
�
��
�
��
�
�
�

�
�
��

�
��
��
�
��
	
		








�
��

�� ��� ���� ���� ��� IFT
Instituto de F́ısica Teórica
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Resumo

Observações atuais do satélite Wilkinson Microwave Anisotropy Probe (WMAP)

da Radiação Cósmica de Fundo (CMB) e estruturas de grande escala (LSS) têm

permitido melhorar os estudos das anisotropias secundárias, especialmente o efeito

Sachs-Wolfe Integrado (ISW). Usando a correlação cruzada entre a CMB e ma-

pas da LSS, o sinal do efeito ISW pode ser detectado. Nós podemos usar o efeito

ISW junto com o modelo cosmológico padrão (neste caso o Universo esta domi-

nado pela constante cosmológica e a Matéria Escura Fria, ΛCDM) mais algoritmos

numéricos para restringir os parâmetros em um modelo cosmológico com energia

escura. Para diferentes casos com um único parâmetro livre de um model de Quin-

tessência parametrizado, w0 < 0 e 2, 0 < wa < −2, 0, podemos encontrar bins

de largura [−1, 926 , −0, 323] em w0 e [−0, 855 , 1, 190]. Nestes intervalos, obtemos

um sigma de nivel tomando o 68% da amostra que melhor se ajusta ao modelo

cosmológico padrão.

Keywords: Dark energy; ΛCDM; Power spectrum; Cosmic Microwave Background;

Integrated Sachs-Wolfe effect; Quintessence models.

Areas: Cosmology and Astrophysics
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Abstract

Current observations of the Wilkinson Microwave Anisotropy Probe (WMAP)

satellite of Cosmic Microwave Background (CMB) and Large Scale Structure (LSS)

have allowed to improve studies of the secondary anisotropies, especially the In-

tegrated Sachs-Wolfe effect (ISW). Using the cross-correlation between the CMB

and LSS maps, the ISW effect signal can be detected. We can use the ISW effect

together with standard cosmological model (in this case the Universe is dominated

by the cosmological constant and Cold Dark Matter, ΛCDM) plus numerical algo-

rithms to constrain the parameters in a cosmological model with dark energy. For

cases different with a single free parameter of a parameterised Quintessence model,

w0 < 0 and 2, 0 < wa < −2, 0, we can find bins of width [−1, 926 , −0, 323] in w0

and [−0, 855 , 1, 190] in wa. In these intervals, we obtain one sigma level by taking

the 68% of the sample which best fit the standard cosmological model.
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Introduction

From the measurements of supernovae Ia distances made by Perlmutter and Riess

in [1, 2], we changed the vision of the Universe dynamics at the end of the 90’s.

They discovered that the Universe is expanding in an accelerated way, therefore it

is necessary to insert an exotic energy component, which has negative pressure and

dominates the Universe dynamics. This component is called dark energy. There are

different theories and cosmological models that try to explain this type of energy.

Among them we find the cosmological constant and Quintessence models [3, 4]. In

the chapter 1 we present the basic notions for a Universe with cosmological constant

and a parameterised Quintessence model with three parameters. In addition, we

develop the necessary theory to understand the Universe dynamics according to

a given cosmological model. This theoretical framework is built using the post-

Newtonian description, see [5].

One of the fundamental pieces to understand the modern Cosmology is given by

the study of anisotropies of the Cosmic Microwave Background (CMB). This study

begins with the discovery of the anisotropies made by the Differential Microwave Ra-

diometer (DMR) experiment on the Cosmic Background Explorer (COBE) satellite

in the early 90’s, see [6]. Currently we have the results of seven years Wilkinson Mi-

crowave Anisotropy Probe (7WMAP) [7]. The acceleration of the Universe seen by

supernovae, joint to the analysis of CMB with Large Scale Structure (LSS) requires

zero curvature [8, 9], i.e., a locally flat Universe. The anisotropies seen in the CMB

is a clear evidence of the big bang theory, and so we can explain the LSS formation

that is known today. In the chapter 2 we develop the theory for understanding

the evolution of the matter fluctuations in the Universe after the matter radiation

equality. Given that the perturbations studied will be consider on the horizon, we

shall work in the Newtonian framework.

The main objective is to study the parameters behavior in cosmological models

with dark energy (parameterised Quintessence model, it is described by the equation

of state (4.1)) and compute their best fit with the standard cosmological model

(ΛCDM model, defined in section 4.1) until one sigma level, using the Integrated

Sachs-Wolfe (ISW) effect [10].
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The main secondary anisotropy at large angle is the so-called Integrated Sachs-

Wolfe effect, which is a signature of the decay of the gravitational potential at large

scales. This could be either a result of spatial curvature [11, 12] , or presence of a

component with negative pressure, the so-called dark energy, in the Universe [13].

Crittenden and Turok [14] proposed to use the cross-correlation between the LSS

and the CMB to detect it. They showed that such correlations also include a cosmic

magnification signal which may minimize or dampen the ISW effect, especially at

high redshift.

Initial CMB-galaxy cross-correlation measurements using the Cosmic Background

Explorer (COBE) data failed to find a signal, but this changed dramatically with

the arrival of the WMAP data. Weak correlations, at the 2-3σ level, were soon seen

between the CMB and numerous probes of large scale structure, such as the NVSS

radio galaxy survey and X-ray background [18], and in optical survey like the SDSS

[19], while weaker indication been seen using the shallower 2MASS infrared survey

[17, 20]. Planck should not dramatically differ from WMAP on the large scale to

which the ISW is most sensitive, but its greater resolution and frequency coverage

will enable greater control of possible systematic contaminations from the galaxy

and extra-galactic point sources. In the chapter 3 we present the main concepts

for understanding the properties of matter fluctuations, the CMB angular power

spectrum, ISW effect and the cross-correlation between the LSS and the CMB.

Constraining cosmological parameters from measurements of the ISW effect re-

quires developing robust and accurate methods for computing statistical errors in

the cross-correlation between maps. We use the likelihood function in this case, see

[21]. Numerical algorithms developed in this work are based in the routines given

in Numerical Recipes in C [22]. In [17] and [20], Afshordi et al. and Rassat et

al. respectively show the formalism to find the statistical errors in the detection of

the ISW effect via the cross-correlation. In addition, Rassat et al. determine the

value for the linear bias, which is derived directly from the 2 Micron All-Sky Survey

(2MASS).

We used two cases with a single free parameter in a parameterised Quintessence

model described by equation of state (4.1). We get a value range for the parameter

for each case, using the best fit with the standard cosmological model via ISW effect.

In addition, we study the behavior of a parameterised Quintessence model with two

parameters, in this case, we present the contour curves that enclose the values for

the parameters with the best fit in one sigma level. In this way, we accomplish

to characterize the parameters in a cosmological model with dark energy using the

ISW effect.



Chapter 1

Standard Cosmology notions

In Cosmology we study the nature of large scale and dynamics of the Universe. The

objectives are to study the origin of the Universe and the current paradigm given by

observations (i.e., Universe is expanding in an accelerated way) which is associated

with a type of energy with negative pressure called dark energy. Its nature is still

unknown, see [1, 2]. Cosmology as it is known today was prompted at the beginning

of the 20th century with the theory of general relativity and the solution of the field

equations in a homogeneous and isotropic Universe.

In this chapter the basic concepts will be developed in the framework of the

standard Cosmology.

1.1 Universe components

The Universe we see today is composed of photons, baryons (ordinary matter), dark

matter, dark energy and neutrinos. The dynamics of the Universe is determined by

the amount of each component.

Photons

It is the largest component of the CMB. Today CMB has a temperature of T0 =

2, 725 ± 0, 002K [28]. Photons are massless bosons satisfying the Bose-Einstein

distribution

ργ = 2

∫ ∞

0

p c

exp( p c
kB T

)− 1

4π p2

(2π)3
dp,

where p is the momentum, c the speed of light, kB is the Boltzmann’s constant,

radiation density ργ due to photons and T the temperature. The factor two multi-

plying the integral is due to the spin of the photon. The above expression can be

accurately calculated obtaining

ργ =
π2 k4

B

15 c3
T 4.

3
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This is a perfect black body spectrum that contains about 400 photons per cm3.

We can find small anisotropies in the CMB of the order of 10−5 around T0.

Baryons

Technically baryons are composed of three quarks. Protons and neutrons are baryons.

In cosmology when we talk about baryons, one refers to everything composed by

usual matter including stars, diffuse and ionized gas and heavy elements. The actual

amount of this component in the Universe observable is around ∼ 4%.

Dark matter

Dark matter has been suggested to fit the shape of the rotation curves in galaxies.

A large number of tests have indicated that the suspicion that dark matter really

exists is correct and that a large fraction of the matter in the Universe is in fact

dark, without pressure and cold, hence the acronym Cold Dark Matter (CDM). It

is possible to estimate the amount of dark matter by observing the ratio of dark

matter to baryons with some observations, see [29, 30]. These results indicate that

the relationship baryon dark matter is about 20%. Anisotropies in the distribution

of galaxies are also sensitive to this relationship, current observations indicate that

this ratio is 0, 15 ± 0, 07, which is in agreement with studies of clusters. Also the

anisotropies in the CMB are extremely sensitive to the density of non-baryonic

matter. Recent observations [24] indicate that Ωm h2 = 0, 135 ± 0, 009 (h is a

parameter used in the definition of Hubble’s constant now, H0 = 100h km/sMpc−1,

which vary as 0, 5 < h < 1, 0. The current accepted value is h = 0, 72, see [39]).

Although it is worrying to accept that there is a component of the matter in the

Universe whose nature is unknown, there is a strong evidence that such a component

does exist, the galaxies rotation curves [25]. It is non-relativistic and spans large

distances inside galaxies. The lifetime of dark matter tends to be of the order of

the age of the Universe or greater. Its self-interaction can not be too large and the

cross section that interacts with baryons should be small.

Dark energy

Dark energy is the component responsible for the Universe acceleration. Dark mat-

ter would cause the so-called slowdown to the Universe while dark energy acts in

contrary opposition to the intuitive way. The cosmological constant is a special case

among many other dark energy models. Dark energy is usually characterized by its

equation of state relating the energy density and pressure. Later on there will be a

comprehensive description of this component.
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Neutrinos

First postulated by Wolfgang Pauli in 1930 to conserve energy and momentum in

beta decay the neutrino was long thought to be massless. They come in three

different flavors known as neutrino of electron, muon and tau. They interact very

weakly with baryons therefore are difficult to be detect. Neutrino’s oscillation from

one flavors to another implies that they have mass eigenstates which are different

from zero.

The photon bath, which was a very hot plasma at early times, was coupled to

other particles at the beginning of the Universe. However, as the photons cooled, the

came out of equilibrium with other particles. Hence the same must have occurred

to neutrinos and we expect there to be a cosmic background of neutrinos left from

the early creation of particles, at times close to the beginning of the Universe.

1.2 Cosmological principle

This principle is based on the hypothesis of a homogeneous and isotropic Universe

to a large scale ∼ 100Mpc. However there are models that are not based on these

two concepts, but they are not going to be analyzed here.

At first sight these two concepts seem almost similar and indeed they are closely

related. Homogeneity implies that the Universe looks the same regardless the ob-

served position. In Cosmology one often uses density to define uniformity, however

other properties which are function of position can also be used. Isotropy implies

equal properties along different axes, regardless the direction. One can construct a

homogeneous Universe but with anisotropies. This is the case of a Universe with

a preferred direction. One can as well build a Universe that is isotropic only in a

point but not isotropic in other points and at the same time being inhomogeneous.

The homogeneity and isotropy of the CMB temperature up to an order of 10−5.

Experiments different have mapped a large number of galaxies in the Universe which

supports the cosmological principle, see Figure 1.4.

1.3 Expanding Universe, Hubble’s law

To define the position of objects in space it is necessary to use a suitable coordinate

system. Consider coordinates in which galaxies in space do not move, so the physical

sensation of the galaxies motion is subject to the expansion of space and no relative

movement between them, those kind of coordinates are called comoving. In Figure

1.1 we show an example of this type of coordinates.
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Figure 1.1: Shows the variation in the physical distance between points (1, 1) and

(4, 3), however the distance between points in this coordinate system remains con-

stant between different pictures.

When considering two galaxies with position ri and rj respectively, the distance

that separates them is given by Δr = ri− rj. We define the position of the galaxies

in the comoving coordinate system as axi and axj, where a is the scale factor,

which contains information on the space dynamics. The distance between the two

galaxies in that coordinate system is

Δr = a (xi − xj) = aΔx.

Since we are assuming the cosmological principle, the scale factor is a function

of time only, therefore a = a(t). Here Δx value remains constant for each pair of

galaxies as labeled according to their position in the Universe.

By studying the relative velocities of each pair of galaxies, it is necessary to

differentiate the above expression with respect to time.

v =
d

dt
(a(t)Δx) = ȧΔx =

ȧ

a
aΔx = HΔr, (1.1)

where H = ȧ/a is the Hubble’s constant. It is observed that H generally can be a

function of time. It is constant only as a function of space.

These arguments can be announced as Hubble’s law : the radial velocity between

galaxies is proportional to the distance between them. In 1929, Hubble showed this

result in an article entitled “A relation Between distance and radial velocity among

extra-galactic nebulae“, at a meeting of the National Academy of Science [26].
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1.4 Metric in the Universe

In Cosmology one has to construct definitions of distances and times. Usually the

concept of time has not the intuitive meaning thought most situations. Special

relativity is a good example.

Considering flat geometry, infinitesimal changes in cartesian space are related by

dl2 = dx2 + dy2 + dz2.

The above expression satisfies the cosmological principle in space. The goal is

to find a metric that accomplishes this principle applied to a Universe with a more

general geometry. To this end, first we analyze the metric induced by a 3-sphere

S3 = {(x, y, z, w) : x2 + y2 + z2 + w2 = R2}. The 3-sphere can be parametrized as

follows:

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ,

w =
√
R2 − r2,

differentiating

dx = sin θ cosφ dr + r cos θ cosφ dθ − r sin θ sinφ dφ,

dy = sin θ sinφdr + r cos θ sinφdθ + r sin θ cosφ dφ,

dz = cos θ dr − r sin θ dθ,

dw = − r dr√
R2 − r2

,

therefore the metric induced by those parameters is

dl2 =
dr2

1− kr2
+ r2 dΩ2,

where k = 1/R2 is related to the curvature and dΩ2 = dθ2 + sin2 θ dφ2, solid angle

differential. Although this metric was built for a closed geometry k > 0 space, it

can be generalized for an open geometry (basically change R = iR) k < 0 or flat

k = 0 without losing the assumption of homogeneity and isotropy in space.

Performing a transformation of the r variable to χ we get a compact expression

depending on the space geometry

r = Sk(χ) =

⎧⎪⎨
⎪⎩
|k|−1/2 sin(|k|1/2 χ) si k > 0;

χ si k = 0;

|k|−1/2 sinh(|k|1/2 χ) si k < 0.
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In this case the metric can be written as

dl2 = dχ2 + Sk(χ)
2 dΩ2.

Now it is necessary to contextualize these results for the space-time. The metric

used in special relativity is the Minkowski metric, which is defined as

ds2 = c2dt2 − dl2.

To extend this concept to the metric that describes the dynamics of the Universe,

one needs to introduce a closed hypersurfaceHs with an imaginary dimension defined

as {Hs = (x, y, z, w, v) : x2 + y2 + z2 + w2 − v2 = R2
0}.

The metric can be written as

ds2 = dv2 − dx2 − dy2 − dz2 − dw2.

Now considering the following parameterization

v = R0 sinhα,

w = R0 coshα cos β,

z = R0 coshα sin β cos θ,

x = R0 coshα sin β sin θ cosφ,

y = R0 coshα sin β sin θ sinφ,

we obtain

ds2 = R2
0 dα

2 −R2
0 cosh

2 α(dβ2 + sin2 β dΩ2).

Identifying R0α = c t, a(t) = |k|R0 cosh(c t/R0) and β = |k|1/2χ, the expression

above becomes

ds2 = c2dt2 − a(t)2(dχ2 + |k|−1 sin2(|k|1/2χ)dΩ2).

It shows that the function that accompanies the solid angle is Sk(χ) for a open

geometry space. With similar arguments we can generalize this metric to a Universe

with a more general geometry, which satisfies the cosmological principle. This is the

Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric and it is defined as

ds2 = c2dt2 − a(t)2(dχ2 + S2
k(χ)dΩ

2). (1.2)

This metric actually describes an expanding Universe.
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Figure 1.2: Relation between velocity-distance of Hubble. The two lines use a

different correction for the movement of the sun. Hubble 1929, The Realm of the

Nebulae, Yale University Press [26].

Figure 1.3: Velocity-distance for galaxies with 400 Mpc calibrated by Cepheid dis-

tance scale. An adjustment to the slope yields a value of H0 = 72 km/sMpc−1, see

[39].
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Figure 1.4: Top: The 3rd year WMAP (WMAP3) Internal Linear Combi-

nation (ILC) map, which are maps of temperature anisotropies in the CMB.

Bottom: The 2 Micron All-Sky Survey (2MASS) 827,947 overdensities field

of galaxies. Red shading represents CMB hot spots and overdensities in the

2MASS and blue shading correspond to cold spots CMB and low densities in

the 2MASS. The gray mask corresponds to Kp2 for the CMB and the 2MASS

map to galaxies with the galactic extinction Ak > 0, 05. The release of the

data is available on the link http://lambda.gsfc.nasa.gov/ (WMAP3, see [8]) and

http://www.ipac.caltech.edu/2mass/ (2MASS, see [31])
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1.5 Dynamics of the Universe from a classical perspective

The study of the dynamics of the Universe is based on finding the equation of motion

for the scale factor given in the FLRW metric. If the scale factor is zero we would

be in the case of a static Universe, otherwise, we would be in the case of a dynamic

Universe.

Usually to find the equation of motion for the scale factor we have to use general

relativity, but in this section we present a Newtonian description to determine the

dynamics of the Universe. Milne and McCrea proposed to use this description in

[5].

1.5.1 Friedmann’s equation

To develop the theoretical frame that leads to the equation of motion of the scale

factor it is necessary to define the system. For this case we consider a galaxy mass

test m which is immersed in a gravitational field due to a uniform mass M . Using

the Newton’s second law

mr̈ = −GmM

r2
, where M =

4

3
πr3ρ.

Now replacing the coordinate r by the comoving coordinate distance x using the

relation r = a(t)x, we obtain

ä = −4

3
πGρa,

if ρ = ρ0
a3
, then

ä = −4

3
π0Gρa−2,

multiplying ȧ in both side, in the above equation

ȧä = −4

3
π0Gρa−2ȧ,

and using 1
2
d(ȧ2)
dt

= ȧä, −d(a−1)
dt

= a−2ȧ, we have

d(ȧ2)

dt
=

8

3
πGρ0

d(a−1)
dt

,

integrating
ȧ2

a2
=

8

3
πGρ0a

−3 − k c2

a2
,

where k is an integration constant, if we define H = ȧ
a
, we can rewrite the above

equation as

H2 =

(
ȧ

a

)2

=
8π G

3
ρ− k c2

a2
. (1.3)
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The above expression is called Friedmann’s equation. Comparing with the results

obtained using general relativity, see [21, 23], the constant k is exactly the same that

we have defined in the FLRW metric.

1.5.2 Fluid Equation

Friedmann’s equation is not enough to find a(t), therefore we need to find an equation

for the evolution of ρ as a function of time. Considering the first law of thermody-

namics

dE = TdS − pdV, (1.4)

where p is the pressure, and assuming that the energy is equal to E = εtotalV , where

εtotal is the total energy density of the fluid in the relativistic sense, then

dE = V dεtotal + εtotaldV,

as V ∝ a3, so dV = 3V
a
da, since we restrict the study only to adiabatic processes

dS = 0, we obtain

V dεtotal + εtotal

(
3V

a
da

)
= −p

(
3V

a
da

)
,

dividing by dt, and simplifying

dεtotal
dt

+ 3
ȧ

a
(εtotal + p) = 0.

This result can be expressed in terms of the inertial mass density associated with

the total energy density εtotal = ρc2, therefore the above equation is rewritten as

ρ̇+ 3
ȧ

a

(
ρ+

p

c2

)
= 0. (1.5)

The above is called fluid equation. This equation can be solved by specifying

the type of component. Defining a general property for each component of the

Universe, which is proportional to the ratio of the pressure with the energy density

of the component. This amount wi =
pi
c2ρi

can be replaced in (1.5) and we get

ρ̇i + 3Hρi(1 + wi) = 0. (1.6)

Solving equation (1.6) by using the initial condition ρi(a0) = ρi(1) = ρ0i , where

the scale factor today a0 is considered equal to one, we obtain the following expres-

sion for the density of each component ρi

ρi = ρ0i exp

(
−3

∫ a

1

da′

a′
(1 + w(a′))

)
. (1.7)
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Note that non-relativistic matter has no pressure so that for this component

wm = 0. Due to the cosmological constant, dark energy has a constant energy

density, i.e., w = −1 (we cover this topic in more detail later on). Radiation has

a pressure that varies as one third of the density, it is a result of thermodynamics,

here wr =
1
3
. We also observe that the curvature acts as a density with wk = −1

3
.

1.5.3 Acceleration equation

Friedmann’s equation and the fluid equation determine the evolution of the scale

factor as a function of time. Now we combine both expressions to find an equation for

the acceleration of the Universe eliminating the constant curvature. Differentiating

equation (1.3) with respect to time we have

2 ȧ ä =
8πG

3
(ρ̇ a2 + 2ρ a ȧ).

Solving equation (1.5) for ρ̇ and substituting in the above equation we obtain

ä

a
= −4πG

3

(
ρ+ 3

p

c2

)
. (1.8)

This expression is called acceleration equation. If we write the pressure for each

component of the Universe as pi = c2wiρi, the above equation can be rewritten as

ä

a
= −4πG

3

∑
i

ρi(1 + 3wi). (1.9)

According to the above expression, for an accelerated expanding Universe, we

must have a component with negative pressure, which was unthinkable. By the

end of the last century it was considered that the Universe was expanding, but

not accelerated. However, distance measures of type Ia supernovae performed by

Perlmutter et al. and Riess et al., see [1, 2], show that the Universe is expanding in

an accelerated way, therefore we need to include a component with w < −1
3
in its

equation of state. The natural candidate for this type of energy is the cosmological

constant, although there exist other Quintessence models that also may explain this

phenomenon.

1.5.4 Generalizing the Friedmann’s equation

Knowing that the Universe is expanding in an accelerated way, it is need to add a

component with negative pressure. The simplest case to describe this type of exotic

energy would be to consider a constant density, observing (1.7) we have w = −1.
The total density of the Universe is written as ρ = ρother + ρΛ, where ρΛ is the
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energy density associated to this exotic component, usually called vacuum energy.

The density ρother is associated to the other components of the Universe. The

Friedmann’s equation in this case is written as

H2 =
8πG

3
ρother +

8πG

3
ρΛ − k c2

a2
.

Defining Λ ≡ 8πGρΛ, where Λ is called the cosmological constant, we obtain

H2 =
8πG

3
ρother − k c2

a2
+

Λ

3
. (1.10)

Einstein was the first to propose the above result, considering in the equations

of motion a constant term Λ conserving the Bianchi identity. His aim was to obtain

an expression to describe a static Universe. However, after the results obtained by

Hubble his claim was rejected.

Currently the cosmological constant is one of the most important models for

understanding the dynamics of today’s Universe [3].

1.6 Components and cosmological parameters

In this section we find the evolution of ρi for different components of the Universe.

We define different cosmological parameters that were used in the development of

this work.

1.6.1 Evolution of density as a function of the scale factor

• Radiation: Radiation has a pressure that varies as one third of the energy

density. Its equation of state is pr =
c2

3
ρr and its energy density is

ρr =
ρ0r
a4

.

• Non-relativistic matter: The energy density of such particles is equal to

its rest mass energy, which remains constant in time. Since that density is

inversely proportional to the volume, the density of this component is

ρm =
ρ0m
a3

.

This is satisfied for w = 0 in the equation of state.

• Curvature: Defining ρ0k = −3k c2

8πG
the curvature term in the Friedmann’s

equation is rewritten as

ρk =
ρ0k
a2

.

This expression is known as curvature density.
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• Cosmological constant: Recalling the definition of cosmological constant Λ

in the above section, we can observed that

ρΛ =
Λ

8πG
,

This expression is known as vacuum energy density or cosmological constant

energy density. This energy density describes an accelerated expanding Uni-

verse, since wΛ = −1 for the equation of state.

1.6.2 Parameters

Definition of parameters used in Cosmology.

• Hubble’s constant: H = ȧ
a
.

• Critical density: ρc =
3H2

8πG
.

• Density parameter: Ωi =
ρi
ρc
.

• Deceleration parameter: q = − ä
aH2 .

We identify the current value of the cosmological parameters with index zero. In

addition we will use the evolution of the energy density of each component in the

Universe, the Friedmann’s equation is written as

H2(a) = H2
0

(
Ω0

m

a3
+

Ω0
r

a4
+

Ω0
k

a2
+ Ω0

Λ

)
. (1.11)

The above expression can be rewritten as

H2 =
8πG

3
ρ, including ρk and ρΛ,

where ρ =
∑

i ρi. Using the definition of the critical density we have∑
i

Ωi(a) = 1.

If w in the equation of state is constant for all the Universe components, we have

ρi =
ρ0i

a3(1+wi)
,

therefore the evolution of the ith density parameter is given by

Ωi(a) =
H2

0

H2(a)

Ω0
i

a3(1+wi)
.
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Using the equation (1.11) and rearranging the terms, we can write the above

expression as

Ωi(a) =
Ω0

i∑
j Ω

0
j a

3(wi−wj)
. (1.12)

To finish, using the equation (1.9), the deceleration parameter can be written as

q(a) =
1

2

∑
i

Ω0
i (1 + 3wi)∑

j Ω
0
j a

3(wi−wj)
. (1.13)

Note that the evolution of the cosmological parameters depends on the extent of

the density parameters of each component and the Hubble constant today.

1.7 Cosmological models

So far we have obtained the equations to describe the dynamics of the Universe.

To find the solution and hence the evolution of the scale factor a(t) it is necessary

to consider the initial conditions of the cosmological parameters. In this section

we explore some specific cases which can obtain the analytical expression of the

evolution of the scale factor with time. Also we will describe some important models

to explain the current dynamics of the Universe.

1.7.1 Milne Universe

This Universe is open, it is a model in which there is very little matter or radiation,

where the value of Ω0
k ∼ 1. The Friedmann’s equation can be written as

H2 =
H2

0

a2
.

Therefore ȧ = H0. The evolution with the scale factor is linear in time.

a(t) = H0 t so H =
1

t
.

1.7.2 Einstein-de Sitter Universe

This is a Universe close to the critical density, hence flat, since that its content is

mostly of matter, so Ω0
m ∼ 1. The Friedmann’s equation can be written as

H2 =
H2

0

a3
.

Therefore ȧ2 = H2
0/a. The evolution of the scale factor is given by

a(t) =

(
t

t0

)2/3

so H =
2

3t
,

where t0 =
2

3H0
.
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1.7.3 Universe dominated by radiation

In this case Ω0
r ∼ 1 therefore the value of the other omegas is close to zero. In the

standard cosmological model, initially the Universe was dominated by radiation.

The Friedmann’s equation can be written as

H2 =
H2

0

a4
.

Therefore ȧ = H0/a. The evolution of the scale factor is given by

a(t) =

(
t

t0

)1/2

so H =
1

2t
,

where t0 =
1

2H0
.

1.7.4 de Sitter Universe

This Universe is dominated by a cosmological constant, Ω0
Λ ∼ 1. The Friedmann’s

equation can be written as H = H0, then ȧ = H0 a. The evolution of the scale factor

is given by

a(t) = eH0(t−t0).

This is the only case where H is constant.

1.7.5 Quintessence

We can explain the Universe current observations postulating a kind of exotic energy

called dark energy. The Quintessence is a model to describe this type of energy,

where the parameter w(a) of the equation of state p = c2wρ is not always constant.

It can evolve with the scale factor a. The cosmological constant model is contained

in the Quintessence models with w = −1.
Once Quintessence models attempt to explain an accelerated expanding Uni-

verse, therefore w < −1/3, see equation (1.8).

In this work we consider the following parameterised Quintessence model where

w is parameterised as

w(a) = w0 + (a− a0)wa,

where wa, w0, a0, are the parameters. This parameterization is called Chevallier-

Polarski-Linder (CPL) [33]. For configuration wa = 0, w0 = −1, we return to the

model of a Universe with cosmological constant. For Quintessence models with

scalar field, see the appendix A and [4, 34].

The standard cosmological model accepted today is the ΛCDM model. It de-

scribes a Universe dominated by vaccum energy (i.e., more than two third of the
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Universe is composed for this kind of energy) and cold dark matter, hence the

acronym.

1.8 Distances and times

The notion of distance and time is different when we are looking at an expanding

Universe. These magnitudes depend particularly on the cosmological model itself.

For example in an Einstein de-Sitter Universe the Hubble factor is related to its age

via H = 2/(3t), hence the today’s Universe age is related to the Hubble’s constant

via t0 = 2/(3H0). So in this section we define different concepts to explain as it is

possible to measure distances and times in an expanding Universe.

1.8.1 The comoving distance

It is the distance along the line of sight between a distant emitter and us. If we

integrate the metric in a flat Universe we obtain the following value for the comoving

distance

χ =

∫ t0

t

c dt

a
=

∫ 1

a

c da′

a′ȧ′
. (1.14)

1.8.2 Proper distance

The proper distance is the physical distance measured by us, it is the product

between the scale factor and the comoving distance, in a flat Universe

dflatprop = a

∫ t0

t

c dt

a
= a

∫ 1

a

c da′

a′ȧ′
.

1.8.3 Angular distance

A classic way to determine distance in astronomy is to measure the angle θ subtended

by an object of known physical size l. If the angle subtended is small, the distance

to that object is given by

dA =
l

θ
.

To compute the angular distance in an expanding Universe, we first note that

the comoving size of the object is l/a. So the angle subtended is θ = (l/a)/χ(a).

Comparing with the above expression, we see that the angular distance in a flat

Universe is

dflatA (a) = aχ(a). (1.15)

For a Universe with a general geometry

dA(a) = aSk(χ(a)).
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1.8.4 Luminosity distance

Another way of inferring distances in astronomy is to measure the flux from an

object of known luminosity. Recall that the observed flux F at a distance d from a

source of known luminosity L is

F =
L

4πd2
. (1.16)

To generalize this result to an expanding Universe, we work on the comoving

grid with the source centered at the origin. The flux we observe is

F =
L(χ)

4πχ2(a)
,

where L(χ) is the luminosity through a comoving spherical shell with radius χ(a).

Also we have considered that all photons are emitted with the same energy. Then

L(χ) is this energy multiplied by the number of photons passing through a spherical

shell per unit time. In a fixed time interval, the number of photons crossing a

shell will be smaller today than at emission, smaller by a factor of a. Similary, the

energy of the photons will be smaller today than at emission, due to the expansion.

Therefore, the energy per unit time passing through a comoving shell at a distance

χ(a) from the source will be a factor of a2 smaller than the luminosity at the source.

The flux we observe therefore will be

F =
La2

aπχ2(a)
.

Comparing the above expression whit (1.16) we define the luminosity distance

in a flat Universe as

dflatL (a) ≡ χ(a)

a
.

For a Universe with a general geometry

dL(a) =
Sk(χ(a))

a
.

The relation between the luminosity distance and the angular distance is

dL
dA

=
1

a2
.

1.8.5 Times

• Cosmic time. Cosmic time t is defined as the time measured by a funda-

mental observer who reads time on a standard clock.

t =

∫ t

0

dt′ =
∫ a

0

da′

ȧ′
. (1.17)
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• Conformal time. To simplify the definition of comoving distance we define

a time scale different to the cosmic time. These time intervals are given by

dtconf = dη =
dt

a
.

At any epoch, the conformal time has value

η =

∫ a

0

dt

a
=

∫ a

0

da′

a′ȧ′
. (1.18)

The comoving distance as conformal time function is

χ(η) = c(η0 − η).

1.8.6 Age of the Universe

An important quantity to measure in cosmology is the age of the Universe. This

measure depends on the cosmological model. If we consider Friedmann’s equation

(1.11) we can derive a general expression for the age of the Universe. Then

(
ȧ

a

)
=

(
da

dt

1

a

)
= H0

√
Ω0

m

a3
+

Ω0
r

a4
+

Ω0
k

a2
+ Ω0

Λ = H0E(a),

integrating it yields

t0 =
1

H0

∫ 1

0

da

aE(a)
.

1.9 Horizons

• Particle horizon. At any epoch t, the particle horizon is defined to be the

maximum distance over which causal communication could have taken place

by that epoch. In other words, this is the distance a light signal could have

travelled from the origin of the Big Bang at t = 0 by the epoch t.

The definition of the particle horizon rH(t) at the cosmic epoch t is

rH(t) = a

∫ t

0

c dt

a
= a

∫ a

0

c da′

a′ȧ′
.

• Event horizon. The event horizon is the greatest distance an object can have

at a particular cosmic epoch, if it is ever to be observable by an observer who

observes the Universe at a cosmic time t1.
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Consider a light ray emitted at time t1 which arrives at the observer at time

t. Then, the comoving distance traversed by the light ray is

χtrav(t) =

∫ t

t1

cdt

a
.

The question is whether or not this integral converges as t → ∞ to open

models or as t→ tmax for collapsing closed models. The definition of the event

horizon is therefore

rE = a

∫ tmax

t1

c dt

a(t)
= a

∫ amax

a1

c da

aȧ
.

• The Hubble sphere. The Hubble sphere is the distance where all points

of the Universe are expanding away from us at exactly the speed of light, in

other words it is defined as the limit of all points which we can be in casual

contact now.

Remember the Hubble’s law is given by expression (1.1), so if the speed is c,

then

c = H dh so dh =
c

H
or χh =

c

aH
, for any redshift,

where dh is the Hubble’s radius and χh the comoving Hubble’s radius, now

the Hubble’s radius is dh = c
H0

. The Hubble sphere changes as the Universe

changes its expansion history and it is defined at a given time.

1.10 Redshift

If we considered the travel of a photon with a specific frequency that was emitted

in r0 and was observed in r1 the comoving distance is given by

χ =

∫ t1

t0

cdt

a(t)
.

Moreover, if we consider another photon beginning its travel at r0 but emitted

Δt later, such that the frequency of the two photons is the same (the phase is the

same +π), then as the comoving distance to r1 is the same as in the previous photon

we obtain ∫ t1+Δt1

t0+Δt0

dt

a(t)
=

∫ t1

t0

dt

a(t)
.

Rearranging the above expression we obtain∫ t0+Δt0

t0

dt

a(t)
=

∫ t1+Δt1

t1

dt

a(t)
,
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so if we assume that the scale factor is invariant during these small interval of time

we can factor it out of the integral and obtain

Δt0
a(t0)

=
Δt1
a(t1)

,

in terms of the light wavelength, we have

λ1

λ0

=
a(t1)

a(t0)
,

recalling that the redshift z is defined as

1 + z =
λ1

λ0

so 1 + z =
a(t1)

a(t0)
.

If the photon is observed today, the scale factor a(t1) = 1. The photon is emitted

at any time t, so the above equation can be written as

1 + z =
1

a(t)
. (1.19)

Usually the negative redshift is called blueshift. On the other hand, we can note

that the cosmic time, the scale factor and the redshift are related, see (1.17) and

(1.19), then we can write the cosmic time in terms of the scale factor or redshift.



Chapter 2

Linear theory of the structure formation

The inhomogeneity present in the Universe today as galaxies, clusters and superclus-

ters, induces us to think that in the primordial Universe existed small inhomogeneity

which evolved until today to big structures. The inflation theory provides a success-

ful mechanism for generating this perturbation, see [21, 13]. In this chapter we will

study the matter fluctuations evolution responsible of structures formation in the

linear regime. Apart from this, we analyze the growth of fluctuations in the context

of different cosmological models.

2.1 Growth of fluctuations in an expanding Universe

The phenomenon of growth of fluctuations we are going to study here is encoded in

the case where gravity and non-relativistic matter dominate our Universe. In this

case all perturbations are on the horizon H−1 so that Newtonian theory can be used

for describing them.

Initially we consider the fluid dynamics equations in a gravitational field, i.e.,

the continuity equation, the equation of motion or Navier-Stokes and the Poisson

equation.

∂ρ

∂t
+∇ · (ρv) = 0, (2.1)

∂v

∂t
+ (v · ∇)v = −∇p

ρ
−∇φ, (2.2)

∇2φ = 4πGρ, (2.3)

where ρ is the fluid density, p is the pressure, v is the velocity distribution and φ is

the gravitational potential which depends on the density ρ. All of these quantities

dependent on the position in a fixed point in space, i.e. this is an Eulerian description

of the system. For this analysis it is better to work with a Lagrangian description

of the system. For this purpose we perform the following transformation

23
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d

dt
=

∂

∂t
+ (v · ∇) . (2.4)

Using the above expression in the fluid dynamics equation in a gravitational

field, we obtain

dρ

dt
= −ρ∇ · v, (2.5)

dv

dt
= −∇p

ρ
−∇φ, (2.6)

∇2φ = 4πGρ. (2.7)

Now we apply these equations in a dynamic Universe. We assume that the

Universe satisfies the cosmological principle, so it is convenient to use a comoving

frame (i.e. the flow is flowing with the expansion of the Universe). In such a frame

the velocity will follow the Hubble’s law v = H r. Substituting this into equation

(2.5) we obtain
dρ

dt
= −3Hρ,

which is simply the fluid equation for the case of a Universe dominated by the

matter.

Initially we derive the solutions for the velocity v0, density ρ0, pressure p0 and

gravitational potential φ0 in an unperturbed medium which satisfies equations (2.5),

(2.6) and (2.7). Notice that we will use the subscripts 0 to refer to the properties of

the unperturbed medium only in this calculation

dρ0
dt

= −ρ0∇ · v0, (2.8)

dv0

dt
= −∇p0

ρ0
−∇φ0, (2.9)

∇2φ0 = 4πGρ0. (2.10)

Now we write the equations including first-order perturbations

v = v0 +Δv, ρ = ρ0 +Δρ, p = p0 +Δp, φ = φ0 +Δφ.

For this purpose, initially we expand up to the first order equation (2.5)

d

dt
(ρ0 +Δρ) = −(ρ0 +Δρ)∇ · (v0 +Δv),

= −ρ0∇ · v0 − ρ0∇ ·Δv−Δρ∇ · v0 −Δρ∇ ·Δv, (2.11)

given that
d

dt

(
Δρ

ρ0

)
=

d (Δρ)

dt

1

ρ0
− 1

ρ20

dρ0
dt

Δρ,
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replacing d(Δρ)
dt

of equation (2.11) and dρ0
dt

of equation (2.8) in to the above expression,

we obtain

d

dt

(
Δρ

ρ0

)
=

1

ρ0
(−Δρ∇ · v0 − ρ0∇ ·Δv−Δρ∇ ·Δv)− 1

ρ20
Δρ (−ρ0∇ · v0) ,

simplifying the above expression and defining the overdensity δ ≡ Δρ
ρ0
, we obtain

δ̇ = −∇ ·Δv. (2.12)

Next, we expand dv
dt

to first order using (2.4)

dv

dt
=

∂v0

∂t
+

∂Δv

∂t
+ (v0 · ∇)Δv+ (v0 · ∇)v0 + (Δv · ∇)v0 + (Δv · ∇)Δv.

If we ignore second order quantities, this can be rewritten as

dv

dt
=

∂v0

∂t
+

dΔv

dt
+ (v0 · ∇)v0 + (Δv · ∇)v0,

expanding to first order the equation (2.6), replacing dv
dt

in the above expression and

using the equation (2.2) in the unperturbed medium we obtain

dΔv

dt
+ (Δv · ∇)v0 = −∇ (p0 +Δp)

ρ0 (1 + δ)
−∇ (Δφ) +

∇p0
ρ0

,

Assuming that the initial state satisfies the cosmological principle so that ∇p0 =

0 and ∇ρ0 = 0, then

dΔv

dt
+ (Δv · ∇)v0 = − ∇ (Δp)

ρ0 (1 + δ)
−∇ (Δφ) ,

if we multiply (1− δ) to ∇(Δp)
ρ0(1+δ)

and ignoring second order quantities, we have

dΔv

dt
+ (Δv · ∇)v0 = −∇ (Δp)

ρ0
−∇ (Δφ) . (2.13)

Finally, subtracting (2.10) of (2.7) we find

∇2 (Δφ) = 4πGρ0δ (2.14)

Equations (2.13), (2.12) and (2.14) are the key differential equations in the

present analysis.

Suppose that now we have a particle moving in the comoving frame. We can

express the velocity as a general Hubble flow plus a peculiar velocity in a comoving

frame. Hence we can write:

v = ṙ = ȧx+ aẋ,
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if we define the peculiar velocity in the comoving frame as u ≡ ẋ, the above expres-

sion is written as

v = Hr+ au,

so we can compare the above equation with the expansion to first order of v, then

v0 = Hr, Δv = au, (2.15)

replacing the above expression in the equation (2.13) we obtain

d (au)

dt
+ (au · ∇) (Hr) = −∇ (Δp)

ρ0
−∇ (Δφ) (2.16)

it is convenient to write down all the derivatives in the comoving coordinates and

work in the comoving frame, so that ∇ → 1
a
∇c, then

(au · ∇)H r = (u · ∇c)H ax = aH u = ȧu,

using this result in equation (2.16) we have

du

dt
+ 2

(
ȧ

a

)
u = − 1

a2
1

ρ0
∇c (Δp)− 1

a2
∇c (Δφ) .

Now, let us consider an adiabatic perturbation in which both perturbations in

pressure and density are related to the adiabatic sound speed c2s by c2s =
∂p
∂ρ
. Hence

if we take the gradient of the above expression as we introduce the sound speed we

obtain:

∇c · du
dt

+ 2

(
ȧ

a

)
∇c · u = − 1

a2
∇c ·

(
c2s
ρ0
∇c (Δp)

)
− 1

a2
∇2

c (Δφ) ,

given that ∇ρ0 = 0 and using (2.14) we rewrite the previous equation as

∇c · du
dt

+ 2

(
ȧ

a

)
∇c · u = − c2s

a2
∇2

cδ − 4πGρ0δ.

Using (2.12) and (2.15) in the above expression, we find the equation for the

overdensity

δ̈ + 2

(
ȧ

a

)
δ̇ =

c2s
a2
∇2

cδ + 4πGρ0δ, (2.17)

we can translate this equation into k space by seeking a solution of the type δ =

D(t) exp (ikc · x), where kc is the comoving wave-number and relates to the real

wave-number via kc = ak and D(t) is the linear growth factor. The equation

become then

D̈ + 2

(
ȧ

a

)
Ḋ =

(
4πGρ0 − k2c2s

)
D. (2.18)
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The previous equation describes the growth of perturbations.

In addition to the linear growth factor D(t), we can define the growth function

f(t) as

f(t) ≡ d lnD

d ln a
. (2.19)

Lahav in [35] proposes that the growth function at z = 0 in the range −5 ≤ λ0 ≤
5, 0, 003 ≤ Ω0

m ≤ 2 can be approximated as

f(z = 0) ≈ (Ω0
m)

0,6 +
1

70
λ0

(
1 +

1

2
Ω0

m

)
,

where λ0 is related to the cosmological constant λ0 = Λ/(3H2
0 ). Since the dynamics

at z = 0 depends mainly on the present matter density, it suggest that f depends

on Ωm(z) at any epoch. Indeed, f(z) is well approximated for any z, λ0 and Ω0
m by

f(z) ≈ (Ωm)
0,6. (2.20)

For a flat Universe an even better approximation is provided by analogy with

f(z = 0), f(z) = (Ωm)
0, 6 + 1

70

[
1− 1

2
Ωm(1 + Ωm)

]
. The approximation for the

growth function depends of the cosmological model that we are employing. In this

work, we compare the approximation 2.20 with the exact definition of f , see Figure

2.1.

2.2 Static Universe, Jeans’ Instability

Initially we study the case of a static medium, so that ȧ = 0. Then, for the wave

solution of the form δ ∝ exp i (kc · x− ωt), the dispersion relation is

ω2 = c2sk
2 − 4πGρ.

This relation was derived by Jeans in 1902 [27]. The dispersion relation de-

scribes oscillations or instabilities depending on the sign of the right-hand side of

the equation.

• If c2sk
2 > 4πGρ, the right-hand side is positive and the perturbations oscil-

late. This means that any perturbation in such a medium would produce a

wave solution. In other words the pressure is sufficient to provide support to

collapsing regions. The limit is given by the so called Jeans’ wavelength

λJ =
2π

kJ
= cs

(
π

Gρ

)1/2

. (2.21)
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Figure 2.1: Comparative graphics of the growth function f in a flat Universe with

cosmological constant for values different Ω0
Λ = 1 − Ω0

m. Left top: Ω0
Λ = 0, 1,

Ω0
m = 0, 9; right top: Ω0

Λ = 0, 3, Ω0
m = 0, 7; left bottom: Ω0

Λ = 0, 5, Ω0
m = 0, 5; right

bottom: Ω0
Λ = 0, 7, Ω0

m = 0, 3.

• If c2sk
2 < 4πGρ the right-hand side is negative, leading to an imaginary part

of ω, corresponding to unstable modes, where the pressure cannot support the

collapsing or expanding regions hence we have growing and decaying modes.

Therefore in this case we can define

Γ = ±iω = ±
[
4πGρ

(
1− λ2

J

λ2

)]1/2
,

so we can write the solution as

δ = δ0 exp(Γt− i(k · r)).

The positive and negative solutions correspond to exponentially growing and

exponentially decaying modes, respectively. For wavelengths much greater

than the Jeans’ wavelength, λ � λJ , the growth rate Γ becomes (4πGρ)1/2.
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In this case, the characteristic growth time for the instability is

τ = Γ−1 = (4πGρ)−1/2.

This is called Jeans’ instability, τ is interpreted as timescale for collapse.

2.3 Dynamic Universe, expanding medium

In the section 2.2 we studied the perturbations in a static medium, we observed that

in this case the perturbations can oscillate or correspond to instability modes. In

this section we study the behavior of linear growth factor in different cosmological

models. Using the definition of the Jeans’ wavelength the equation (2.18) can be

written as

D̈ + 2

(
ȧ

a

)
Ḋ = 4πGρD

[
1− λ2

J

λ2

]
.

If we rewrite the above expression in the long wavelength limit λ� λJ , we have the

equation that will be analyzed in this section

D̈ + 2

(
ȧ

a

)
Ḋ = 4πGρD. (2.22)

We consider in this work that the linear growth factor is normalized today D(a0) = 1

and in a high redshift D(a→ 0) = 0.

• The Einstein-de Sitter Universe

In this model Ω0
m = 1, the density parameter in the other components is zero.

The evolution of scale factor is a(t) =
(

t
t0

)2/3

, then H = 2
3t
, so that the

equation for linear growth factor is given by:

D̈ +
4

3t
Ḋ − 2

3t2
D = 0,

its general solution is

D(t) = A t−1 + B t2/3,

where A and B are constant.

The first term of the solution is a decaying mode and the second term of the

solution is a growing mode. Now we have structures as galaxies, clusters and

superclusters, in a Universe dominated for the matter, we only considered the

growing mode in the solution, then D ∝ t2/3 ∝ a.



Chapter 2. Linear theory of the structure formation 30

• The Milne Universe

In this model Ω0
k = 1. The evolution of scale factor is a(t) = H0 t, then H = 1

t
,

therefore the equation is given by:

D̈ +
2

t
Ḋ = 0,

its general solution is

D(t) = A t−1 + B,

where A and B are constant. We find two solutions but one is decaying and the

second is static. In an empty Universe or nearly empty Universe, perturbations

tend not to grow.

• The de Sitter Universe

In this case we only have a cosmological constant, Ω0
Λ = 1. The evolution of

scale factor is a(t) = eH0(t−t0), then H = H0, therefore the equation is given

by:

D̈ + 2H0Ḋ = 0,

its general solution is

D(t) = Ae−2H0t + B,

where A and B are constant. In a Universe dominated by a cosmological

constant we only have a decaying mode and a constant mode.

• Universe dominated by radiation

In this model Ω0
r = 1. The evolution of scale factor is a(t) =

(
t
t0

)1/2

, then

H = 1
2t
, therefore the equation is given by:

D̈ +
1

t
Ḋ = 0,

its general solution is

D(t) = A+ B ln(t),

where A and B are constant. The first solution is constant and the second

solution is logarithmically growing with t.

To generalize this result to other systems, we have to do a relativistic study of

this model, in this work we are not performed this development, however for

more details see [23] .

In Figure 2.2 we can observe the graphs for the linear growth factor and the

growth function of the above cosmological models.
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Figure 2.2: Graphs of the linear growth factor D(a) (on the left-hand side) and

growth function f(a) (on the right-hand side) in a Einstein-de Sitter Universe, a de

Sitter Universe, a Milne Universe and a Universe dominated by radiation, respec-

tively.

2.3.1 Solution for a general model

In this work we need to find a solution for the linear growth factor and the growth

function for a general model. In order to find a solution to this problem we have

to use numerical methods, since there is not an analytic solution. To that purpose,

we will rewrite the equation (2.22). Initially we make the following substitution
d
dt

= ȧ d
da
, then Ḋ = ȧ dD

da
, D̈ = ȧ2 d2D

da2
+ dD

da
ä, therefore

ȧ2
d2D

da2
+

(
ä+ 2

(
ȧ2

a

))
dD

da
= 4πGρ0D.

Now we define y = ln a and dD
dy
≡ D′ we obtain dD

da
= 1

a
D′, d2D

da2
= 1

a2
(D′′ −D′),

in addition, using the definition of the acceleration parameter, q = − ä
H2 a

, we have

D′′ + (1− q)D′ =
4πGρ

H2
D,

once the perturbations are of matter type ρ0 =
3H2

0

8πG
Ω0

m

a3
, then the above expression

can be rewritten as

D′′(y) + (1− q(y))D′(y) =
3

2

H2
0Ω

0
m

a3H(y)2
D(y). (2.23)

The above expression allows us to study the linear growth factor and the growth

function for any cosmological model. In Figure 2.3 we show two numerical exper-

iments allowing to study the behavior of D(a) and f(a) by varying the density

parameter of matter Ω0
m in a cosmological model with cosmological constant and

the state equation w0 in a cosmological model with Ω0
m = 0, 3 and Ω0

Λ = 0, 7. In

both models we consider a flat Universe without radiation.
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Figure 2.3: Numerical solution of the equation (2.23). Top: linear growth factor

and growth function for different values of Ω0
m and Ω0

Λ, given that the Universe is

considered flat. These parameters satisfy the following relationship Ω0
m + Ω0

Λ = 1.

Bottom: linear growth factor and growth function for different values of w0 in a

parameterised Quintessence model w(a) = w0 + (a − a0)wa, where wa = 0 and

a0 = 0.



Chapter 3

General theoretical framework

One of the key pieces to understand modern Cosmology is the study of the anisotro-

pies in the CMB. First discovered by the DMR experiment on the COBE satellite

in the early 90 [6]. Observations of CMB anisotropies have advanced to get to the

data of WMAP satellite (Wilkinson Microwave Anisotropy Probe). In [7] we find a

description of the data on the seventh year of WMAP (7WMAP).

While most of the CMB fluctuations seen by WMAP and other experiments were

generated at z ∼ 1000, in low redshift (z < 20) there are more fluctuations [32],

which are called secondary anisotropies. In this chapter the goal is to understand the

Integrated Sachs-Wolfe effect (ISW) which is manifested in the secondary anisotropy.

3.1 The two-point correlation function

To study the statistical distribution of galaxies on a large scale it is necessary to

define the correlation function of two-points, which describes the excess probability

of finding a galaxy at distance r from a galaxy selected at random over that expected

in an uniform, random distribution. The correlation function of two-points ξ(r)

describes the number of galaxies in a volume dV at distance r from any galaxy

dN(r) = N0[1 + ξ(r)]dV,

where N0 is an amplitude related to the observations. Due to the statistical isotropy,

the function ξ(r) does not depend on the direction of r. In addition, this function

can be written in terms of the probability of finding pairs of galaxies separated by

a ditance r

dNpair = N2
0 [1 + ξ(r)]dV1 dV2.

The above expression can be written using the matter density

dNpair(r) = ρ(x)dV1 ρ(x+ r)dV2,

33



Chapter 3. General theoretical framework 34

since ρ = ρ0[1 + δ(r)], we have

dNpair(r) = ρ20[1 + δ(x)][1 + δ(x+ r)]dV1dV2.

Taking the average over a large number of volume elements and considering that

fluctuations are Gaussian (the mean of δ is zero), we obtain

dNpair(r) = ρ20[1 + 〈δ(x)δ(x+ r)〉]dV1dV2.

This calculation shows explicitly the relationship between fluctuations δ(r) at

different scales of r and the correlation function of two-points for galaxies

ξ(r) = 〈δ(x)δ(x+ r)〉. (3.1)

3.2 Power spectrum

The most natural way to study the distribution of fluctuations is in Fourier space.

The Fourier transform of δ(r) is defined as

δ(r) =
1

(2π)3

∫
δke

−ik·rd3k,

δk =

∫
δ(r)eik·rd3r.

Using the Parseval’s theorem that relates the integral of the squares of δ(r) and

its Fourier transform δk we obtain∫
δ2(r)d3x =

1

(2π)3

∫
|δk|2dk.

The amount on the left-hand side of the above equation is the average of the

square of the amplitude of the fluctuations, and |δk|2 is the power spectrum of

fluctuations, which is often written as P (k). The dimensionless power spectrum

is defined as Δ2(k) = k3

2π2P (k). Since the correlation function of two points is

spherically symmetric, we have that d3k = 4πk2dk, then

〈δ2〉 = 1

2π2

∫
P (k)k2dk.

The goal now is to relate the power spectrum and the correlation function of the

two-points. To accomplish this, it is better to expand δ(x) in Fourier series

δ(x) =
∑
k

δke
−ik·x.
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Taking the average of the product of δ(x) and δ(x+ r), we obtain

ξ(r) = 〈
∑
k

∑
k’

δkδ
∗
k’e

−i(k−k’)·xeik’·r〉,

the cross-terms in this sum vanish except for k = k’. Therefore,

ξ(r) =
∑
k

|δk|2 eik·r.

Now converting the sum in to an integral, the expression above becomes

ξ(r) =

∫
|δk|2 eik·rd3k.

Noting that the function ξ(r) is a real function, therefore it is interesting only

the integral of the real part of eik·r, i. e., the integral over cos(k · r) = cos(k r cos θ),

considering the spherical symmetry we obtain

ξ(r) =
1

2π2

∫
P (k)

sin kr

kr
k2dk =

∫
Δ2(k)

sin kr

kr
d(ln k).

Performing a similar process to the previous results, we obtain the following

expression for the power spectrum

P (k) =

∫ ∞

0

ξ(r)
sin kr

kr
4πr2dr, (3.2)

the dimensionless power spectrum is given by

Δ2(k) =
2

π
k3

∫ ∞

0

ξ(r)
sin kr

kr
r2dr. (3.3)

3.2.1 Initial power spectrum of matter

Initial fluctuations are considered to be of a Gaussian nature, these fluctuations

are caused by an inflationary phase in the early Universe. However, it is possible

to introduce non-Gaussianities into the density field. For example, the nonlinear

collapse of matter would introduce non-Gaussianities on small spatial scales but

the linear power spectrum will remain the only tool needed to describe the linear

behavior of the initial Gaussian field.

In a scenario where inflation puts initial fluctuations in this density field, many

models predict an initial fluctuation spectrum which is nearly scale independent,

among them there is the cosmological constant model. In other words, this means

that the spectral index of scalar fluctuations ns is close to one, according to recent
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data from the WMAP observations ns ≈ 0, 95 [7]. It is convenient to use the

following parameterization for the initial power spectrum

Pi(k) = As k
ns .

The constant As represents the strength of the initial fluctuations that have been

created in this early stage of the Universe and may be related to the height of the

fluctuations seen in the analysis of the CMB or in LSS. The index i indicate the

early Universe. This constant is related to variance of the density field within a

sphere of radius 8h−1 Mpc, σ8. The value 8h−1 Mpc has been chosen since that is

the scale on which the two-point correlation function for galaxies has roughly unit

amplitude ξ ≈ 1. These fluctuations are considered adiabatic, since they are a result

of parts compressing or decompressing of an exactly homogeneous Universe.

It is usual to write the power spectrum as

P (k, t) ∝ Pi(k)T
2(k)D2(t). (3.4)

The transfer function T (k) contains the changes that have occurred to these

fluctuations after entering the horizon.

For most cosmological models, T is approximately independent of time below a

redshift z ≈ 100. For the case of adiabatic fluctuations of cold dark matter (model

used in this work), we can use a fitting function for T , which is

T (k) =
ln(1 + 2, 34q)

2, 34q

[
1 + 3, 89q + (16, 1q)2 + (5, 46)3 + (6, 71q)4

]−1/4
,

q =
k

Ωmh2 Mpc−1
, (3.5)

see [37]. In order to have a precise fit to the transfer function and to the initial

spectrum we calculate the power spectrum today using CAMB [36]. To obtain

P (k, t), we multiply the square of linear growth factor D(t) to the result obtaining

with CAMB. See Figure 3.1.

3.3 The CMB angular power spectrum

Any scalar function can be expanded in spherical harmonics, anisotropies into CMB

are not exception. Then, the map of CMB anisotropies Θ which is decomposed into

spherical harmonics is given by

δT

T
(θ, φ) = Θ(θ, φ) =

∑
l,m

almYlm(θ, φ),
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where Ylm is a spherical harmonic and alm is a expansion coefficient. The statistical

properties of the coefficients alm are translated into constraints on the underlying

cosmological parameters which produce the fluctuations and determine their evo-

lution. Theories for cosmic inflation, see [41], predict that the primordial density

fields are Gaussian, in which case the average 〈alm〉 = 0 and its variance is

〈|alma∗l′m′ |〉 = δlmδl′m′Cl.

It is very important to note that, for a given l, each alm has the same variance.

Therefore Cl contains the crucial cosmological information.

The values of Cl can be calculated from a ’Boltzmann code’ such as CAMB [36],

see Figure 3.1.
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Figure 3.1: Using CAMB, we plot the CMB angular power spectrum, on the left–

hand side, and the matter power spectrum in the redshift z = 1, 1, on the right side,

see [36].

If one measures the components alm of the low multipoles, we do not get as

much as information about the underlying variance as in the higher multipoles case.

Thus, there is a fundamental uncertainty in the knowledge we may get about the

Cl’s. That uncertainty, which is most pronunced at low l, is called cosmic variance.

The cosmic variance can be written as

ΔCl

Cl

=

√
2

fsky(2l + 1)
,

where the factor 2l+1 is the number of alm modes measurable from the data which

is proportional to the fractional area of the sky fsky studied and the factor 2 reflects

that the direction of the modes on the sky is unimportant.
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From these coefficients one can compute the rms of the difference in temperature

of two points separated by an angle θ as:

〈
δT

T

〉
rms

≈
√

l(l + 1)Cl

2π
.

Different multipoles correspond to different angular separations and its relation

is approximately θ ≈ 180
l

degrees.

3.4 The Integrated Sachs-Wolfe effect

Photons propagating through the late-time Universe inevitably undergo to some

gravitational potential Φ. As they descend into the potential, the photon is grav-

itationally blueshifted due to an increase in energy. Initially on departure it is

redshifted resulting from a loss of energy in climbing from the potential well. The

net effect would seem to be zero. However, this is only the case for a time inde-

pendent potential. If it were to decay, for example, the photon would suffer a net

blueshifting. Such decay is expected to occur in the presence of dark energy in a flat

universe [13], which provides a cleaner test of this component of the Universe, or in

presence of curvature, for the case of curved cosmologies see [11, 12]. The overall

effect for a photon is the sum of all contributions along the line of sight, this effect

is called Integrated Sachs-Wolfe effect (ISW) [10].

On large scales, the ISW effect will add power to CMB anisotropies, by:

(
ΔT

T

)
ISW

= 2

∫ η0

ηLS

∂

∂η
Φ[(η0 − η)n̂, η] dη, (3.6)

where n̂ is the unit vector along the line of sight; η is the conformal time, and

ηLS and η0 are the conformal times today and at the surface of the last scattering

respectively; T is the temperature; Φ(x, η) is the gravitational potential at position x

and at conformal time η.Its relative amplitude makes it difficult to distinguish from

the primary anisotropies. However, it is possible to measure the ISW effect using the

cross-correlation between the LSS and the CMB, independently from the intrinsic

CMB fluctuations, see [14, 17, 20]. In the case where the gravitational potential

decays, a positive correlation is expected. This means that on large scale hot spots

in the CMB will correspond to over-dense regions in the galaxy distribution.
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3.5 The Cross-Correlation as a tool for detecting the ISW

effect

Once detecting the ISW effect from angular power spectrum is hard, we use the

cross-correlation for this purpose. In this section, we will present the formalism for

the calculation of cross-correlation between LSS and CMB, and LSS autocorrelation.

The predicted cross-correlation signal of the ISW effect in a spherical harmonic

space is given by:

CgT (l) = 4πbg

∫
dk

Δ2(k)

k
Wg(k)WT (k). (3.7)

For the angular autocorrelation we have:

Cgg(l) = 4πb2g

∫
dk

Δ2(k)

k
|Wg(k)|2, (3.8)

where:

Wg =

∫
dxΘ(x)jl(kx)D,

WT (k) = −3Ω0
mH

2
0

k2c3

∫ zL

0

dx jl(kx)H(f − 1)D,

Θ(x) =
r2nc(x)∫
dx x2nc(x)

.

We must remember that Δ2(k) is the dimensionless power spectrum defined in

the section 3.1; x is the comoving distance, which is implicitly used as a label for

redshift epoch z; D(z) is the linear growth factor, which is obtained solving the

equation (2.22), in chapter 2 there are some solutions to this equation for different

cosmologies; jl(kx) is the spherical bessel function of the 1st kind of order l.

Integrals are performed over the wavenumber k (expressed in hMpc−1), and

the comoving distance x (in h−1 Mpc). nc(r) is called selection function and it

represents the galaxies density distribution in the Universe. In WT (k), the redshift

at the surface of the last scattering is zL ∼ 1089. The growth function f is given by

f(z) =
d lnD

d ln a

and can be approximated by f(z) ≈ [Ωm(z)]
0,6, see chapter 2.

The matter power spectrum P (k), which was defined in the previous section, is

related to the galaxy power spectrum through the linear bias bg.

In a Gaussian model, Coles and Lucchin [38] described how the spatial two-point

correlation functions in the underlying dark matter ξD(r) and the galaxies ξgal(r)

could be related

ξgal(r) = b2g(z)ξD(r).
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There are a number of more-or-less equivalent definitions of the linear bias bg.

From the relations between the two-point correlation function, the power spectrum

and the linear growth factor, we see that

Pgal(k) = b2gPD(k) and

(
Δρ

ρ

)
gal

= bg(z)

(
Δρ

ρ

)
D

or δgal(r) = bg(z)δD(r).

Notice that, the linear bias is a function of redshift. Magliocchetti et al. [40] in

the equation 2 show the dependence of bg with z. In this equation we can see that

with increasing of redshift on the sample galaxy the bg would increase too. This

model works well in the range 0 ≤ z ≤ 1 for cold dark matter.

The linear bias could be derived directly from the 2MASS autocorrelation, see

[20]. Given the model and the values of the cosmological parameters used in this

work, we assume bg = 1, 40.

If we observe the equation (3.7), CgT (l) is zero if f(z) is one for any redshift.

This occurs only in the Einstein-de Sitter Universe (Ωm = 1,ΩΛ = 0). Then we can

say that for flat cosmologies without Dark Energy and matter dominated, the ISW

effect is null.

In this work we consider that the selection function is given by:

nc(r) = δdirac(r − r0) so Θ(r) =
r2δdirac(r − r0)

r20
,

where δdirac(r−r0) is Dirac delta function. This represents the density of a Universe

with a localized punctual galaxy at r0. Using the above expression, the function

Wg(k) can be written as

Wg(k) = jl(kr0)δ(z0),

recall that r0, z0 and a0 are related, see chapter 1.

Since using equations (3.7) and (3.8) the calculation can be complicated and

requires much computation time, in this work we replace them with the small an-

gle approximation (reference [17] used that approximation to get Limber equation).

Figure 3 in [20] shows the comparation between the exact theory and small angle

approximation. The difference is less than 1% from l = 5 onwards, but it is consider-

ably large for lower multipoles). This approximation arises from the Bessel function

approximation:

lim
l→∞

jl(x) =

√
π

2l + 1
δdirac

(
l +

1

2
− x

)
.

Equations (3.7) and (3.8) then simplify to

CgT (l) =
−3bgH2

0Ω
0
m

c3(l + 1/2)2
δ2(z0)H(z0)(f(z0)− 1)P

(
l + 1/2

r0

)
, (3.9)
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Cgg(l) =
b2g
r30

√
2(l + 1/2)3

π
δ2(z0)P

(
l + 1/2

r0

)
jl(l + 1/2). (3.10)

3.5.1 The error in the ISW detection and the likelihood function

The expected dispersion in the cross-correlation signal for harmonic multipole CgT

is given by

ΔC2
gT =

1

fsky(2l + 1)
(C2

gT + CggCTT ), (3.11)

where CTT is the CMB angular power spectrum. In [17] we can see more details.

The cross-correlation is an important tool for restricting the parameters of dif-

ferent theories that try of explain the dark energy in the Universe. To this purpose

we have used the likelihood function, which is defined as the probability that the

parameters of a given theory fit to the data given by an experiment. This function

allows to perform a statistical inference of parameters value via the observations,

see [21]. In this case we do not have an experiment, we have two theories, C0 and

C(p), where C0 is the standard cosmological model (in this case ΛCDM model) and

C(p) is another model with p parameters. In this work C(p) corresponds to the

parameterised Quintessence model, where the state equation varies.

The likelihood function is given by:

L =
∏
l

(
1√

2πΔCgT (l; C)

)
exp

(
−χ2

2

)

where χ2 is

χ2 =
∑
l

[CgT (l; C)− CgT (l; C0)]2
ΔC2

gT (l; C)
. (3.12)

Note that bg is cancelled from the numerator and the denominator. The analysis

using the function likelihood is summarized in the study of the behavior of χ2.



Chapter 4

ISW: ΛCDM versus Quintessence model

So far we have presented the necessary topics to understand and analyze the ISW

effect. In this chapter we present the numerical experiments results that we have

made in this investigation. The plots were performed with points obtained with

algorithms in C. They were specially developed using the routines of Numerical

Recipes in C as tool, see [22].

4.1 Standard cosmological model

Since the objective in this work is to constrain the parameters via the ISW effect of

a parameterised Quintessence model, we need to define a standard model C0 which

is accepted by the observations. In this case, C0 is the ΛCDM, which describes a

Universe dominated by the vacuum energy and dark matter.

Based on inflation, we assume that the Universe is flat, therefore Ω0
Λ = 1− Ω0

m.

For the matter density parameter we take Ω0
m ≈ 0, 3, in accord with supernovae Ia

data combined with the flatness of the Universe. For the baryon density we assumed

Ω0
b ≈ 0, 05. Due to recent data of WMAP and some inflationary models, we consider

that the spectral index have the value ns ≈ 0, 95, see [7]. Based on the Hubble Space

Telescope (HST) Key Project, we take for the Hubble parameter h ≈ 0, 7 [39]. The

system employed in this work is described in the section 3.5.

4.2 Behavior of the ISW effect signal in different redshifts

Initially we observe the behavior of the ISW effect signal, which is observed in the

cross-correlation between the galaxies and CMB, and autocorrelation Cgg in different

redshift, using the standard cosmological model. In Figure 4.1 we can see that for

higher redshifts, the signal is weaker than the signal to lower redshifts.
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Figure 4.1: Left : Auto-correlation for a punctual galaxy localized at different dis-

tances z0 = 2, 00; z0 = 1, 55; z0 = 1, 10; z0 = 0, 65; z0 = 0, 20; respectively. Right :

Cross-correlation between a punctual galaxy localized at different distances and the

CMB z0 = 2, 00; z0 = 1, 55; z0 = 1, 10; z0 = 0, 65; z0 = 0, 20; respectively.

4.3 Constraints of Quintessence model parameters

As we have already said, using the ISW effect signal we can constrain the parameters

of a cosmological model C(p) given a standard cosmological model C0, where C0 is

described in the section 4.1, punctual galaxy is found in a redshift z = 0, 3. The

equation of state for dark energy in the cosmological model C(p) is given by

w(a) = w0 + (a− a0)wa, (4.1)

where wa, w0, a0, are parameters. In this case, the Universe is flat with Ω0
Λ = 0, 7

and Ω0
m = 0, 3.

Considering the following settings in the equation of state, wa = 0, we can observe

the behavior of Cgg and CgT for different values of w0. In Figure 4.2 we observe that

as the w0 parameter decreases the ISW effect signal and the autocorrelation function

also decrease, this plot is obtained using the equations (3.9) and (3.10).

Now we analyze the behavior of the error bars of the cross-correlation function

for different values of w0. Therefore we select w0 = −0, 5; w0 = −1, 5; w0 = −2, 5
and w0 = −3, 5. To perform this analysis we have done a bining with Δl = 8 for each

w0. The CgT (l) values are averaged into bins of width Δl = 8 using the following

equation:

CΔl
gT (l) =

∑l′+Δl

l′ (2l′ + 1)CgT (l
′)∑l′+Δl

l′ (2l′ + 1)
.
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Figure 4.2: Auto-correlation and cross-correlation respectively for different values of

w0 in the punctual galaxy model; w0 = 0, 0 red; w0 = −0, 5 green; w0 = −1, 0 blue;

w0 = −1, 5 magenta; w0 = −2, 0 lightblue; w0 = −2, 5 yellow; w0 = −3, 0 black;

w0 = −3, 5 orange.

We find the error bars average using the following expression

1

ΔC2
gT (l)

=

l′+Δl∑
l′

1

ΔC2
gT (l)

.

In Figure 4.3 we can see that the error bars decrease as the l multipole value

increases. According to equation (3.12), the argument in χ2 must tend to zero for

higher multipoles. Although the error bars decrease, in the limit of higher multipoles,

the cross-correlation function tends to zero for different values of w0. Therefore, the

summation in χ2 goes to a multipole l0 where the CgT (l) are insignificant, in this

work l0 = 100, since the ISW effect detection is given for low multipoles, see [17].

In addition to the study of the w0 parameter behavior, we also can analyze the

case where wa varies, considering the following settings in the equation of state (4.1),

w0 = −1, 0, a0 = 1, 0. In Figure 4.4 we compute χ2 in C(w0) and C(wa). For bins

of width [−1, 926 , −0, 323] in w0 and [−0, 855 , 1, 190] in wa, we obtain one sigma

level by taking the 68% of the sample which best fit to the standard cosmological

model.

After studying the w0 and wa parameters behavior separately, we now study

both parameters in a single C(w0, wa) cosmological model, considering a0 = 0 in the

equation of state (4.1). For this case, we calculated the χ2 value which we have

defined in the expression (3.12). Values set for w0:

{−0, 2; −0, 4; −0, 6; −0, 8; −1, 0; −1, 2; −1, 4; −1, 6; −1, 8; −2, 0}
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and for wa:

{+0, 8; +0, 6; +0, 4; +0, 2; 0; −0, 2; −0, 4; −0, 6; −0, 8; −1, 0}.

On the left-hand side Figure 4.5 we can see a map in which it is drawn the contour

curve for χ2. If we want to get one sigma level in the best fit, we need to consider the

contour curve for χ2 = 2, 3 (i.e., green line of this plot), since we have a cosmological

model with two parameters, see page 697 in [22].

We can observe in Figure 4.5, the need to add more values of w0 and wa to get

a good description in this case. Given that the designed algorithm in this work was

made for a cosmological model with one parameter, the computation time in the

case of two parameters is higher, hindering the data collection process. For future

research cosmological models of two or more parameters will be need to improve

routine to optimize the calculation time.
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Figure 4.3: In this figure we show the cross-correlation for different w0: left top:

w0 = −0, 5, right top: w0 = −1, 5, left bottom: w0 = −2, 5, right bottom: w0 = −3, 5.
Errors were calculated with the equation (3.11). We have done a bining with Δl = 8

for each graph (see text for details).
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logical model C(w0) with wa = 0 in the equation of state (4.1), on the left-hand side;

and a cosmological model C(wa) with w0 = −1, 0 and a0 = 1, 0 in the equation of

state (4.1), on the right-hand side.
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Figure 4.5: χ2 values calculated using the equation (3.12) for the case of a cosmo-

logical model with two parameters, C(wa, w0), a0 = 1, 0 in the equation of state

(4.1). On the left-hand side, we have a map with contour curves that represent the

following χ2 values: 0,03 magenta; 0,1 blue; 2,3 green. On the right-hand side, we

have a representation 3D of χ2. For the plot, we only consider 10 values for wa and

10 values for w0.
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Future research can use this procedure to constrain other the parameters in other

models Quintessence or constrain the cosmological parameters value as the spectral

index ns, the parameter of dark energy density Ω0
Λ, etc.



Chapter 5

Conclusions

In this work, we study the ISW effect signal via cross-correlation between CMB and

LSS. To accomplish this, we develop the necessary theory to explain the structure

growth. In the chapter 2, we show the linear growth function and the growth

function behavior for different cosmological models, among them, a cosmological

model with dark energy where the equation of state varies, see Figures 2.2 and 2.3.

The case of a Universe dominated by non-relativistic matter Ω0
m ≈ 1, 0 Einstein-de

Sitter Universe case, the ISW effect signal is null, given that the growth function is

one, see Figure 2.2 and equation (3.9). In addition, we analyze the approximation

f(t) ≈ (Ωm(t))
0,6 for the growth function in a flat Universe with matter and dark

energy. We show that it is a good approximation, see Figure 2.1. However, in this

work, we do not use this approximation.

Independent measurements of the growth parameters as supernovae and Baryon

Acoustic Oscillations (BAO) allow us an understanding of the distances as well

as the growth getting a better understanding on the nature of dark energy. The

main result in this work was to compute the best fit with the standard cosmological

model until one sigma level via ISW effect for cases different of a parameterised

Quintessence model. Which is decribed by the equation of state (4.1). In C(w0)

case, with wa = 0 and a0 = 0, we find a bins of width [−1, 926 , −0, 323], for the

best fit. In C(wa) case, with w0 = −1, 0 and a0 = 1, 0, we find a bins of width

[−0, 855 , 1, 190], for the best fit. With these two cases, we can observe that the

ISW effect is a great tool, which allows us to constrain the cosmological parameter

in a model with dark energy. But not only in the cosmogical models cases with

one parameter, in the Figure 4.5 we show the cosmological model case with two

parameters (w0 and wa, a0 = 1, 0), we obtain contour curves for one sigma level in

the best fit with standard cosmological model. However, it is necessary to improve

the algorithms used in this work to obtain best results. All cases considered here

contain the standard cosmological model. The plots were made with Gnuplot.
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Appendix A

Other Quintessence models

To develop this appendix we need to use the formalism of the general relativity,

see [42]. As mentioned in chapter 1, to explain an accelerated expanding Universe,

we have to introduce the concept of dark energy. The model based in the cosmo-

logical constant is used for this purpose, however we can generalize this model by

introducing a scalar field which only interacts with other fields gravitationally. This

cosmological model is part of Quintessence models. The dark energy field is sup-

posed to slowly roll down the potential or is trapped in a local minimum. This leads

to a vacuum dominated state of the Universe which hence leads to an accelerated

expansion.

The stress energy tensor in a flat Universe is

Tμν = −∂μφ ∂L

∂(∂νφ)
+ gμνL, (A.1)

where gμν is the FLRW metric. Let us write the lagrangian for a scalar field

L = −1

2
∂αφgαβ∂

βφ− V (φ),

where φ is the dark energy field. Introducing the above expression in (A.1) we get

Tμν = ∂μφ∂νφ− gμνL. (A.2)

Assuming that the field is homogeneous on large scale, we can replace it into the

lagrangian

∂αφgαβ∂
βφ = φ̇2g00 = −φ̇2,

in addition, we have also

∂μφ = g0μφ̇ and ∂νφ = g0νφ̇.

Multiplying gλμ in (A.2) and by using the above expressions, we obtain

T λ
ν = δλ0g0νφ̇

2 + δλν

(
1

2
φ̇2 − V (φ)

)
. (A.3)
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Given that we consider the Universe as a perfect fluid, its stress energy tensor is

T λ
ν = ρuλuν + p(δλν + uλuν),

where ρ is the energy density, p is the pressure and uν is the 4-velocity. Therefore,

we can identify of the above expression

T 0
0 = −ρφ = −1

2
φ̇2 − V (φ) and T i

i = pφ =
1

2
φ̇2 − V (φ).

The proportionality factor

wφ ≡ pφ
ρφ

,

in the equation of state, pφ = wφρφ is wφ = −1 if the kinetic term φ̇2/2 is negligible,

note that c = 1 in this case.

To find the evolution of the dark energy field, we replace pφ and ρφ into the

equation of state for this component (1.5)

φ̈+ 3Hφ̇+ V ′(φ) = 0,

with V ′(φ) = dV/dφ.

Friedmann’s equation is given by

H2 =
ȧ

a
=

1

3

[
ρother +

1

2
φ̇2 + V (φ)

]
,

where the Planck mass Mpl is equal to one, see [34], and ρother is the total energy

density of the other contributing fields or energy components, like dark and baryonic

matter and radiation.

If V (φ) is approximately constant and the other energy components are negligi-

ble, the solution for the scale factor is a ≈ exp[
√
V t] and hence, the expansion of

the Universe is accelerating, see subsection 1.7.4.



Appendix B

The cross-correlation power spectrum

Let us consider two random fields A(x) and B(x), with their Fourier transforms

defined as

Ak =

∫
d3xe−ik·xA(x) and Bk =

∫
d3xe−ik·xB(x).

The cross-correlation power spectrum, PAB(k) is defined by

〈Ak1Bk2〉 = (2π)3δ3dirac(k1 − k2)PAB(k1)

The project of A and B on the sky are defined using FA and FB projection kernels

Ã(n̂) =

∫
dr FA(r)A(rn̂) and B̃(n̂) =

∫
drFB(r)B(rn̂).

For the ISW effect, the kernel is given by(
ΔT

T

)
ISW

= 2

∫ η0

ηLS

∂

∂η
Φ[(η0 − η)n̂, η] dη.

For the projected galaxy overdensity, this kernel is

Fg(r) =
r2 nc(r)∫

dr′ r′2 nc(r′)
.

Now, expanding Ã and B̃ in terms of spherical harmonics, the cross-correlation

coefficients, CAB(l) is defined as

CAB(l) ≡ 〈ÃlmB̃
∗
lm〉 =

=

∫
dr1dr2FA(r1)FB(r2)

∫
d3k

(2π)3
PAB(k)(4π)

2jl(kr1)jl(kr2)Ylm(k̂)Y
∗
lm(k̂)

=

∫
dr1dr2FA(r1)FB(r2)

∫
2k2dk

π
PAB(k)jl(kr1)jl(kr2).
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we can use the small angle (large l) approximation for the spherical Bessel function

jl(x) =

√
π

2l + 1
[δdirac(l +

1

2
− x)],

and obtain

CAB(l) =

∫
dr

r2
FA(r)FB(r)PAB

(
l + 1/2

r

)
.

This is the so called Limber equation. Substitute the kernels for the ISW effect and

for the projected galaxy overdensity, we have

CgT (x) = − bg∫
dr r2nc(r)

∫
dr nc(r)(3H

2
0 )Ωm

r2

(l + 1/2)2
D′

D
(1 + z)P

(
l + 1/2

r

)
,

where P (k) is the matter power spectrum. Since the ISW effect is only important

at large scales, the cross-power of the gravitational potential derivate with matter

fluctuations can be expressed in terms of the matter power spectrum, using the

Poisson equation and linear perturbation theory, we can find the kernel for ISW

effect and so to obtain the above expression.



Appendix C

Acronyms and Notation

Acronym

WMAP Wilkinson Microwave Anisotropy Probe

CMB Cosmic Microwave Background

LSS Large Scale Structure

DMR Differential Microwave Radiometer

COBE Cosmic Background Explorer

2MASS 2 Micron All-Sky Survey

ISW Integrated Sachs-Wolfe

ΛCDM Cosmological Constant with Cold Dark Matter

FLRW Friedmann-Lemâıtre-Robertson-Walker metric

HST Hubble Space Telescope

BAO Baryon Acoustic Oscillations

Notation

ργ Energy density of photons

ρr Energy density of all radiation

ρm Matter energy density

ρΛ Dark energy density

ρc Critical energy density

ρk Curvature density

Ωi Density parameter of the component i

ΩT0 Temperature of CMB

kB Boltzmann’s constant

H0 Hubble’s constant today

H Hubble’s constant of expansion
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h Parameter for Hubble constant

G Gravitational constant

w Pressure to energy-density ratio

Λ Cosmological constant

q Deceleration parameter

a Scale factor

η Conformal time

dc Comoving distance

dA Angular distance

dL Luminosity distance

t0 Age of the Universe

rH Particle horizon

rE Event horizon

dh Hubble’s radius

z Redshift

δ Matter overdensity

D Linear growth factor

f Growth function

λJ Jeans’ wavelength

ξ(r) Correlation function

P (k) Power spectrum

Δ2(k) Dimensionless power spectrum

ns Spectral index

T (k) Transfer function

Ylm Spherical harmonic

Φ Gravitational potential

σ8 Variance of the density field within a sphere of radius 8 h−1 Mpc

bg Linear bias

CgT (l) Cross-correlation between CMB and LSS

Cgg(l) Autocorrelation of galaxies

CTT (l) Autocorrelation of CMB

C0 Standard cosmological model

L likelihood function

χ2 The expected significance level for ruling out a cosmological model
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