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Amplitude ratios and the approach to bulk criticality in parallel plate geometries
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We present analytical and numerical results for the specific heat and susceptibility amplitude ratios in
parallel plate geometries. The results are derived using field-theoretic techniques suitable to describe the
system in the bulk limit, i.e., (L/j6)@1, whereL is the distance between the plates andj6 is the correlation
length above~1! and below (2) the bulk critical temperature. Advantages and drawbacks of our method are
discussed in the light of other approaches previously reported in the literature.@S1063-651X~99!04703-0#

PACS number~s!: 64.10.1h, 64.60.Fr, 64.60.Ak
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I. INTRODUCTION

Since the advent of modern scaling concepts a
renormalization-group techniques the study of finite-size
surface effects on the behavior of systems near or at criti
ity has attracted the attention of a number of investigat
@1#.

Fixing our interest in the case of a system confined
tween two infinite (d21)-dimensional parallel plates dista
L from each other, we may classify three well defined d
tinct regimes in this problem. The first one, where the sca
variable (L/j6)@1, is characterized by the dominance
bulk over surface and finite-size effects and the physic
quasi-d-dimensional. Here,j6 specifies the critical correla
tion length above~1! and below (2) the bulk critical tem-
peratureTc . The second regime, where (L/j6)!1, the sys-
tem behaves as a quasi-(d21)-dimensional object. Finally
for (L/j6);1, the physics interpolates between a quasid-
and a quasi-(d21)-dimensional system. A full descriptio
of the system should therefore unveil very interesting cro
over behaviors.

According to the region and phenomenon of interest, d
ferent field-theoretic techniques have been devised to
with such systems. Indeed, Diehl and Dietrich@2,3# success-
fully implemented these techniques to study critical and m
ticritical phenomena near surfaces within a finite moment
cutoff regularization scheme. The use of dimensional re
larization was shown@4,5# to simplify the computational pro
cedure and allowed the study of ordinary@2# and special
transitions@3# through standardf4-field theories under Di-
richlet and Neumann boundary conditions~DBC’s and NB-
BC’s!, respectively. The former mimics very strong repu
sive forces at the surface, thus preventing order at it~a
parameterc, which measures these forces@2#, has fixed point
value c* 5`), whereas under the later boundary conditi
both the surface and the bulk go critical simultaneously. T
special transition is in fact a multicritical point@3#, c* 50,
where the two lines describing systems with repulsivec
.0) and attractive forces (c,0) at the surface meet. In th
later case, namely, the extraordinary transition@5,6#, the sur-
face undergoes a second-order transition before critica
PRE 591063-651X/99/59~3!/2683~6!/$15.00
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sets in the bulk. Moreover, it has been shown@7# that a
scaling description holds so that the critical exponents as
ciated with excess surface singularities may be expres
completely in terms of bulk exponents. However, it has a
been shown@7# that fluctuations may induce divergences
the surface and in these cases local quantities and assoc
exponents must be defined resulting in new scaling relatio
Therefore, in treating these quantities at the multicritic
point, Neumann boundary conditions are valid only at t
mean-field level@7#.

On the other hand, in order to properly describe finite-s
effects using field-theoretic techniques in critical syste
subject, for example, to periodic boundary conditio
~PBC’s!, Brezin and Zinn-Justin@8# and, independently
Rudnick, Guo, and Jasnow@9#, introduced a method in
which the zero-momentum component is isolated wher
the other nonzero modes are treated perturbatively. T
method has been largely used@10–12# and generalized to
study different boundary conditions. More recently@13#,
some difficulties regarding the treatment of critical syste
below Tc using this technique have been circumvented.

Both finite-size and surface effects are simultaneou
present, except in special circumstances such as for PB
the surface effects of which vanish. AtT5Tc , where Ca-
simir forces are manifest, these contributions compete i
very special way, and powerful tools and methods such
conformal invariance@14# and elaborated perturbation tec
niques @15# have been used to study this regime and
approach toTc @12–15#.

In this work we shall calculate specific heat and susce
bility amplitude ratios using field-theoretic andP-expansion
methods@16# particularly suitable to describe systems in t
first regime mentioned above in which bulk behavior dom
nates over surface and finite-size contributions. The repo
results complement previous studies@16# and shed some
light on the approach to bulk criticality as the distanceL
between the plates increases.

For a system of volumeV5AL, where A is a
(d21)-dimensional surface~layered geometry!, the follow-
ing asymptotic scaling form for the singular part of the fre
energy density holds@17#:
2683 ©1999 The American Physical Society
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f ~ utu,L !;
1

AL
Y~Lutun/a!5ybutudn1ys

utu~d21!n

L

1d f ~Lutun/a!, ~1!

wheret5(T2Tc)/Tc , n is the bulk correlation length ex
ponent anda is the only nonuniversal metric factor. Usin
the hyperscaling relationdn522a, one identifies the first
term~proportional toyb) as the bulk contribution, the secon
one ~proportional toys) as the excess surface term and t
last one as a finite-size correction term. In the limit (j6 /L)
!1 one expects exponentially small corrections fromd f ,
whereas for (j6 /L)@1 it compensates the bulk and surfa
contributions and gives rise to the Casimir effect@13–15# at
T5Tc .

From the above scaling assumptions the specific heat
susceptibility should behave as

C~ t,L !;utu2aA6~Lutun/a!, ~2!

x~ t,L !;utu2gC6~Lutun/a!, ~3!

wherea and g are the bulk critical exponents, but even
the regimeLutun@1 one expects that excess surface a
finite-size contributions modify their critical amplitudes in
non-trivial manner. In fact, the ratio of these amplitudes
quite sensitive in identifying the universality class of a cri
cal system, particularly in numerical simulations@18# where
one has to control both corrections to scaling and surface
finite-size effects.

In Sec. II we explain our method and derive both t
renormalized free energy and the equation of state fr
which the above quantities can be calculated. Finally, in S
III a discussion of the results and conclusions are presen

II. SPECIFIC HEAT AND SUSCEPTIBILITY
CRITICAL AMPLITUDES

In this section we shall use field-theoretic a
renormalization-group techniques to calculate the amplit
ratios ofC andx in layered geometries. We shall keep clo
contact with standard bulkf4-field theory @19# and when-
ever necessary to deal with the finite size of the system
employ methods@16# which are particularly suitable in th
regime (L/j6)@1.

A. Renormalized free energy and boundary conditions

We start by writing the expression for the one-loop ren
malized Helmholtz free-energy density at the fixed point
sociated with the bulk critical behavior of the system:

F~ t,M ;L !5 1
2 tM21

1

4!
u* M41 1

4 ~ t21u* tM21 1
4 u*

2
M4!I sp

1
1

2L(
j
E dd21q ln@11~1/2!

3u* M2/~q21k j
21t !#. ~4!

In the equation abovet, M (t05Z f2t,M05Z f
1/2M ) are the

renormalized~bare! reduced temperature and order para
nd

d

e

nd

m
c.
d.

e

e

-
-

-

eter, respectively,Z f2,Zf are renormalization functions,u*
is the dimensionless renormalized coupling constant o
continuous~bulk! f4 theory at the fixed point,qW is a (d
21)-dimensional wave vector along the direction parallel
the plate,k j5p j /L are the eigenvalues of the kinetic ener
operator satisfying proper boundary conditions~see below!
andI sp5P21@11(P/2)#1O(P) is the one-loop integral of
a bulk f4 theory evaluated at the symmetry point using
mensional regularization, whereP542d. Notice that tak-
ing the limL→` in Eq. ~4! one obtains the standard expre
sion for thed-dimensionalf4 one-loop renormalized free
energy.

In deriving F(t,M ;L) we have considered that the loc
field of a f4 theory may satisfy periodic, Neumann, or D
richlet boundary conditions, defined byf(rW ,z)5f(rW ,z
1L), (]/]zuz50)f(rW ,z)5(]/]zuz5L)f(rW ,z)50, and
f(rW ,z50)5f(rW ,z5L)50, respectively, whererW is a (d
21)-dimensional position vector perpendicular to thez(dth)
direction. It then follows that the sum in Eq.~4! has values
j 50, 61, 62, . . . , for PBC’s, j 50,1,2, . . . , for NBC’s,
and j 51,2, . . . , forDBC’s, respectively. The local field is
Fourier transformed in the form@16#

f~rW ,z!5(
j

~2p!12dE dd21q exp~ iqW •rW !f j~qW !uj~z!,

~5!

wheref j (qW ) are plane waves parallel to the plate anduj (z)
are eigenfunctions of the kinetic energy opera
(2d2/dz2) with eigenvaluesk j

2 . The bare order paramete
M0 is thus the expectation value of the local field above. W
call attention that the usual counterterms of a bulkf4 theory
are used to renormalize the free energy and that the boun
conditions are implemented on the bare vertex functions.
tails of the Feynman rules involving propagators and verti
can be found in Ref.@16#.

B. Specific heat amplitude ratio

Since the vertex functionG (0,2) is additively renormalized,
the critical behavior~singular part! of the specific heat is
calculated using the expression@19#

C5Autu2a52
n

a
B~u* !2GR

~0,2! , ~6!

where B(u* ) is the inhomogeneous term of th
renormalization-group equation forGR

(0,2) and

GR
~0,2!5

]2

]t2
F~ t,M ;L !. ~7!

For T.Tc , M50, and we find, using Eqs.~4! and ~7!,

GR
~0,2!~T.Tc!52

1

2L(
j
E dd21q

~q21k j
21t !2

1 1
2 I sp , ~8!

whereas forT,Tc we use the value ofM at the coexistence
curve, namely,u* M2526t, to obtain
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GR
~0,2!~T,Tc!52

3

u*
2

2

L(
j
E dd21q

~q21k j
212utu!2

12I sp .

~9!

The one-loop integrals are evaluated using dimensio
regularization and some useful formulas@16,20# to sum infi-
nite series. We thus obtain for the boundary conditions
interest:

1

L(
j
E dd21q

~q21k j
21 t̃ !2

5 t̃ 2P/2
1

PS 12
P

2 D12p21/2S 2p

L D d24

G~d/2!

3G@~52d!/2!]sin@p~52d!/2# f ~52d!/2FL t̃ ~52d!/2

2sp
G

1t
p1/2

2
G~d/2!G@~52d!/2#@ t̃ ~d25!/2/L#, ~10!

where Sd /(2p)d[1, Sd being the area of the
d-dimensional unity sphere,t̃ 5t1(1/2)u* M25t( t̃ 52utu)
for T.Tc (T,Tc), s51 for PBC’s, s50 for both
NBC’s and DBC’s, t50,11,21 for PBC’s, NBC’s, and
DBC’s, respectively, and

f a~a!5E
a

`~u22a2!2adu

exp~2pu!21
, a,1. ~11!

The above representation is particularly suitable in the b
limit, L/j6@1, but difficulties arise asa→0 (L/j6!1) in
Eq. ~11!, as will be later numerically evidenced. A represe
tation allowing access to both regimes, but not without so
problems forT,Tc , was formulated by Krech and Dietric
@15# and used to study films at bulk criticality.

Now using theP expansion@19# for the nonsingular par

of the specific heat,2(n/a)B(u* )5( 3
2 P)1(295/108)

1O(P), we find the amplitudes above and belowTc :

A15
3

P2F11P
47

54
1P

222s

3
f 1/2S Lt1/2

2sp
D 1P

t

3

p

Lt1/2G
1O~P2!, ~12!

A25
6

P2aF12P
7

54
1P

222s

3
f 1/2S A2Lutu1/2

2sp
D

1P
tp

3A2Lutu1/2G1O~P2!, ~13!

wherea5P/61O(P2).
From the above equations we finally obtain the spec

heat amplitude ratio:

A1

A2
5

2a

4
@11P f ~x!1PSA~x!#1O~P2!, ~14!

where f (x) andSA(x) are given by
al

f

lk

-
e

c

f ~x!5
222s

3
@ f 1/2~x/2sp!2 f 1/2~A2x/2sp!#, ~15!

SA~x!5t
p

3xS 12
1

A2
D , ~16!

and x5L/j, with j5utu21/2. For x→`, we can use the
asymptotic limit @16,20# for f 1/2(a) in Eq. ~11! and write
f (x) in the more simplified form

f ~x!5
212s~2p!1/2

3 Fexp~2212sx!

~212sx!1/2

2
exp~2A2212sx!

~A2212sx!1/2 G , x→`. ~17!

C. Susceptibility amplitude ratio

Using Eq.~1! we obtain the following renormalized equa
tion of state:

HR5
]F

]M
5tM1 1

6 u* M31 1
2 u* M ~ t1 1

2 u* M2!

3F I sp2(
j

1

LE dd21q

~q21k j
2!~q21k j

21t1 1
2 u* M2!

G .

~18!

The one-loop integral is calculated similarly as for t
specific heat:

1

L(
j
E dd21q

~q21k j
2!~q21k j

21 t̃ !

5 1
2 G@22~P/2!#G~P/2!E

0

1

dx~ t̃ x!2P/2

12p21/2S 2sp

L D d24

G~d/2!

3G@~52d!/2#sin@p~52d!/2#E
0

1

dx f~52d!/2

3FL~ t̃ x!~52d!/2

2sp
G1t

p1/2

2
G~d/2!G@~52d!/2#

3E
0

1

dx@~ t̃ x!~d25!/2/L#. ~19!

By noticing that the first term in the right-hand side of E
~19! may be written as@P212(1/2)lnt̃#, and using the
P-expansion representation forI sp , we obtain, to first order
in P,
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HR5tM1 1
6 u* M31 1

4 u* M t̃ H ~11 ln t̃ !

22E
0

1

dy f1/2FL~y t̃ !1/2

2sp
G1t

p t̃ 21/2

L J , ~20!

whereu* 5(2/3)P1O(P2) and t̃ 5t1(1/2)u* M2.
The susceptibility amplitudes are then readily calcula

from

x215~Cutu2g!215GR
~2,0!5

]HR

]M
. ~21!

As before, for T.Tc , M50, and for T,Tc we use
u* M2526t. The amplitudes above and belowTc thus read

C1512
P

6
1

P

3 E0

1

dy f1/2S xy1/2

2sp
D 1P

tp

6x
1O~P2!,

~22!

C25
1

2H 12
P

6
~41 ln 2!1

P

3 E0

1

dy f1/2Fx~2y!1/2

2sp
G

1P
tp

6A2x
J 1O~P2!, ~23!

wherex5L/j.
Using Eq.~11! and performing the integrations iny, we

find the susceptibility amplitude ratio:

C1

C2
52g21

g

b
1Ph~x!1PSC~x!1O~P2!, ~24!

where g511(P/6)1O(P2), b51/22(P/6)1O(P2)
and

h~x!5
2s11p

3x F ~12A2!

24
2E

a

`

du g~a/u!

1A2E
b

`

du g~b/a!G , ~25!

SC~x!5t
p

3xS 12
1

A2
D , ~26!

with a5A2x/2sp, b5x/2sp, and

g~c/u!5
u cos@arcsin~c/u!#

exp~2pu!21
. ~27!

III. DISCUSSION AND CONCLUSIONS

First, we should point out that the main step in our a
proach is the representation@16,20# used to evaluate the dis
crete sums in Eqs.~10! and~19!. It has proved very useful in
different field-theoretic contexts@20# and here it clearly helps
to split the bulk, surface and finite size contributions, as
quired by scaling@see Eqs.~1!–~3!#, in a rather simple way
d

-

-

though its range of effectivenes precludes direct access to
Casimir effect.

Second, our starting renormalized free energy, Eq.~4!,
does not consider any distortion of the order parameter p
file, i.e., our description is restricted to calculating the effe
of the boundary conditions on bulk quantities as a result
fluctuations, i.e., in the amplitude ratios, Eqs.~14! and ~24!,
excess surface and finite size contributions are ofO(P).
Nevertheless, we observe that if the excess surface cont
tions for NBC’s in Eqs.~12! and ~13! are isolated, we find
(A1 /A2)s5223/21O(P), which is the same result derive
in Ref. @5# for the special transition~the excess surface spe
cific heat exponent isaS5a1n). This is so because in thi
particular case there is no distortion of the order paramete
the mean-field level. Notice also that, abo
Tc , (A1)sp /(A1)ord5211O(P2), where (A1)sp,ord re-
fer to the specific heat amplitudes at the special~NBC’s! and
ordinary~DBC’s! transitions, a result already derived in Re
@4#. As for the excess surface contributions for the susce

FIG. 1. Amplitude of the excess surface contribution~solid
line!, from Eqs. ~16! and ~26!, and scaling functionsf p ~dashed
line! and f N,D ~dotted line! for periodic, Neumann, and Dirichle
boundary conditions, respectively, numerically evaluated using E
~15! and ~11! in d53, as functions ofx5L/j.

FIG. 2. Same as in Fig. 1 for 2<x<7.
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bility amplitudes we also notice that the last term in Eq.~22!
is consistent with the result found in Ref.@7# for the special
transition aboveTc(gS5g1n), since again no distortion
of the order parameter is necessary in this case. Be
Tc , however, the order parameter profile differs fro
the bulk value as one approaches the surface of the p
and therefore no comparasion can be made since our me
excludes this feature as a starting point.

From the discussion above and the derived results
Sec. II, particularly Eqs.~14!–~17! and ~24!–~27!, it is
clear that in the regimeL/j6@1, and to first order in an
P expansion, the specific heat and susceptibility disp
singularities well described by bulk exponents, but w
amplitudes sensitive to the boundary conditions, wh
manifest as excess surface and finite-size contributio
Notice also that these fluctuation effects result qu
effectively from the difference between the amplitudes of
correlation length above and belowTc , which satisfy
(j0,1 /j0,2)5A21O(P).

In Figs. 1, 2, and 3 we plot the scaling functionsf (x)
and h(x), numerically evaluated ind53, as defined by
Eqs. ~11!,~15!,~25!–~27!. They both decay very rapidly to
zero asx5Lt1/2 increases, in agreement with the asympto
result @16,20# for f 1/2(x), x→`. In fact, for PBC’s and
x57 we find f p(x).2.731024 either by using the
numerical estimate or the asymptotic result predicted
Eq. ~17!. For this value ofx it is indeed expected@18#
that these corrections to the bulk limit are indeed negligib
Notice also that for DBC’s and NBC’s the magnitude
the scaling functions are the same in our one-lo
approximation, in agreement with Ref.@15#, although a
two-loop calculation shows@15# that they differ slightly
if the same regime of validity applies. However, asx→0
our approach does not correctly describe the Casimir eff
as shown in Figs. 1 and 2:f (x) diverges andh(x)
approaches zero, whereas in a correct treatment@13–15#
both tend to a constant value, the Casimir amplitud
for each case. This failure forx,1 has already been pointe
out by Nemirovsky and Freed@16#. Here, our results

FIG. 3. Scaling functionshp ~dashed line! andhN,D ~dotted line!
for periodic, Neumann, and Dirichlet boundary conditions, resp
tively, numerically evaluated using Eqs.~25! and ~27! in d53, as
functions ofx5L/j.
w

te,
od

in

y

h
s.
e
e

c

y

.

p

t,

s

deal with this issue in a more quantitative way, th
evidencing the advantages, limitations and drawbacks of
method.

For comparison, we also plot in Fig. 1 the excess surf
contribution for the cases of both NBC’s and DBC’s, i.e
uSA(x)u5uSC(x)u[S(x). As clearly seen from Figs. 1 and 2
as x→` these contributions are the leading ones@11,15#
modifying the amplitudes of both the bulk specific heat a
susceptibility. Notice that they have the same magnitude
decay asx21 @this is fortuitously true only because thes
effects are treated as fluctuation contributions to the b
limit, see Eqs.~16!,~26!#.

Finally, in Fig. 4 we plot the difference between the e
cess surface contribution and the scaling function for NBC
We see that this difference ‘‘almost’’ saturates asx→0, as
expected in the Casimir effect, but lastly it diverges for ve
small values ofx ~an x21 dependence is in fact expecte
from Eq. ~11! as x→0, but an extra lnx contribution pre-
cludes a good description of the Casimir effect!.

In summary, we have presented a field-theoretic desc
tion of the approach to bulk criticality in parallel plate g
ometries, in which excess surface and finite-size contri
tions appear as a result of fluctuations and are controlled
the boundary condition imposed on the system. Despite
fact that other more general methods to deal with finite s
tems do exist, our approach is probably the simplest one
a fair description, at least toO(P), in the regimeL/j6

@1.
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