

 A��n!lm�a � @a���n!lm� � �ab@b���n!lm�; (4)

where the functions ���n!lm� and ���n!lm� (� � I, II) are
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 ��In!lm� �
f

l�l� 1�

d
dr
�r’In!l�r��Ylme

�i!t; (5)

 ��IIn!lm� �
�1����������������
l�l� 1�

p r’IIn!l �r�Ylme
�i!t; (6)

and ��� � ��� � 0, ��� � ���� � sin�. The indices a
and b denote angular variables on the unit 2-sphere S2 with
metric ~�ab and inverse metric ~�ab [with signature (��)].

The radial functions ’�n!l�r� satisfy the following differ-
ential equation

 �!2 � VS��r’�n!l�r�� � f
d
dr

�
f
d
dr
�r’�n!l�r��

�
� 0; (7)

where the scattering potential is VS � fl�l� 1�=r2.
The conjugate momenta associated with the field modes

A�i�� above are

 ��i��� � ��F�� � g��H�jA��A�i�� ;

where the label (i) stands for the set ("n!lm).
The modes can be orthonormalized using the general-

ized Klein-Gordon inner product

 �A�i�; A�j�� �
Z

�
d��3�n�W��A�i�; A�j��:

Here d��3� is the invariant 3-volume element of the Cauchy
surface �, n� is the future pointing unit vector orthogonal
to � and W��A�i�; A�j�� is the conserved current given by

 W��A�i�; A�j�� � i�A�i�
� ��j��� ���i���
A�j�� �: (8)

The physical modes will be orthonormalized by imposing

 �A��n!lm�; A��
0n0!0l0m0�� � 	��0	nn0	ll0	mm0	�!�!

0�: (9)

The solutions of Eq. (7) are functions whose properties
are not well known. We can, however, obtain their analytic
form (i) in the asymptotic regions for any frequency and
(ii) everywhere in the low-frequency approximation. In
order to study the asymptotic behavior of the physical
modes we use the Wheeler coordinate x � r�
2M ln�r=2M� 1� and rewrite Eq. (7) as

 �!2 � VS��r’
�n
!l�x�� �

d2

dx2�r’
�n
!l�x�� � 0:

Since we are interested in computing the absorption cross
section, we only need to deal with the modes incoming
from J�. The asymptotic forms of these modes are

 r’� !l �r� �
�
B� !l T

� 
!l e

�i!x �r � 2M�;

B� !l ���i�
l�1!xh�1�
l �!x� � R

� 
!l i

l�1!xh�1�l �!x�� �r� 2M�:
(10)

Here h�1�l �x� are the spherical Bessel functions of the third
kind [12], B� !l are normalization constants, jR� !l j

2 and
jT� !l j

2 are the reflexion and transmission coefficients,
respectively, satisfying the usual probability conservation
equation jR� !l j

2 � jT� !l j
2 � 1. Using the generalized

Klein-Gordon product (9) we get jBI !l j �����������������������������������
l�l� 1�=�4
!3�

p
and jBII !l j � 1=

�����������
4
!
p

.
Let us now find the analytic expressions of the physical

modes in the low-frequency approximation. This is going
to be useful as a consistency check for our arbitrary fre-
quency numerical calculation. For this purpose we rewrite
Eq. (7) as
 

d
dz

�
�1� z2�

d’�n!l�z�
dz

�
�

�
l�l� 1� �

2

z� 1

�!2M2�z� 1�3

z� 1

�
’�n!l�z� � 0; (11)

where z � r=M� 1. In the low-frequency regime, the
solutions of Eq. (11) for modes incoming from J�, with
l 	 1, are given by

 ’� !l �z� � C� !l

�
Pl�z� �

�z� 1�

l�l� 1�

dPl�z�
dz

�
; (12)

where Pl�z� are the Legendre functions of the first kind [13]

and C� !l are normalization constants. Now, by comparing
the asymptotic form of Eq. (12) for r� 2M with Eq. (10)
in the low-frequency limit, we find that the normalization
constants are (up to arbitrary phases)

 CI !l �
1��������������������


l�l� 1�
p 2l��l� 1�!�2Ml

�2l�!�2l� 1�!!
!l�1=2;

CII !l �
1����


p

2l�l� 1��l!�2Ml

l�2l�!�2l� 1�!!
!l�1=2:

Now, let us calculate the black hole absorption cross
section. Since the Schwarzschild spacetime is asymptoti-
cally flat, we consider an incident electromagnetic circu-
larly polarized plane wave propagating in the z direction:

 Ax � exp�i!�z� t��; (13)

 Ay � i exp�i!�z� t��: (14)

Expanding Eqs. (13) and (14) in terms of Legendre func-
tions, we may write the spherical polar components of this
incident electromagnetic plane wave as

 Ar �
X1
l�1

il�1�2l� 1�
�
jl�!r�
!r

�
P1
l �cos��ei�e�i!t; (15)
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 A� �
X1
l�0

il�2l� 1��rjl�!r��Pl�cos�� cos�ei�e�i!t; (16)

 A� �
X1
l�0

il�1�2l� 1��rjl�!r��Pl�cos�� sin�ei�e�i!t;

(17)

where P1
l �cos�� are the associated Legendre functions

[12,13] and jl�!r� are the spherical Bessel functions of
the first kind [12].

Let us now write the angular components of this incident
plane wave as

 Aa � @a�� �ab@
b�: (18)

To determine � and � we recall that far away from the
black hole the gauge condition H � 0 reduces to the usual
Lorenz condition in flat spacetime, namely,

 r�A� � @tAt �
1

r2 @r�r
2Ar� �

1

r2
~raAa � 0;

where ~ra is the associated covariant derivative on S2,
~ra � ~�ab ~rb, and ~r2 � ~�ab ~ra ~rb. From Eq. (18), it fol-
lows that �ab ~raAb � �~r2� and ~raAa � ~r2�. We use
these relations together with Lorenz condition to obtain
from Eqs. (15)–(17) that

 � �
X1
l�1

il�1

!
�2l� 1�

l�l� 1�

d
dr
�rjl�!r��P1

l �cos��ei�e�i!t;

� �
X1
l�1

il�1 �2l� 1�

l�l� 1�
�rjl�!r��P1

l �cos��ei�e�i!t:

In the limit r! 1 the scalar functions � and � can be
written as
 

� �
X1
l�1

��1�l�1

2!2

�2l� 1�

l�l� 1�

d
dr
�e�i!r � ��1�lei!r�


 P1
l �cos��ei�e�i!t; (19)

 

� �
X1
l�1

��1�l

2!
�2l� 1�

l�l� 1�
�e�i!r � ��1�lei!r�


 P1
l �cos��ei�e�i!t: (20)

Equations (19) and (20) will be used as a guide for the
asymptotic form of the incident plane wave in the black
hole spacetime. Substituting Eq. (10) in Eqs. (4)–(6) we
can write
 

�bh �
X1
l�1

��1�l�1

2!2

�2l� 1�

l�l� 1�

d
dr
�e�i!r � RI !l e

i!r�


 P1
l �cos��ei�e�i!t; (21)

 

�bh �
X1
l�1

��1�l

2!
�2l� 1�

l�l� 1�
�e�i!r � RII !l e

i!r�


 P1
l �cos��ei�e�i!t; (22)

which correspond to � and � given in Eqs. (19) and (20),
respectively.

The absorption cross section is given by � � �F =J,
where F is the integrated flux of the modes with n � 
and J is the incident current density. The incident current
associated to the plane wave (13) and (14) is J � 4!. The
incoming (n � ) flux of the current (8) associated to the
physical modes given by Eqs. (2) and (3) is

 F � i
I
r!1

d�r2Wr

� i
I
r!1

d���~r2�bh�@r�
bh ��
bh@r�
~r2�bh�

� �~r2�bh�@r�
bh ��
bh@r�
~r2�bh��; (23)

where d� is the solid angle element. We have used the fact
that A��n!lm�r falls as r�2 for large r. Substituting Eqs. (21)
and (22) in Eq. (23) we obtain the black hole absorption
cross section for the electromagnetic field:

 �E �
X1
l�1

��l�E �



2!2

X1
l�1

X
��I;II

�2l� 1�jT� !l j
2: (24)

Using the low-frequency approximation of ’� !l given
by Eq. (12) for r! 2M and comparing it with Eq. (10) for
r! 2M and ! � 0, we find that jTI !1 j

2 � jTII !1 j
2 �

64�M!�4=9, which gives the leading ! contribution in
Eq. (24). Hence, to lowest order in !, the absorption cross
section is [4,5]

 ��!�0�
E � 4

3
R
4
S!

2; (25)

where RS � 2M is the Schwarzschild radius.
Now, we compute the absorption cross section numeri-

cally, using Eq. (24). The numerical method used here is
described in Ref. [14].

In Fig. 1 we plot our results for the partial absorption
cross section ��l�E for l � 1 up to l � 6. We see that, for
each value of l, the corresponding partial absorption cross
section starts from zero, reaches a maximum value ��l�max

E ,
and then falls to zero for !2 � Vmax

S , where Vmax
S is the

maximum of the effective scattering potential. We also see
that the larger the value of l�	 1� is (i) the smaller is the
corresponding value of ��l�max

E and (ii) the larger is the
value of ! associated with ��l�max

E . This is all compatible
with the fact that the scattering potential VS is larger for
larger values of l. (We recall that modes with l � 0 are not
physical modes in the electromagnetic case.)

In Fig. 2 we plot our results for the total absorption cross
section �E with the summation in Eq. (24) performed up to
l � 6. We note that for large !, the total absorption cross
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section �E oscillates around the limit of geometrical optics
�O � 27
M2. This is also verified by the total absorption
cross section for the massless scalar field, �S, which was
originally computed by Sanchez [1]. From Fig. 2 we can
see also that for very low frequencies, corresponding to
large wavelengths compared to the Schwarzschild radius,
�E (as well as �S) behaves as expected. While for the
electromagnetic case the low-energy total absorption cross
section goes to zero, in the massless scalar case it tends to
the area of the black hole (see, e.g., Ref. [6]). We also plot
��!�0�
E given by Eq. (25), which has been analytically

calculated. This makes it clear that our numerical compu-
tation of �E agrees with its analytic value in the low-
frequency limit. It is interesting to note that �E and �S
have similar oscillatory behaviors in the high-frequency
regime. In both cases the total absorption cross sections
have local maxima corresponding to the maximum of each
partial absorption cross section.

In summary we have computed numerically the total
Schwarzschild black hole absorption cross section of elec-
tromagnetic waves for arbitrary frequencies. We have
checked our result in the low- and high-frequency limits
and found that its high-frequency behavior is very similar
to that for the massless scalar field.
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FIG. 2. The total absorption cross sections for the electromag-
netic case �E and massless scalar case �S are plotted as
functions of the frequency !. The summation in the angular
momentum is performed up to l � 6. We see that for high
frequencies they oscillate around the limit of geometrical optics
�O � 27
M2. We also plot ��!�0�

E calculated analytically [see
Eq. (25)] to show that this is in agreement with our numerical
calculation.
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FIG. 1. The partial electromagnetic absorption cross section
��l�E is plotted as a function of the wave frequency ! for l � 1 up
to l � 6. We note that the larger l is, the smaller is the maximum
of the corresponding ��l�E .
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