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Bernardo é quase árvore 

Bernardo é quase árvore. 

Silêncio dele é tão alto que os passarinhos ouvem de longe. 

E vêm pousar em seu ombro.  

Seu olho renova as tardes. 

Guarda num velho baú seus instrumentos de trabalho: 

um abridor de amanhecer 

um prego que farfalha 

um encolhedor de rios – e  

um esticador de horizontes. 

(Bernardo consegue esticar o horizonte usando três fios de teias de aranha. A coisa fica bem 

esticada). Bernardo desregula a natureza:  

Seu olho aumenta o poente. 

(Pode um homem enriquecer a natureza com a sua incompletude?) 

(Manoel de Barros) 
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RESUMO 

Fenologia é uma ciência tradicional que estuda os eventos recorrentes dos ciclos de vida de 

plantas e animais e da sua relação com o clima, bem como com fatores bióticos e filogenia. O 

brotamento foliar define a estação de crescimento das plantas e controla processos cruciais 

dos ecossistemas, tais como: ciclagem de nutrientes, o armazenamento de água e balanço de 

carbono, regula a produtividade dos ecossistemas terrestres e as dinâmicas de trocas de 

carbono. Estudos fenológicos têm sido aplicados de forma eficiente no controle de distúrbios 

ambientais, respondendo a perguntas sobre o atual cenário de mudanças climáticas globais e 

estimulando a busca de ferramentas inovadoras no monitoramento de plantas. O uso de 

imagens de satélite e câmeras digitais vem sendo considerado métodos alternativos de 

observação das mudanças fenológicas. A técnica de fotografias repetidas utilizando câmeras 

digitais tem aumentado devido ao seu baixo custo, redução no tamanho, facilidade de 

instalação, e alta resolução dos dados obtidos tornando as câmeras ferramentas confiáveis 

para uma variedade de aplicações ecológicas. Estas ferramentas vêm sendo efetivamente 

utilizadas como sensores dos três canais de cor, fornecendo padrões de mudança de cor em 

folhas e mudanças fenológicas em plantas, principalmente no Hemisfério Norte e em 

vegetações temperadas. Acompanhamos com câmeras uma área de cerrado para avaliar a 

confiabilidade de imagens digitais para detectar padrões de mudança foliar com o objetivo de 

responder às seguintes perguntas: (i) as câmeras digitais são capazes de capturar as trocas 

foliares numa comunidade tropical de cerrado? (ii) podemos detectar diferenças nas mudanças 

fenológicas entre espécies e a comunidade de cerrado? (iii) o padrão de verde detectado para 

cada espécie pelas câmeras pode ser validado pelos dados fenológicos do chão (observação 

direta das mudanças de folhas das árvores)? Já que câmeras digitais geram uma grande 

quantidade de dados, exploramos ferramentas computacionais que poderiam auxiliar estudos 

fenológicos através de aprendizado de máquina, visando: (i) testar se as informações de 
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mudança de cor são capazes de caracterizar o padrão fenológico de um grupo de espécies; (ii) 

testar se a variação temporal da imagem de textura é útil para distinguir as espécies de plantas, 

e (iii) testar se os indivíduos da mesma espécie podem ser identificados automaticamente 

usando imagens digitais. Demonstramos que as câmeras digitais são ferramentas confiáveis 

para capturar mudanças foliares em uma vegetação tropical de cerrado. Detectamos três 

estratégias de trocas foliares entre as espécies estudadas através dos padrões de mudança de 

verde; tais padrões e a determinação de grupos funcionais foram validados pelos dados de 

fenologia do chão. Também desenvolvemos um método capaz de distinguir as espécies e 

grupos funcionais de plantas em imagens digitais através da aplicação de aprendizagem de 

máquina baseado em classificadores multi-escala, e o uso desta nova ferramenta pode ajudar 

os especialistas em fenologia na identificação de espécies na imagem e, consequentemente, na 

área de estudo. Concluímos que a fenologia remota é uma ótima ferramenta para obter uma 

avaliação imparcial das mudanças foliares sazonais em ambientes tropicais. A fenologia 

remota próxima da superfície está se tornando uma aplicação importante para a pesquisa 

fenológica. A chegada de novas tecnologias seguida pelo avanço de métodos em e-Science 

para lidar com grandes conjuntos de dados estão mudando o cenário dos estudos em ecologia 

vegetal. 

Palavras-chave: fenologia remota; câmeras digitais, cerrado; brotamento foliar; análise de 

imagens. 
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ABSTRACT 

Plant phenology is a traditional science to observe recurring events in plant life cycles 

and their relation mainly to climate, as well as to biotic factors and phylogeny. Leafing in 

plants defines the growth season and controls crucial ecosystems processes such as nutrient 

cycling, water storage, and carbon balance, regulating the productivity in terrestrial 

ecosystems and the dynamics of carbon sequestration. Phenological studies have been 

efficiently applied to track environmental changes, answering questions about the current 

scenario of global climate change and stimulating the search for innovative tools of plant 

monitoring. The use of satellite imagery and digital cameras has being considered as 

alternative methods of observation of phenological changes. The technique of taken repeated 

photographs using digital cameras has increased due the low cost investment, reduction in 

size to set up installation, and the possibility of dealing with high resolution data, making 

digital cameras reliable tools for a range of ecological applications. Therefore, regular digital 

cameras have been effectively used as three-channel imaging sensors, providing measures of 

leaf color change or phenological shifts in plants largely on North Hemisphere and in 

temperate vegetation types. We monitored a species rich Brazilian cerrado savanna to assess 

the reliability of digital images to detect leaf-changing patterns aiming to answer the 

following questions: (i) Do digital cameras capture leaf changes in tropical cerrado savanna 

vegetation? (ii) Can we detect differences on phenological changes among species crowns and 

the cerrado community? (iii) Is the greening pattern detected for each species crown by digital 

cameras validated by our on-the-ground leafing phenology (direct observation of tree leaf 

changes)? Since digital camera phenology generate a large amount of data, to explore 

computational tools that could support phenology studies we applied machine learning, 

aiming: (i) to test if color change information is able to characterize the phenological pattern 

of a group of species; (ii) to test if the temporal variation in image texture is useful to 
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distinguish plant species; and (iii) to test if individuals from the same species may be 

automatically identified using digital images. We demonstrated that digital cameras are 

reliable tools to capture leaf changes in tropical cerrado savanna vegetation. We detected 

three leaf exchange strategies from the species patterns of green color change from digital 

images and the greening patterns and leaf functional groups were validated by our on-the-

ground phenology. We also developed a method capable to distinguish species and functional 

groups of plants in digital images by applying machine learning based on multiscale 

classifiers, and we demonstrate the use of this new tool can help phenology experts to identify 

the similar species in the image and, therefore, on-the-ground. We conclude that near-remote 

phenology is a great tool to obtain an impartial assessment of seasonal leaf changes in tropical 

environments. Near-surface remote phenology is becoming an important application for 

phenological research. The arrivals of novel technologies followed by the advance of e-

science methods for dealing with large data sets are changing the scenario of plant ecology 

studies. 

Key words: remote phenology; digital cameras; leafing; image analysis. 
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1 INTRODUCTION 

Plant phenology is a traditional science to observe recurring events in plant life cycles 

and their relation mainly to climate, as well as to biotic factors and phylogeny (Rathcke & 

Lacey 1985, Schwartz 2013, Staggemeier et al. 2010).  

Leafing is the plant phenological event that defines the growth season and controls 

crucial ecosystems processes such as nutrient cycling, water storage and carbon balance, 

regulating the productivity in terrestrial ecosystems and the dynamics of carbon sequestration 

(Reich 1995, Rotzer et al. 2004, Negi 2006, Malhado et al. 2009). The time, length, and 

intensity of the leaf growing season are closely linked to the proportion of leaf exchange 

functional types (e.g. evergreen, deciduous and semi-deciduous species) (Reich 1995, Singh 

& Kushwaha 2005). Those plant functional types define the seasonal patterns of leaf changes 

and the dynamics of the ecosystem processes (Negi 2006, Shaver 1981, Gholz et al. 1976, 

Reich et al. 1997, Singh & Kushwaha 2005, Kushwaha & Singh 2005). 

For plants of tropical forests, the periodic pattern is more common than the continuous 

pattern of leafing, even if the environmental conditions favor plant growth in most seasons 

(Borchert 2002, Morellato et al. 2000, Myneni et al. 2007). Nevertheless, the physiological 

mechanisms and interactions with external factors controlling plant development responses 

are not yet determined for the majority tropical environments. Tropical vegetation under 

seasonal climates may have a higher periodicity in the production of flowers, fruits and 

leaves, with the alternation of the wet and dry seasons being the major factor involving the 

triggering phenophases (Morellato et al. 1989, Morellato & Leitao-Filho 1990, van Schaik et 

al. 1993, Morellato & Leitao-Filho 1996, Lenza & Klink 2006, Morellato et al. 2013). 

Important results also suggest the influence of the small photoperiod or insulation variations 

serving as a trigger for the onset of leaf budding and flowering in tropical regions (Rivera et 

al. 2002, Elliot et al. 2006, Calle et al. 2010). 
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Phenological studies have been efficiently applied to track effects of environmental 

changes on plants and animals in temperate regions, answering questions about the current 

scenario of global climate change and stimulating the search for innovative tools of plant 

monitoring. Detect plant responses to environmental changes across tropical systems, 

especially in the Southern Hemisphere, is an important question in the global agenda, since 

few studies have addressed trends related to global warming (Rosenzweig et al. 2008, 

Morellato et al. 2013, Chambers et al. 2013). A comprehensive survey of phenology data and 

trends over the Southern Hemisphere (SH) highlights the gaps in the phenology knowledge of 

tropical species and ecosystems (Chambers et al. 2013). For many regions and taxa the trends 

and shifts, when detected, although coherent with Northern Hemisphere findings, come from 

SH temperate regions and species (Chambers et al. 2013). 

Human labor and high diversity of species make it difficult the establishment of an 

extensive system of direct phenological observations at several sites to track trends and 

determinants that controls plant phenology and ecosystems process. The use of satellite 

imagery and digital cameras has being considered as alternative methods of observation of 

plant phenological changes (Richardson et al. 2007, Ahrends et al. 2009, Richardson et al. 

2009, Morisette et al. 2009, Migliavacca et al. 2011), and can successful monitor plant 

phenology continuously across the landscape. 

 

1.1 Digital cameras monitoring leaf phenology 

1.1.1 Use of digital cameras in plants 

The use of digital cameras to document plant changes is not novel. Cameras have been 

used to capture plants images for several kinds of studies, including changes in ecosystems 

dynamics and structure presented in the year of 1967 by Hastings and Turner, and more 

recently by Peñuelas and Boada (2003) and Webb et al. (2007); to document changes in 
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cultural landscapes (Nusser 2001) and for glacial retreat (Thompson et al. 2002). However, 

just recently repeated digital images has been used to measure vegetation growth and biomass 

(Crimmins & Crimmins 2008, Graham et al. 2009), to detect plant stress and nitrogen status 

(Wang et al. 2004), and for crop monitoring (Slaughter et al. 2008) as well as for monitor leaf 

phenology (Richardson et al. 2007, 2009).  

The technique of repeated photographs using digital cameras has increased due it´s 

low cost investment, reduction in size to set up installation, and the possibility of handling 

high resolution data, making digital cameras reliable tools for a range of ecological 

applications (Crimmins & Crimmins 2008, Morisette et al. 2009, Graham et al. 2010).   

Digital images allow the detection of phenological events according to the changes of 

red, green, and blue (RGB) channels along time. By quantifying the RGB color channels it is 

possible to estimate, for instance, leaf flushing and senescence, using the green and red 

channels, respectively (Ahrends et al. 2009, Morisette et al. 2009, Richardson et al. 2009, 

Henneken et al. 2013). Several indexes have been applied to detect leaf color changes in 

temporal time series of digital images exploring the three color channels (Richardson et al. 

2007, Nagai et al. 2010, Sonnentag et al. 2012, Zhao et al. 2012, Zhou et al. 2013). 

Woebbecke (1995) was one of the first to calculated several indexes using RGB channels of 

digital images to evaluate which could better detect weeds in different types of soil, residue 

and light conditions. A normalized index called RGB chromatic coordinates (RGBcc) was 

developed by Gilespie et al. (1987) and it is considered up to now the most efficient to detect 

the color of plants in relation to their background (Sonnentag et al. 2012). 

Digital images have not been explored to monitor other phenophases. In a first 

approach, Adamsem (2000) estimated duration and number of flowers of the species 

Lesquerella using color digital images taken in fixed plots of a controlling experiment. 

Recently, not only fixed cameras, but also pan-tilt-zoom cameras (see more in Granados et al. 
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2013) on a mobile platform have being used to identification and counting individual flowers 

of Rhododendrom in a temperate forest (see Morisette et al. 2009). 

The first application of digital cameras to track a phenological event as the green-up in 

a community was made by Richardson et al. (2007), in a temperate forest at New Hampshire. 

Afterwards, several examples demonstrating the applicability of digital images to monitor leaf 

phenology emerged, at least for the North hemisphere (e.g. Richardson et al. 2009, Ahrends et 

al. 2008, 2009, Graham et al. 2009, Ide & Oguma 2010, Nagai et al. 2010, Bater et al. 2011, 

Miglivacca et al. 2012, Henneken et al. 2013, Zhao et al. 2012, Zhou et al. 2013)  

 

1.1.2 Application of near-surface remote phenology in the tropics 

The traditional on-the-ground phenology, the direct observations of individual plants,  

preclude large spatial areas, and the interference of the observer is high due to the inherent 

difficulties to detect the variations on leaf color patterns from leaf budding to senescence in 

the tropics (Richardson et al. 2007, Morisette et al. 2009, Morellato et al. 2010). Satellite 

remote sensing provides spatially extensive information of vegetation changes; however, it is 

difficult to detect phenological events at species and community levels (Ide & Oguma 2010). 

In addition, the temporal resolution and the quality of satellite observations are limited due to 

clouds and atmospheric disturbances (Ahl et al. 2006, Zhang et al. 2006) and still needs 

ground validation (Chambers et al. 2007). The set-up of digital cameras to monitor vegetation 

systems can be a solution for these limitations.  

The method of applying digital cameras to monitor plant phenology has been 

described as “near” remote sensing (Richardson et al. 2007). “Near-surface remote 

phenology” using digital cameras set up at the top of towers reduces the temporal and spatial 

constraints of on-the-ground human observations, and eliminates the uncertainty of cloud 
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cover, enhancing the resolution of information at individual tree, species, and community 

scales (Polgar & Primack 2011).    

The focus of near-surface monitoring systems is leaf phenology, mainly leaf flushing, 

also referred to as leafing, leaf out, the time of first leaf bud appearance, or leaf budding 

(Crimmins & Crimmins 2008, Richardson et al. 2007, Polgar & Primack 2011). To enhance 

the interpretation of phenological events, take meteorological site-specific data measurements 

are important to correlate with color time series and precisely define phenological triggers 

(Crimmins & Crimmins 2008).   

The applicability of this new technology has been demonstrated in temperate 

ecosystems (e.g. Richardson et al. 2007, 2009, Ahrends et al. 2008, 2009, Nagai et al. 2010, 

Ide & Oguma 2010, Migliavacca et al. 2011, Sonnentag et al. 2012, Zhao et al. 2012, 

Henneken et al. 2013, Zhou et al. 2013), with relevant studies coming from camera´s 

networks developed in the US (PhenoCam Network - http://phenocam.sr.unh.edu/webcam/ ) 

and Japan (Phenological Eyes Network-PEN - http://pen.agbi.tsukuba.ac.jp/ and Japan long-

term Ecological Research Network-JaLTER -  www.jalter.org).  

The present study is part of a multidisciplinary project called “e-phenology: The 

application of new technologies to monitor plant phenology and track climate changes in the 

tropics” (FAPESP grant 2010/52113-5) which comprehends the application of new 

technologies for plant phenology monitoring and creates a protocol to include digital cameras 

as tools to detect leaf flushing and senescence in tropical systems. The project also integrates 

research in computer science with development of method and algorithms for data mining and 

analysis of time series. This project is innovative and puts Brazil in the state of the art of near 

remote phenology monitoring, already established in areas of temperate forests in northern 

hemisphere.  
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Near-surface monitoring systems in the tropics are necessarily complex since the 

environmental conditions are harsh and the diversity of species is usually high.  Since image 

information from digital cameras is still sparse for high-diverse tropical vegetation, we aim to 

develop in the first chapter of this study, a protocol of installation of a digital camera and 

analysis of images in a tropical cerrado savanna during the main leafing season, based on an 

approach at community and species levels. We aim to test the reliability of the near-surface 

system and answer: (i) Do digital cameras capture leaf changes in tropical cerrado savanna 

vegetation? (ii) Can we detect differences on phenological changes among species crowns and 

the cerrado community? (iii) Is the greening pattern detected for each species crown by digital 

cameras validated by our on-the-ground leafing phenology (direct observation of tree leaf 

changes)? 

The second chapter of this study explores computational techniques of machine 

learning to identify species in the image based on phenological features, and our goals were: 

(i) to test if color change information is able to characterize the phenological pattern of a 

group of species; (ii) to test if the temporal variation in image texture is useful to distinguish 

plant species; and (iii) to test if individuals from the same species may be automatically 

identified using digital images. 
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Abstract: Plant phenology has gained new importance in the context of global change research, 

stimulating the development of novel technologies for phenological observations. Regular 

digital cameras have been effectively used as three-channel imaging sensors, providing 

measures of leaf color change or phenological shifts in plants. We monitored a species rich 
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Brazilian cerrado savanna to assess the reliability of digital images to detect leaf-changing 

patterns. Analysis was conducted by extracting color information from selected parts of the 

image named regions of interest (ROI). We aimed to answer: (i) do digital cameras capture leaf 

changes in cerrado savanna vegetation? (ii) Can we detect differences in phenological changes 

among species crowns and the cerrado community? (iii) Is the greening pattern detected for 

each species by digital camera validated by our on-the-ground leafing phenology (direct 

observation of tree leaf changes)? We analyzed daily sequences of five images per hour, taken 

from 6:00 to 18:00h, recorded during the cerrado main leaf flushing season. We defined 24 

ROIs in the original digital image, including total or partial regions and crowns of six plant 

species. Our results indicated that: (i) for the studied period, single plant species ROIs were 

more sensitive to changes in relative green values than the community ROIs, (ii) three leaf 

strategies could be depicted from the species' ROI patterns of green color change; (iii) the 

greening patterns and leaf functional groups were validated by our on-the-ground phenology. 

We concluded that digital cameras are reliable tools to monitor high diverse tropical seasonal 

vegetation and it is sensitive to inter-species differences of leaf patterns.  

 

Key words: leafing, leaf traits, cerrado, data validation, digital camera, phenology  

1. Introduction  

 

Leaf flushing and senescence are important events in plants life cycles and fundamental 

to understand a range of processes in the ecosystem due to their impact on growth, water status, 

gas exchange and nutrient cycling (Reich 1995; Negi 2006; Morisette et al. 2009). The plants’ 

growing season plays a crucial role in the carbon balance and in the productivity of terrestrial 

ecosystems (Keeling et al. 1996; Rotzer et al. 2004; Loustau et al. 2005), controlling spatial and 

temporal patterns of carbon and water exchange between the forest and atmosphere (White et al. 

1999; Schwartz et al. 2002). The time, length, and intensity of the leaf growing season are 

closely linked to the proportion of leaf exchange functional types (e.g. evergreen, deciduous and 

semi-deciduous species). Those plant functional types define the seasonal patterns of leaf 

changes and the dynamics of the ecosystem processes (Gholz et al. 1976, Shaver 1981, Reich et 

al. 1997, Negi 2006).  

The relevance of plant phenology as a reliable indicator of species’ responses to global 

climate change has stimulated the development of new technologies for phenological 

monitoring (Walther et al. 2002, Parmesan and Yohe 2003, Walther 2004, Rosenzweig et al. 

2008; Richardson et al. 2009). To better understand seasonal patterns and responses of leafing 

to inter-annual and long-term variation in climate, a variety of approaches to describe temporal 

changes in the plant canopy have been employed. The traditional on-the-ground phenology, the 
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direct observations of individual plants,  preclude large spatial areas, and the interference of the 

observer is high due to the inherent difficulties to detect the variations on leaf color patterns 

from leaf budding to senescence in the tropics (Richardson et al. 2007, Morisette et al. 2009, 

Morellato et al. 2010a). Satellite remote sensing provides spatially extensive information of 

vegetation changes; however, it is difficult to detect phenological events at species and 

community levels (Ide and Oguma 2010). In addition, the temporal resolution and the quality of 

satellite observations are limited due to clouds and atmospheric disturbances (Ahl et al. 2006; 

Zhang et al. 2006) and still needs ground validation (Chambers et al. 2007).  

The technique of repeated photographs using digital cameras has been increasingly used 

for several ecological applications (Crimmins and Crimmins 2008; Graham et al. 2010). Low 

cost investment, reduction in size to set up installation, and high resolution data make digital 

cameras a reliable tool for a range of applications (Morisette et al. 2009), including changes in 

ecosystem dynamics and structure (Peñuelas and Boada 2003), growth vegetation and biomass 

(Crimmins and Crimmins 2008; Graham et al. 2009), plant stress and nitrogen status (Wang et 

al. 2004), and for crop monitoring (Slaughter et al. 2008).  

Recently, “near-surface” remote monitoring with digital cameras has been successfully 

used as multi-channel imaging sensor to characterize leaf change patterns in temperate 

ecosystems, such as: Northern hardwood and conifer forests (Richardson et al. 2007, 2009; 

Graham et al. 2009), Mixed beech forest and Temperate deciduous forests (Ahrends et al. 2009; 

Ide and Oguma 2010; Henneken et al. 2013), Deciduous broad-leaved forest (Nagai et al. 2011), 

Subalpine grasslands (Migliavacca et al. 2011) and temperate dry land ecosystems (Kurc and 

Benton 2010). After quantifying the RGB (red, green, and blue) color channels, it is possible to 

estimate, for instance, leaf flushing and senescence, using the green and red channels, 

respectively (Ahrends et al. 2009; Morisette et al. 2009; Richardson et al. 2009; Henneken et al. 

2013). Another important feature is the precise estimation of the starting date of leaf flush 

season, due to the daily frequency of data acquisition (Morisette et al. 2009; Richardson et al. 

2009). 

However, image information from digital cameras is still sparse for high-diverse 

tropical vegetation. In those ecosystems, one image may encompass dozens to more than a 

hundred of species, whereas temperate vegetation includes a much lower number of species. In 

this context, we monitored a cerrado savanna during the leafing season to assess the reliability 

of digital images to detect leaf change patterns in this species rich vegetation. We used our on-

the-ground direct plant phenological observations at the same study site to validate the digital 

data. We aim to answer: (i) Do digital cameras capture leaf changes in a cerrado savanna 

vegetation? (ii) Can we detect differences on phenological changes among species crowns and 

the cerrado community? (iii) Is the greening pattern detected for each species crown by digital 

cameras validated by our on-the-ground leafing phenology (direct observation of tree leaf 
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changes)? We discuss the implications of our findings for monitoring the dynamics of seasonal 

tropical vegetations. 

 

2. Materials and methods 

 

2.1 Study Area and Camera Setup 

The near-remote phenological system was set up in an 18 m tower (phenology tower) in 

a Cerrado sensu stricto, a savanna vegetation located at Itirapina (22°10'49.18"S; 

47°52'16.54"W, 610 m a.s.l), São Paulo State, Brazil (Figure S1, Supplementary material). The 

cerrado sensu stricto (Coutinho 1978) vegetation does not form a continuous canopy, but 

presents a dominant woody component six to seven meters high, with some trees reaching up to 

12 m high and a continuous herbaceous layer.  

The regional climate is Cwa type (i.e., humid subtropical climate) according to Köppen 

(1931) classification. The average local climate (1972 to 2002) shows a mean annual total 

rainfall of 1524 mm and mean annual temperature of 20.7°C, with one warm, wet season from 

October to March (average of 22°C and 78% of annual precipitation) and one cold, dry season 

(average of 18°C and 16% of annual precipitation) from April to September (Figure S2). During 

the year of study (2011) the climate seasonality was similar to the average pattern, with a mean 

temperature of 21.2
o
C, but a higher annual total rainfall of 1891 mm due to a very humid 

January with precipitation over 500 mm (Fig. 1). Climatic data were obtained from the adjacent 

Climatological Station of the Center for Water Resources and Applied Ecology (CRHEA) of the 

University of São Paulo, located 4 km from the study site. 

A digital hemispherical lens camera Mobotix Q 24 (Mobotix AG - Germany) was 

placed at the top of the tower attached to an extension arm facing northeast at a mean vertical 

distance of 10 meters from the tree canopy (Figure S1). The camera was well fixed to prevent 

any movement that could cause shifts in the camera position and thus image mismatches from 

one day to another. A timer controlled the camera activity. Camera was set in automatic 

exposure and white balance, as suggested by Zhao et al. (2013). The energy source was a 12 

Volt Battery charged by a solar panel. We set up the camera to automatically take a daily 

sequence of five JPEG images (at 1280 x 960 pixels of resolution) in the first 10 minutes of 

each hour, from 6:00 to 18:00 h (UC -3; Universal Time Coordinated). The present study is 

based on the analysis of over 2470 images, recorded at the end of the dry season, between 

August 29
th
 and October 5

th
 2011, day of year (DOY) 241 to 278, during the main leaf flushing 

season (Camargo et al. 2013, Morellato et al., unpublished data, Fig. 1). Sunrise, sunset, and 

solar elevation angle were 6:03 h, 17:38 h, 58
o
 (DOY 241), and 5:26 h, 17:48 h, 72

o 
(DOY 278), 

respectively. 
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Fig. 1 Temperature, precipitation, and the leaf flushing pattern derived from on-the-ground 

direct observations of phenology during 2011 at the cerrado study site, Southeastern Brazil. (a) 

Maximum, mean, and minimum temperature, (b) Bars represent rainfall and lines represent the 

proportion of individuals at initial date (continuous line) and on the peak date (dotted line) of 

leaf flushing at the cerrado community. Arrows show the mean start date and peak date of leaf 

flushing along the year, indicated as the DOY (day of year) and N indicates number of 

individuals in the analyses. Rayleigh test was significant (p= <0.01),and the value of r has no 

units and indicates the amount of concentration in the data around the mean angle, from zero 

(when there is so much dispersion that a mean angle cannot be described) to one (when all the 

data are concentrated at the same direction or angle). 

 

2.2 Image Analysis 

The image analysis was conducted by defining different regions of interest (ROI) in the 

image, as described by Richardson et al. (2007, 2009), Ahrends et al. (2009) and Henneken et 

al. (2013). We identified at species level all crowns monitored in the hemispherical image, 

excluding just the trees on the very edge (Fig. 2d) where the distortion made the tree 

identification unreliable. The plant identifications were done in the field by directly matching 

the tree crown in the image with the tree on the ground. 
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Fig. 2 Sample image of the cerrado savanna (a) recorded by the digital camera on October 15
th
 

2011. Below (b-j) the masks indicating the regions of interest (ROI) visualized as white areas: 

(b) whole cerrado savanna, excluding the tower; (c) central area of (b), excluding the distorted 

edge; (d) distorted edge as seen on (b); (e) Aspidosperma; (f) Caryocar; (g) Myrcia; (h) 

Miconia; (i) P. torta; and (j) P. ramiflora. Number of ROIs are in parentheses. 

 

We defined 24 ROIs (Figure 2b-j), described as follow: (b) whole cerrado: we took the 

complete image area, excluding just the tower; (c) central area of the whole cerrado image, 

 

(c) central area (d) edge area  

(g) Myrcia  
(N=2) 

(i) P. torta 
 (N=4) 

(j) P. ramiflora  

(N=2) 

(f) Caryocar  

(N=4) 

(h) Miconia  
(N=6) 

(e) Aspidosperma 

(N=3) 

(b) whole cerrado 
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excluding the edge (radius 30m); (d) edge area: periphery of the whole cerrado image; (e) to (j) 

ROIs based on the random selection of six plant species crowns in the hemispheric image, 

taking into account the smallest overlap with neighboring crowns: (e) Aspidosperma 

tomentosum (N= 3 ROIs); (f) Caryocar brasiliensis (N= 4 ROIs); (g) Myrcia guianesis (N= 2 

ROIs); (h) Miconia rubiginosa (N= 6 ROIs); (i) Pouteria torta (N= 4 ROIs) and (j) Pouteria 

ramiflora (N= 2 ROIs). The number of ROIs for each species was limited by the occurrence of 

the individuals in the hemispheric image. Hereafter, the species will be named by their genus, 

except for P. torta and P. ramiflora.  

For each ROI, a binary image with the same dimensions as the original image was 

created as a mask. White pixels of a mask indicate the ROI, while the remaining area was filled 

by black pixels (Fig. 2b-j). We analyzed each ROI in terms of the contribution of the relative 

brightness of the green color channel (RGB chromatic coordinates in Woebbecke et al. 1995) in 

relation to the primary colors (red, green, and blue). The normalized RGB chromatic coordinate 

index used in our analysis is referred as the most suitable index to detect leaf color changes and 

the most efficient to suppress light variation (Gillespie et al. 1987; Woebbecke et al. 1995; 

Sonnentag et al. 2012). A custom script was used to analyze each color channel and to compute 

the average value of the pixels’ intensity. We calculated normalized colors of the green color 

channel, as: 

 

                                   

        
          

        
 

Although the index Green % is actually calculated as a proportion, we call it ‘‘percent’’ 

for convenience. 

 

2.3 Image quality control 

To assess the day-to-day stability of the image data acquisition along the growing 

season, we defined an additional ROI from the tower structure as a reference (Fig. S3) and 

extracted their averaged RGB color channels. Then, we calculated the coefficient of variation 

for the red, green and blue color channels time series.  

Variation along the hours of the day was verified for each ROI. Mean time series for all 

period along the hours of the day (from 6 h to 18 h) were plotted for the community and 

individuals species. In general, ROIs presented the highest green values and more stability 

within midday hours (from 10h to 14h, Fig. 3) as previous detected by other authors (Ahrends et 

al. 2008, 2009, Richardson et al. 2009, Ide and Oguma 2010, Zhao et al. 2012). Since we 

analyzed a short time frame during the dry season, and weather conditions were relatively 
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constant in that period, we did not detect diurnal variations related to overcast and sunny days as 

described by Sonnentag et al. (2012).  

To minimize the solar angle effect, avoiding problems in the green values related to 

seasonal changes and time of the day, we applied the per90 method proposed by Sonnentag et 

al. (2012). We considered all daytime % green values within a moving window of three days, 

for calculating the 90th percentile of the % green values (Sonnentag et al. 2012).  

 

 

Fig. 3 Mean diurnal patterns of Green % from day of year (DOY) 241 to 278 for all the 24 

regions of interest (ROIs). Error bars show 95% of confidence intervals. Black thick lines 

represent ROIs positioned in the central area of the image, and dashed lines represent the ROIs 

positioned near the edge of the digital image. N indicates number of ROIs  

 

To check the precision in location of ROIs over time and consequently, if the masks 

were dislocated in the image or covered by other crowns we made a video with the sequence of 

images for the studied period. There was no evidence of image mismatch over the time span 

analyzed (video is available in the Electronic Supplementary Material (ESM) and through our 

web page http://www.recod.ic.unicamp.br/ephenology/index.php?id=3).  
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2.4 On the ground validation of digital image phenology 

To evaluate the performance of the method and verify the efficiency for monitoring 

phenological events in the cerrado savanna, we validated our data with monthly on-the-ground 

direct observations of leaf flushing on 2016 marked individuals in the cerrado savanna study 

site (see Camargo et al. 2011, 2013, for details on methods).  

To verify if the camera-based greening pattern for each ROIs species matches the on-

the-ground leaf flushing phenology, we analyzed the frequency of individuals of each species 

producing new leaves in 2011. To verify if our near-surface phenology fell into the main leafing 

season, we plotted the on-the-ground leaf flushing phenology for all the community and applied 

circular statistics analyses to define the mean date and mean start and peak of leaf flushing as 

proposed by Morellato et al. (2000, 2010b). We use the Rayleigh test to check the significance 

of mean angle or mean date and, when the mean angle was significant, we use r as a measure of 

degree of seasonality (Morellato et al. 2000, 2010b). The mean angle or date represents the time 

around with most individuals was flushing new leaves; the value of r represents the 

concentration of trees leafing around the mean date. The value of r has no units and indicates the 

concentration in the data, from zero (when there is so much dispersion that a mean angle cannot 

be described, – e.g., Fig. 6 c and d) to one (when all the data are concentrated at the same 

direction or angle, – e.g., Fig.6 a and b). We define the leaf change strategy for each studied 

species based on the long-term on-the-ground savanna phenology data series at our study site 

(Morellato et al., unpublished data). 

 

3. Results  

 

3.1 Growing season patterns 

The reference RGB values from the tower’s ROI did not show a strong variation, except 

for the early (6-8) and late (16-18) hours of the day (Fig. S3a). Likewise, the low coefficients of 

variation of the RGB % values from the tower’s ROI during the growing season (1.45%, 1.07% 

and 1.60% for R, G and B, respectively) indicate only small changes along the period of study 

(Fig. S3b), which did not affect the observed leaf color changes. 

In general, the ROIs selected for the cerrado vegetation showed a variation in the green 

channel along the daily hours (see Fig. 3) as well as in their green pattern along the main leafing 

season (Fig. 4).The green area in Figure 4 represents changes in the % of green, and the increase 

in green % indicates the flush of new leaves which differed not only among the different species 

(see Fig. 5), but explicitly also among individuals of the same species which are plotted in Fig. 

4.  
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Fig. 4 Changes of the green % values from digital images taken every hour (6:00 h to 18 h) 

during the growing season, from day of the year (DOY) 241 to 278 (August 28
th
 to October 3

rd
, 

2011), for individual trees’ regions of interest (ROIs) at the cerrado savanna vegetation, 

Southeastern Brazil 

 

Results based on the 90th percentiles allowed us to identify changes in the green % 

pattern for each species’ ROI along the growing season. The species’ crowns showed different 

patterns for leaf color change (Fig. 5). Aspidosperma and Caryocar presented an increase in the 

green channel along the observed period (Fig. 5a-b), while the opposite pattern was observed for 

Myrcia, Miconia, P. torta and P. ramiflora, with a decreasing of greening over time (Fig. 5c-f). 

However, we observed a within-species variation in the 90
th
 percentile of green %, with 

individual ROIs of the same species showing divergent patterns over the leafing season (Fig. 

S4). For instance, ROIs of individual crowns of P. torta and P. ramiflora showed either increase 

or decrease patterns of green % (Fig.S4 o-t). On the other hand ROIs of Myrcia and Miconia 

demonstrated the same pattern of green % decrease during the main leafing season (Fig. S4 h-

n).  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
11 

 

However, the 90
th
 percentile (per90) of green % values (Sonnentag et al. 2012) differed 

between the community and the species ROIs along the study period. For the community ROIs, 

we did not detect evident color changes in the short period analyzed, even considering that all 

images were taken during the peak of the leafing season (Fig. S5).  

 

Fig. 5 Mean three-day 90
th
 percentiles of Green % during the leafing season for each species’ 

ROIs in the cerrado savanna, Southeastern Brazil. (a) Aspidosperma; (b) Caryocar; (c) Miconia; 

(d) Myrcia; (e) P. torta; (f) P. ramiflora. Green lines represent the mean 90
th
 percentiles of 

Green % for the species; dashed lines represent the maximum and minimum values, 

respectively (for the masks of each ROI see Fig. 2).  

 

3.2 Leafing, leaf strategies and on-the-ground validation  

The on-the-ground observations of cerrado community leaf phenology in 2011 

demonstrated that the leafing season was significantly seasonal, with most individuals starting 

to flush new leaves in August (mean date of 26-Aug-2011 or DOY 238) and a peak of leaf flush 

in middle September (mean date of 18-Sep-2011 or DOY 261; Fig. 1). Therefore, our study 

period (DOY 241 to 278) fell within the main leafing season, even considering the community 

green % did not changed over the dry season. 
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For the six plant species analyzed in the digital images the on-the-ground observations showed 

different leafing patterns (Fig. 6). Based on the leaf color changes (Fig. 4) and the 90
th
 

percentile analyses (Fig. 5), combined with the on-the-ground phenology, we classified the 

species into three leaf change functional groups: (i) deciduous - species that lose all leaves in the 

dry season, and flush new ones seasonally and synchronously at the end of the dry season 

(Aspidosperma and Caryocar, Fig.6 a-b); (ii) evergreen - species flushing new leaves 

continuously along all the year (Myrcia and Miconia, Fig. 6 c-d); and (iii) semi-deciduous - 

species that lose part of their leaves in the dry season, and may flush new leaves through the 

year or more concentrated at the end of dry season or beginning of the wet season (P. torta and 

P. ramiflora, Fig.6 e-f).  

Deciduous species presented a marked leaf change, with a seasonal peak of leaf flushing 

in August (Fig. 6a-b). An opposite pattern was observed for evergreen species for which new 

leaves were flushing all year and the concentration around the mean date was lower, but also 

peaking in July and August (Fig. 6c-d). The individuals of semi-deciduous species flushed new 

leaves all year round (Fig. 6e-f). 

 

 

 (b) Caryocar (N= 5) 

(d) Miconia (N= 102) 

(a) Aspidosperma (N= 33) 

(c) Myrcia (N= 92) 

(e) P. torta (N= 17) (f) P. ramiflora (N= 13) 
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Fig. 6 Circular histograms of the leaf flushing on-the-ground phenology during the year of study 

(2011) for the six species analyzed in the cerrado savanna study site, Southeastern Brazil. 

Frequency of individuals in the peak flushing of new leaves for (a) Aspidosperma.; (b) 

Caryocar; (c) Miconia; (d) Myrcia (e) P. torta; (f) P. ramiflora. The arrows point to the mean 

angle or date around with most individuals was flushing new leaves; the length of the arrow 

indicates the value of r, and represents the concentration of trees leafing around the mean date. 

The r has no units and varies from zero  to one (when all the data are concentrated at the same 

direction or angle; see Methods for details).Within parentheses: number of trees observed on the 

ground. 

 

4. Discussion 

 

4.1 Digital cameras and the near-remote phenology of cerrado savanna  

Digital camera was a reliable tool to monitor leaf phenological changes in the highly-

diverse cerrado vegetation. ROIs time series present the highest values for the green curves 

during the midday hours (noon) (Ahrends et al. 2008, 2009; Sonnentag et al. 2012), except for 

Aspidosperma with the highest green values around 9:00 and 10:00 hours. The hours from 8:00 

to 11:00 were suggested as the best daytime to perform automatic species recognition in the 

digital images based on the analyses of the RGB channels and texture features of same ROIs 

(Almeida et al. 2013).  

We did not detect within-species variations in green % related to the position of the 

species crown in the image. However, for P. torta and some crowns of Caryocar in multiple 

positions differed in their daily green %. These variations may be explained by modifications in 

leaf position due to wind, and also by individual specific attributes such as leaf angle 

inclination, type of leaf protection, and discolored leaves. Also, reflectance patterns of the 

leaves in different wavelengths may be considered (Ahrends et al. 2008; pers. obs.). In these 

cases, field observations will be important to combine image data processed with 

complementing observation of different trees and species.  

 

4.2 Green patterns and on-the-ground phenology 

We verified leaf color changes along the main leafing season, in particular for each 

species’ ROIs. The on-the-ground observations validated the phenological pattern derived from 

the digital images and also the species classification in the leafing functional groups: deciduous, 

semi-deciduous, and evergreen. 
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Cerrado community ROIs were not sensitive to changes in greenness within the time 

span analyzed here. Longer data series may be needed to perceive changes at the community 

level. ROIs integrating major parts of the community carry too much information, due to the 

high heterogeneity and diversity of tropical ecosystems (Woebbecke et al. 1995).  

However, species’ ROIs indicated distinctive leaf color changes, which allowed us to 

distinguish tree main leaf functional groups (deciduous, semi-deciduous, and evergreen 

species). Data from our on-the-ground local phenology was essential to identify the groups and 

validate the trends of greenness of the digital images’ ROIs. Species with deciduous and 

evergreen leaf patterns typically differ in leaf life span (Van Ommen Kloeke et al. 2012). 

Deciduous trees usually have short leaf life span, and put out the new crop of leaves either just 

before the onset or in the beginning of the wet season in southeastern Brazil and cerrado 

savannas (Morellato et al. 1989; Lenza & Klink 2006; Rubim et al. 2010; Morellato et al. 

unpublished data). A decrease for the green % values occurring in the peak of the leaf season 

was detected for evergreen and some semi-deciduous species, such as Myrcia, Miconia and P. 

torta. Those species may renew their foliage along the year or eventually during the dry season, 

when both, leaf flush and leaf fall, can proceed simultaneously (Monasterio and Sarmiento 

1976; Lenza and Klink 2006; Rubim et al. 2010). Evergreen species keep the same foliage 

longer than deciduous species, but the color of the leaves change during the leaf life span, with 

degradation of chlorophyll and different levels of carotenoids (Billow et al. 1994; Merzlyak et 

al. 1999). Moreover the green % values also represent optical leaf color changes due to leaf 

maturity and aging processes (Richardson et al. 2009).  

Although the three leaf functional groups as ecological strategies are very useful and 

largely applied to understand cerrado leaf change, this simplification leads to considerable loss 

of information (Petchey and Gaston 2002). Single specimen can considerably vary in their 

flushing or greening pattern, for instance a single individual of P. torta increased in green % 

whereas the average pattern based on four ROIs is clearly decreasing (Fig. 4 vs. Fig. 5) which 

also matches the on-the-ground observations based on 17 individuals (Fig. 6). In addition, single 

species inside those leaf functional groups differ in their mean greening pattern (see Fig. 5) and 

species belonging to different groups are not equally different.  

Future research should use digital cameras images to explore cerrado savanna 

deciduousness as a continuous variable, by combining the analysis of green and red color 

channels, and the leaf color spectral changes over season. 

 

5. Conclusions 
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This is the first study addressing the applicability of near-surface remote phenology to 

track leaf changes along the leafing season in tropical seasonal vegetation, the cerrado, and 

innovates by integrating on-the-ground validation by direct plant phenological observations. 

The digital camera turned out to be a reliable tool to monitor the phenology of cerrado savanna 

species; leaf functional groups were detected by analyses of the green channel, averaged over 

individual crowns’ ROIs. Ground direct phenological observations were important to validate 

camera data and to develop a trustworthy methodology to be set up at new sites and in different 

ecosystems. There is a large range of ecological questions to be answered regarding leafing 

behavior (Polgar and Primack 2011). 

Near-surface monitoring systems in the tropics are necessarily complex since the 

environmental conditions are harsh and the diversity of species is usually high. The traditional 

method of the on-the-ground phenology, the direct observations of individual plants, preclude 

large spatial areas, human labor and the interference of the observer is high due to the inherent 

difficulties to detect the variations on leaf color patterns from leaf budding to senescence, 

especially in the tropics (Richardson et al. 2007, Morisette et al. 2009, Morellato et al. 2010a). 

However, on-the-ground phenology is still the most widely applied method of observation in the 

tropics. Additionally, it is a very confident technique to monitor individual based phenology and 

offers key information for validation of near-remote generated patterns. Image information from 

digital cameras is still sparse for high-diverse tropical vegetation, and allows us to obtain an 

impartial and comparable data of leaf seasonal changes. We consider that these two approaches 

are complementary to each other and the application will depend on the study goals. Near-

surface remote phenology has becoming more and more common for phenological research and 

the arrivals of novel technologies followed by the advance of e-science methods for dealing 

with large data sets are changing the scenario of plant ecology studies.
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Plant phenology is one of the most reliable indicators of species responses to global climate change, motivating
the development of new technologies for phenological monitoring. Digital cameras or near remote systems have
been efficiently applied as multi-channel imaging sensors, where leaf color information is extracted from the
RGB (Red, Green, and Blue) color channels, and the changes in green levels are used to infer leafing patterns of
plant species. In this scenario, texture information is a great ally for image analysis that has been little used in
phenology studies. We monitored leaf-changing patterns of Cerrado savanna vegetation by taking daily digital
images. We extract RGB channels from the digital images and correlate them with phenological changes. Addi-
tionally, we benefit from the inclusion of textural metrics for quantifying spatial heterogeneity. Our first goals
are: (1) to test if color change information is able to characterize the phenological pattern of a group of species;
(2) to test if the temporal variation in image texture is useful to distinguish plant species; and (3) to test if indi-
viduals from the same species may be automatically identified using digital images. In this paper, we present a
machine learning approach based on multiscale classifiers to detect phenological patterns in the digital images.
Our results indicate that: (1) extreme hours (morning and afternoon) are the best for identifying plant species;
(2) different plant species present a different behaviorwith respect to the color change information; and (3) tex-
ture variation along temporal images is promising information for capturing phenological patterns. Based on
those results, we suggest that individuals from the same species and functional group might be identified
using digital images, and introduce a new tool to help phenology experts in the identification of new individuals
from the same species in the image and their location on the ground.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Phenology, the study of natural recurring phenomena and its rela-
tion to climate (Schwartz, 2003), is a traditional science dedicated to
the observation of the cycles of plants and animals and relate mainly
to local meteorological data, as well as to biotic interactions and
phylogeny (Staggemeier et al., 2010).

The leaf exchange patterns from leaf flush to senescence are key
events to understand a range of ecosystem processes, considering its
prominence on growth,water status, gas exchange, and nutrient cycling
(Negi, 2006; Reich, 1995). The carbon balance and the productivity of
terrestrial ecosystems are essentially defined by the dynamics of plant
growing seasons (Keeling et al., 1996; Loustau et al., 2005; Rotzer
et al., 2004), controlling spatial and temporal patterns of carbon and
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water exchange between forest and atmosphere (Schwartz et al.,
2002; White et al., 1999).

Plant phenology has gained importance as the simplest and most
reliable indicator of species responses in the context of global change
research, stimulating the development of new technologies for phe-
nological observation (Parmesan and Yohe, 2003; Richardson et al.,
2009; Rosenzweig et al., 2008; Walther, 2004; Walther et al., 2002).
Digital cameras have been successfully used as multi-channel imag-
ing sensors, and the measurements of color change information
(RGB channels) from digital images allow one to detect phenological
changes in plants (Ahrends et al., 2009; Ide and Oguma, 2010; Kurc
and Benton, 2010; Nagai et al., 2011; Richardson et al., 2007, 2009).

After quantifying the color channels, it is possible to estimate
changes on phenological events, such as leaf flushing when analyzing
the green channel, or leaf color change and senescence using values
from the red channel (Ahrends et al., 2009; Richardson et al., 2009).
However, image information from digital cameras is sparse for a highly
diverse tropical forest, where one image may encompass dozens to
more than a hundred species, compared to the low number of species
in temperate vegetations.
ased on multiscale classifiers to detect remote phenology patterns in
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Another important feature that can be extracted from digital
images is the spatial arrangement of the pixel intensities, known as tex-
ture (Torres and Falcão, 2006). The appearance of texture can help an
observer to determine whether different regions from a digital image
of a given vegetation have a same structure. Due to difficulties in mea-
surement and interpretation, texture has been little used in phenology
studies (Culbert et al., 2009).

We monitored a tropical Cerrado savanna vegetation to assess the
reliability of digital images to detect leaf changes and validate the digital
data with on the ground direct phenological observation (Alberton
et al., 2012). In this paper, we investigate the use of machine learning
based on multiscale classifiers to detect phenological patterns in a
Cerrado savanna by using color and texture information of digital im-
ages. The key contribution of this study is the analysis of intra-species
variations.

The primary goal of our research is to determine how good is the
color change information to characterize the phenological pattern of
a group of species. Moreover, we are interested in analyzing how
promising is the temporal variation in image texture to distinguish
different individuals that have similar spectral characteristics but
different spatial patterns. Finally, we use machine learning based on
multiscale classifiers to find similar textures in the digital image and
we checked if they correspond to similar species or functional groups.

Based on those studies, we expect to open new venues on the auto-
matic identification of plants from the same species or functional group
using machine learning. Most of existing methods for species identifica-
tion have focused on morphological features of a single organ (mainly
leaf, rarely flower), often considering ideal conditions, such as noise-free
images with a uniform background, taken at specific periods (Cope
et al., 2012; Kumar et al., 2012).

Unlike previous works in the literature, we address the problem of
identifying plant species by using phenology instead of morphometrics.
Our strategy integrates a high degree of diversity in terms of locations,
periods, and illumination conditions, which is a prerequisite to build
modern plant identification systems.

A preliminary version of this work was presented at eScience 2012
(Almeida et al., 2012). Here, we include the analysis of texture infor-
mation to characterize phenological patterns. The new reported
results show the potential of texture change information for species
identification.

The remainder of this paper is organized as follows. Section 2
presents our learning strategy and shows how to apply it to identify
plant species. Section 3 describes materials and methods of our experi-
mental protocol. Section 4 reports our experimental results and discuss
how they can be applied in phenology studies. Finally, we offer our
conclusions and directions for future work in Section 5.

2. Machine learning

In machine learning, classification is the task of assigning objects
to one of several predefined classes. The input data for a classification
task is a collection of records. Each record, also known as a sample, is
characterized by a tuple (ℱ, Y), whereℱ is the attribute set and Y is a
special attribute, called label, which indicates the class that belongs
each sample (Tan et al., 2005).

The attribute setℱ, also known as a feature vector, is a sequence of
continuous or discrete values obtained from measures over a given
object and it is used for computationally describing each sample
concerning a specific property. The label, on the other hand, must
be a discrete attribute (Tan et al., 2005).

A detector or classifier is a systematic approach to building classifica-
tion models from an input data set. Each technique employs a learning
strategy to identify a model that best fits the relationship between the
feature vector and label of the input data (Tan et al., 2005).

For that, a training set consisting of records whose labels are known
must be provided. The training set is used to build a classificationmodel,
Please cite this article as: Almeida, J., et al., Applying machine learning b
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which is subsequently applied to predict the labels of records it has
never seen before (Tan et al., 2005). For more details concerning
machine learning concepts, refer to (Alpaydin, 2010; Rostamizadeh
and Talwalker, 2012).

In this paper, we use machine learning to detect phenological
patterns. For this purpose, we adopted the multiscale classifier (MSC)
approach (dos Santos et al., 2012b) to learn phenological patterns and
build phenological pattern detectors. It was chosen due to its ability of
combining different features by weighting the ones more suitable for
each plant species. Moreover, it also allows the combination of features
from different segmentation scales, which increases the power of the
final detector (dos Santos et al., 2012a).

2.1. Multiscale classifier

Themultiscale classifier (MSC) (dos Santos et al., 2012b) is a learning
strategy based on boosting of weak learners. It is based on the Adaboost
algorithm proposed by Schapire (1999), which builds a linear combina-
tion ofweak classifiers to compose afinal strong one. Aweak learner is a
classifier slightly better than the random. Boosting-based classification
strategies have been extensively used in applications that need to com-
bine a large sets of different features or classifiers (Grabner and Bischof,
2006; Lechervy et al., 2013; Viola and Jones, 2001).

Let H be a hierarchy of segmented regions, Pλ is a partition, which is
the segmentation result at a given scale λ. A partition P is obtained by
cutting the hierarchy H. In this sense, R ∈ P refers to any region R that
belongs to the partition P. The MSC aims at assigning a label (+1, for
relevant class; and −1, otherwise) to each pixel p of P0 taking advan-
tage of various features computed on regions of various levels from a
segmentation hierarchy H. The final classifier is a linear combination
MSC(p) of T weak classifiers ht(p):

MSC pð Þ ¼ sign
XT
t¼1

αtht pð Þ
 !

; ð1Þ

where αt is the weight assigned to the weak classifier ht(p) at the
iteration t.

The training consists of testingweak learners in a sequence of rounds
t = 1, … T. Each weak learner builds a weak classifier that reduces the
expected classification error of the final classifier. For each round t, MSC
selects the weak classifier that most decreases the error.

The algorithm keeps a set of weights over the training set. The
weights can be understood as a measure of difficulty of each sample.
The pixels startwith the sameweights. But along the rounds, theweights
of the misclassified pixels are increased. Thus, the weak learners are
forced to focus on the most difficult samples. We noteWt(p) the weight
of pixel p in round t, and Dt,λ(R) the misclassification rate of region R in
round t at scale λwhich is the mean of the weights of its pixels:

Dt;λ Rð Þ ¼ 1
Rj j
X
p∈R

Wt pð Þ
 !

: ð2Þ

Algorithm 1 presents the training process of the MSC. Let Yλ(R),
the set of labels of regions R at scale λ, be the training set. In a series
of rounds t = 1,… T, for all scales λ, the weight of each region Dt,λ(R)
is computed (line 3). The selection of regions is based on this piece of
information to create a subset of labeled regions bYt;λ (line 6). This sub-
set is used to train weak learners: each features F at scale λ (line 9).
Each weak learner produces a weak classifier ht; F ;λð Þ (line 10). The al-
gorithm then selects the weak classifier ht that most reduces the error
Errht (line 12). The level of error of ht is used to compute the coeffi-
cient αt, which indicates the degree of importance of ht in the final
classifier (line 13). The selected weak classifier ht and the coefficient
αt are used to update the weights of the pixels W(t + 1)(p) which
can be used in the next round (line 14).
ased on multiscale classifiers to detect remote phenology patterns in
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Fig. 1. The Cerrado-savanna phenology tower (18 m tall) at Itirapina, São Paulo, South-
eastern Brazil, where thedigital hemispherical lens camerawas set up (red arrow) attached
to an iron arm facing northeast. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Algorithm 1. Multiscale classifier.

Input:
Training labels Yλ(R) = labels of regions R at scale λ

Initialize:
For all pixels p, W1 pð Þ← 1

Y0j j, where |Y0| is the number of pixels in the image level
1 For t ← 1 to T do
2 For all scales λ do
3. For all R ∈ Pλ do
4 Compute Dt,λ(R)
5 End for
6 Build bYt;λ (a training subset based on Dt,λ(R))
7 End for
8 For each pair feature/scale F ;λð Þ do
9 Train weak learners using features F ;λð Þ and training set bYt;λ .
10 Evaluate resulting classifier ht; F ;λð Þ: compute Err ht; F ;λð Þ;W

� �Þ (Eq. (3))
11 End for
12 Select weak classifier ht ¼ argmin

ht; F ;λð Þ
Err ht; F ;λð Þ;Wt;λ
� �

13 Compute αt←1
2 ln 1þrt

1−rt

� �
with rt ← ∑ pcY0(p)ht(p)

14 Update Wtþ1 pð Þ← Wt pð Þ exp −αt Y0 pð Þht pð Þð Þ
∑
p

Wt pð Þexp −αt Y0 pð Þht pð Þð Þ

15 End for
Output: Multi-Scale Classifier MSC(p)

The training set labels Y0 corresponds to the samples at the pixel
level. The training sets labels Yλ with λ N 0 are defined according
to the percentage of pixels that belongs to each of the two classes
(for example, at least 80% of one region). The learning is performed
over a training set Yλ corresponding to the same scale λ. The weak
learners use the subset bYt;λ for training and produce a weak classifier
ht; F ;λð Þ.

The classification error of the classifier h is:

Err h;Wð Þ ¼
X

pjh pð ÞY0 pð Þb0
W pð Þ: ð3Þ

2.2. SVM-based weak learner

In this work, we used a linear SVM (support vector machine) as
weak learner, which is an SVM trainer based on a specific feature
type F and a specific scale λ. Given the training subset labels bYλ ,
the method finds the best linear hyperplane of separation, trying to
maximize the data separation between the regions according to
their classes. The sample regions in the margin are called support
vectors and are found during the training.

Once the support vectors and the decision coefficients (αi, i = 1,
…, N) are found, the SVM weak classifier can be defined as:

SVM F ;λð Þ Rð Þ ¼ sign
XN
i

yiαi f R � f ið Þ þ b

 !
; ð4Þ

where b is a parameter found during the training. The support vectors
are the fi such that αi N 0, yi is the support vector class and fR is the
feature vector of the region.

Only the most difficult regions are supposed to be used for training.
Thus, the training subset bYt;λ is composed by n labels from Yλ with
values of Dt,λ(R) larger or equal to 1

Y0j j.

3. Materials and methods

3.1. Study area and camera setup

The near-remote phenological system was set up in an 18 m tower
in a Cerrado sensu stricto, a savanna-like vegetation located at Itirapina
(22° 10′ 49.18″ S / 47° 52′ 16.54″O), São Paulo State, Brazil. The Cerrado
stricto sensu (Coutinho, 1978) is a savanna-like vegetation presenting a
Please cite this article as: Almeida, J., et al., Applying machine learning b
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discontinuous canopy and woody component reaching six to seven
meters high and a continuous herbaceous layer (Alberton et al., 2012).
In some parts, the vegetation is denser, with some trees reaching up
to 12 m high. The Cerrado savanna study site is about 260 ha, 610 m
altitude and the regional climate is Cwa type (i.e., humid subtropical
climate) according to Köppen classification.

The average climate (1972 to 2002) shows amean annual total rain-
fall of 1524 mm and mean temperature of 20.7 °C, with one warm,
humid season from October to March (average of 22 °C and 78% of an-
nual precipitation) and one cool, dry season from April to September
(average of 18 °C and 16% of annual precipitation). During the year of
study (2011) the climate seasonality was similar to the average pattern,
with amean temperature of 21.2 °C, but a higher annual total rainfall of
1891 mmdue to a very humid Januarywith precipitation over 500 mm.
Climatic data were obtained from the Climatological Station of the Cen-
ter forWater Resources and Applied Ecology (CRHEA) of the University
of Sao Paulo, located 4 km from the study site.

A digital hemispherical lens camera (Mobotix Q24)was set up at the
top of the phenology tower, attached to an iron arm facing northeast
(Fig. 1). The camera activity is controlled by a timer and the energy
source is a 12 V battery charged by a solar panel.

The first data collection from the digital camera started on 18th
August 2011. We set up the camera to automatically take a daily
sequence of five JPEG images (at 1280 × 960 pixels of resolution) per
hour, from 6:00 to 18:00 h (UTC-3). The present study was based on
the analysis of over 2700 images (Fig. 2), recorded at the end of the
dry season, between August 29th and October 3rd 2011, day of year
241 to 278 (DOY), during the main leaf flushing season (Alberton
et al., 2012; Reys, 2008). Sunrise, sunset, and solar elevation angles
were 6:03 h, 17:38 h, 58° (DOY 241); and 5:26 h, 17:48 h, 72°
(DOY 278), respectively.
ased on multiscale classifiers to detect remote phenology patterns in
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3.2. Image analysis

3.2.1. Regions of interest
The image analysis was conducted by defining different regions of

interest (ROI), as described by Ahrends et al. (2009); Alberton et al.
(2012); Richardson et al. (2007, 2009). For each ROI, a binary image
with the same dimensions of the original image was created as a
mask. White pixels of a mask indicate the ROI, while the remaining
area was filled by black pixels. We defined six ROIs (Fig. 3) based on
the random selection of six plant species identifiedmanually by phenol-
ogy experts in the hemispheric image: (1) Aspidosperma tomentosum
(Fig. 3(a)), (2) Caryocar brasiliensis (Fig. 3(b)), (3) Myrcia guianesis
(Fig. 3(c)), (4) Miconia rubiginosa (Fig. 3(d)), (5) Pouteria ramiflora
(Fig. 3(e)), and (6) Pouteria torta (Fig. 3(f)).

According to the leaf exchange data from the on-the-ground field
observations on leaf fall and leaf flush at our study site, those species
were classified on three functional groups (Alberton et al., 2012;
Morellato et al., 1989; Reys, 2008): (i) deciduous, A. tomentosum and
C. brasiliensis; (ii) evergreen, M. guianensis and M. rubiginosa; and
(iii) semideciduous, P. ramiflora and P. torta.

3.2.2. Color features
We analyzed each ROI in terms of the contribution of the primary

colors (red, green, and blue), as proposed by (Richardson et al., 2007).
Initially, a custom script was used to analyze each color channel and
to compute the average value of the pixel intensity. After that, we cal-
culated the relative (or normalized) brightness of each color channel,
as:

Totalavg: ¼ Redavg: þ Greenavg: þ Blueavg:

% of Red ¼ Redavg:
Totalavg:

% of Green ¼ Greenavg:

Totalavg:

% of Blue ¼ Blueavg:
Totalavg:

ð5Þ

where Redavg., Greenavg., and Blueavg. are the average pixel intensities of
the red, green, and blue bands, respectively. The normalization of
those values reduces the influence of the incident light, decreasing the
color variability due to changes on illumination conditions (Cheng
et al., 2001).

Fig. 4 shows the behavior of those values for each ROI along the
whole period, considering only the digital images taken at midday.
Each line corresponds to a time series for the variation of the normal-
ized brightness of each color channel. Notice the differences between
Fig. 2. Sample image of the Cerrado savanna recorded by the digital camera on October
15th, 2011.

Please cite this article as: Almeida, J., et al., Applying machine learning b
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the behavior of each species individually, reflecting the leaf color
changes over the leaf life cycle or aging process.

3.2.3. Texture features
One of the most traditional techniques for extracting and

representing texture information is the Co-occurrence matrix (Haralick
et al., 1973). It describes spatial relationships among pixel intensities in
an image. Each position (i,j) in this matrix indicates the probability at
which pixels of intensity values i and j occur at a user specified distance
and direction. There are four commonly used directions: 0° (horizontal),
45° (right diagonal), 90° (vertical), and 135° (left diagonal). The distance
parameter is typically set to 1, thus comparing adjacent pixels. From
this matrix, we can compute properties such as contrast, entropy, and
homogeneity.

A simplification of the aforementioned method consists replacing
the usual co-occurrencematrices by their associated sumand difference
histograms (Unser, 1986). The non-normalized sum s and difference d
associated with a relative displacement (δ1,δ2) on the position (k,l) of
an image I are defined as:

sk;l ¼ Ik;l þ Ikþδ1 ;lþδ2 ;

dk;l ¼ Ik;l−Ikþδ1;lþδ2 :
ð6Þ

Let D be a subset of indexes specifying a region to be analyzed and
G = {1,2, …,Ng} be the set of the Ng pixel levels. The sum (hs) and
difference (hd) histograms for the intensity values i and j over the
domain D are defined by:

hs i; δ1; δ2ð Þ ¼ hs ið Þ ¼ Card k; lð Þ∈D; sk;l ¼ i
n o

;

hd j; δ1; δ2ð Þ ¼ hd jð Þ ¼ Card k; lð Þ∈D; dk;l ¼ j
n o

:
ð7Þ

Thenormalized sum(Ps) and differences (Pd) histograms are given by

Ps ið Þ ¼ hs ið Þ=N i ¼ 2;…;2Ng ;
Pd jð Þ ¼ hd jð Þ=N j ¼ −Ng þ 1;…;Ng−1; ð8Þ

where N is the total number of counts,

N ¼ Card Df g ¼
X
i

hs ið Þ ¼
X
j

hd jð Þ: ð9Þ

Statistical information can be extracted from those histograms by
computing quantities such as mean, variance, and entropy. Unser
(1986) has presented a variety of statistical measures that can be
employed to extract useful information from both sum and difference
histograms, as shown in Table 1. Such measures were computed from
the sum and difference histograms obtained from the green color
band by considering the domain D defined by each ROI.

Fig. 5 shows the behavior of those measures for each ROI along
the whole period, considering only the digital images taken at the
midday. Each line corresponds to a time series for the variation of the
normalized value of each textural metric. The behavior of those curves
is equivalent for the different orientations. For that reason, we report
the average results of the all the directions (0°, 45°, 90°, and 135°).

3.3. Classification

Fig. 6 illustrates the steps of our MSC approach. The first step is to
build a hierarchy of regions H. We have used the Guigues algorithm
(Guigues et al., 2006) to perform the segmentation. In the remainder
of this paper, when we refer to regions of interest related to tree
crowns of plant species identified manually in the digital image, we
use the acronym ROI; and when we refer to segmented regions
obtained from the segmentation algorithm, we use the acronym SR.

The image used to obtain the hierarchy of segmented regions (SR)
was taken at noon on October 15th, 2011 (Fig. 2). We have selected 5
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(b) Caryocar brasiliensis (c) Myrcia guianesis

(d) Miconia rubiginosa (e) Pouteria ramiflora (f) Pouteria torta

(a) Aspidosperma tomentosum

Fig. 3. Regions of interest (ROIs) defined for the analysis of Cerrado-savanna digital images: (a) Aspidosperma tomentosum, (b) Caryocar brasiliensis, (c)Myrcia guianesis, (d)Miconia rubiginosa,
(e) Pouteria ramiflora, and (f) Pouteria torta.
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segmentation scales from the hierarchy to perform feature extraction.
The finest scale is composed of 27,380 SRs and the coarsest scale con-
tains 8849 SRs. Fig. 7 illustrates the segmented scales in a subimage
sample from Fig. 2.

The second step is the feature extraction, which is carried out on
the SRs at different segmentation scales. For each plant species, we
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Fig. 4. The variance of the normalized brightness of each color channel from the digital im
Cerrado savanna using different regions of interest (ROIs), as described in Fig. 3.
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have tested 39 different color features by considering the available pe-
riods during the day (13 h: from 6:00 to 18:00 h) and the color channels
(3 bands: R, G, and B). Also, we have tested 91 different texture features
by considering the available periods during the day (13 h: from 6:00 to
18:00 h) and the texturemetrics (7 statisticalmeasures:mean, variance,
contrast, correlation, entropy, homogeneity, andmaximum probability).
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Table 1
Textural metrics extracted from each ROI.

Feature Formula

Mean μ ¼ 1
2∑i i � Ps ið Þ

Contrast Cn = ∑ j j
2 ⋅ Pd(j)

Homogeneity Hg ¼ ∑ j
1

1þ j2
� Pd jð Þ

Variance σ2 ¼ 1
2 ∑i i−2μð Þ2 � Ps ið Þ þ∑ j j

2 � Pd jð Þ
� �

Correlation Cr ¼ 1
2 ∑i i−2μð Þ2 � Ps ið Þ−∑ j j

2 � Pd jð Þ
� �

Entropy Hn = − ∑ ihs(i) ⋅ log Ps(i) − ∑ jPd(j) ⋅ log Pd(j)
Maximum Mp = max iPs(i)
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For each feature, we take the average value obtained for the five images
of each hour of the day. Time series are obtained by computing those
values along the whole period (August 28th to October 3rd, 2011),
forming the feature vector.

Finally, we use the MSC (Algorithm 1) to build a linear combination
of weak classifiers, each of them related to a specific scale and feature.
This step was performed for each plant species by using their ROIs
(Fig. 3). To build a classifier for a given species, we used the SRs from
its corresponding ROI as positive samples and from ROIs of the other
species as negative samples. At the end, the final classifier was applied
to classify the remaining SRs of the image.

3.4. Effectiveness measures

We carried out experiments to classify the plant species in the
image. For that, we selected two species fromdifferent functional groups:
A. tomentosum (deciduous) andM. rubiginosa (evergreen). Next, we built
a classifier for each species using the approach described in Section 2.

Fig. 8 shows the ROIs identified by phenology experts, which we
used to build and analyze each of the classifiers. In this figure, green
areas indicate individuals of the analyzed species, whose SRs obtained
from the segmentation were used as positive samples; while red
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Fig. 5. The variance of the normalized value of each textural metric from the digital images t
savanna using different regions of interest (ROIs), as described in Fig. 3.
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areas represent individuals from the other species, whose SRs were
considered as negative samples.

To assess the effectiveness of each classifier, other individuals
(yellow areas; Fig. 8) from each of the analyzed species were chosen
as a validation set. Then, we used the SRs extracted from those ROIs as
input samples for each classifier. Thus, we can measure the classifica-
tion accuracy as the ratio of the number of samples correctly classified
as belonging to the analyzed species to the total number of samples in
the validation set.

4. Results and discussion

4.1. Classification accuracy

4.1.1. Color change information
Fig. 9 shows the classification accuracy for each of the color chan-

nels (3 bands: R, G, and B) along all the available periods of the day
(13 h: from 6:00 to 18:00 h), totaling 39 different features for each
of the analyzed species.

Fig. 10 shows a different view of those results, including all feature
combinations, totaling 56 different possibilities. They are: (i) 1 h of
the day and 1 color channel (39 combinations); (ii) 1 h of the day and
all the color channels (13 combinations); (iii) all the hours of the day
and 1 color channel (3 combinations); and (iv) all the hours of the
day and all the color channels (1 combination). In order to make the
comparison easier, we sorted the results from higher to lower accuracy.

Observe that, with less sunshine (early in the morning and late in
the afternoon), the classification accuracy is higher, characterizing
better the analyzed species for that particular day (Fig. 9). It indicates
that early and late hours are better to characterize the phenological
pattern of plant species for the identification using machine learning.
This finding disagrees with the general suggestion of extracting color
information from midday hours for ecological studies (Ahrends et al.,
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Fig. 6. Steps of the multi-scale learning process. Adapted from dos Santos et al. (2012b).
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2009; Ide and Oguma, 2010; Richardson et al., 2007, 2009). Such
differences are related to the type of data analyses being conducted,
once those researchworks are interested in the variation among species
(e.g., how different are the phenological patterns of individuals from
different species), while the present study is focused on intra-species
variations (e.g., how similar are the phenological patterns generated
by different individuals of a same species).

Notice also the differences between the behavior of each of the
species individually with respect to the color channels, indicating
different patterns of leaf color change (Fig. 10). This behavior reflects
their contrasting leaf phenology (Alberton et al., 2012): theM. rubiginosa
is an evergreen species and, therefore, the leaf senescence is a continuous
process and color changes are more subtle over time; in contrast, the
A. tomentosum is deciduous, thus the color change reflects the rapid
leaf senescence and the flush of new leaves.

As mentioned in Section 2.2, the MSC approach is based on
boosting weak learners. In this paper, each weak learner is a linear
Fig. 7. The segmentation results for the selected scales in a subimage sample. (For interpre
version of this article.)

(a) Aspidosperma tomentosum

Fig. 8. Regions of interest (ROIs) used to build and analyze classifiers: green and red areas in
for training; whereas yellow areas indicate individuals of plant species chosen for validation
to the web version of this article.)
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SVM classifier using features extracted from a given segmentation
scale. In this way, each of the color channels along all the available
periods of the day at one of the scales are used as a distinct feature.
Table 2 presents the weak classifiers chosen by MSC training algo-
rithm for the A. tomentosum and M. rubiginosa species.

Those results confirm that the extreme hours (morning, from
6:00 to 9:00 h; and afternoon, from 15:00 to 18:00 h) are better to
characterize plant species. In addition, they also show that the
A. tomentosum andM. rubiginosa species present a different behavior
with respect to the color channels. Moreover, it is interesting to note
that coarse scales provide better results than fine ones for the species
identification.

A detailed analysis of the effects of the scale of segmentation on
the descriptors is presented in dos Santos et al. (2012a). As pointed
out by the authors, all scales are important in different ways: large
regions offer more power of description, and the small ones can be
used to refine the segmentation.
Original

Scale 3

Scale 1

Scale 4

Scale 2

Scale 5

tation of the references to color in this figure legend, the reader is referred to the web

(b) Miconia rubiginosa

dicate individuals of plant species taken, respectively, as positive and negative samples
.(For interpretation of the references to color in this figure legend, the reader is referred
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.1016/j.ecoinf.2013.06.011
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The reason for the different behavior between the two species is
probably related to the leaf change pattern and species functional
group. These divergent leafing patterns indicated different behavior
for the analyzed species that need further in-depth analyses consider-
ing their on-the-ground phenology (Alberton et al., 2012). Based on
those results, our analysis suggests that individuals from the same
species and functional group can be identified using digital images.

4.1.2. Texture change information
Fig. 11 shows the classification accuracy for each of the textural

metrics (7 statistical measures: mean, variance, contrast, correlation,
entropy, homogeneity, and maximum probability) along all the
available periods of the day (13 h: from 6:00 to 18:00 h), totaling
91 different features for each of the analyzed species.
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Fig. 12 shows a different view of those results, including all the
feature combinations, totaling 112 different possibilities. They are:
(i) 1 h of the day and 1 textural metric (91 combinations); (ii) 1 h of
the day and all the textural metrics (13 combinations); (iii) all the
hours of the day and 1 textural metric (7 combinations); and (iv) all
the hours of the day and all the textural metrics (1 combination). In
order to make the comparison easier, we sorted the results from higher
to lower accuracy.

In general, the results indicate how promising is the use of textural
metrics for capturing phenological patterns, achieving a high classifica-
tion accuracy, comparable to that from the color features. This opens up
a number of possibilities that deservemuch deeper study, but an imme-
diate consequence is that the variation in image texture contains impor-
tant information which can be explored in phenology studies.
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Fig. 10. Classification accuracy for each of the color channels along all the available periods of the day (among all the possible combinations).

Table 2
Weak classifiers chosen by the MSC for each round t. The classifier is composed by:
color band, hour of the day and segmentation scale.

t Aspidosperma Miconia rubiginosa

Classifier Weight Classifier Weight

0 7 h,R,λ1 3.9 18 h,R,λ4 4.0
1 16 h,B,λ2 1.0 18 h,R,λ3 3.7
2 16 h,B,λ4 4.1 18 h,R,λ1 1.0
3 16 h,R,λ1 1.0 18 h,R,λ1 1.0
4 7 h,B,λ4 4.6 18 h,R,λ1 1.0
5 7 h,B,λ1 1.0 18 h,R,λ1 1.0
6 7 h,B,λ2 1.0 18 h,R,λ1 1.0
7 16 h,B,λ2 5.2 18 h,R,λ1 1.0
8 7 h,B,λ2 1.0 18 h,R,λ1 1.0
9 7 h,B,λ1 6.3 18 h,R,λ1 1.0

Table 3
Weak classifiers chosen by the MSC for each round t. The classifier is composed by: tex-
tural metric, hour of the day and segmentation scale.

t Aspidosperma Miconia rubiginosa

Classifier Weight Classifier Weight

0 8 h,Variance,λ1 3.0 7 h,Mean,λ1 1.9
1 7 h,Mean,λ2 3.8 7 h,Entropy,λ2 1.6
2 18 h,Mean,λ1 2.9 17 h,Variance,λ1 1.9
3 7 h,Mean,λ1 4.5 6 h,Mean,λ1 1.7
4 7 h,Mean,λ1 1.0 6 h,Mean,λ1 2.0
5 7 h,Mean,λ1 1.0 6 h,Mean,λ1 2.5
6 7 h,Mean,λ1 1.0 15 h,Mean,λ1 2.9
7 7 h,Mean,λ1 1.0 6 h,Mean,λ1 3.2
8 7 h,Mean,λ1 1.0 6 h,Mean,λ1 1.0
9 7 h,Mean,λ1 1.0 18 h,Mean,λ1 1.0

9J. Almeida et al. / Ecological Informatics xxx (2013) xxx–xxx

Please cite this article as: Almeida, J., et al., Applying machine learning based on multiscale classifiers to detect remote phenology patterns in
Cerrado savanna trees, Ecological Informatics (2013), http://dx.doi.org/10.1016/j.ecoinf.2013.06.011

http://dx.doi.org/10.1016/j.ecoinf.2013.06.011


10 J. Almeida et al. / Ecological Informatics xxx (2013) xxx–xxx
As we can observe, the statistical measures of mean, contrast, and
variance achieve the best results for both the A. tomentosum and
M. rubiginosa species. In contrast, it is interesting to note the differ-
ences in responsiveness of each of the species individually with
respect to those texturalmetrics, indicating different patterns of tempo-
ral changes in their spatial distribution. The contrast captured better the
deciduous leaf change pattern of the A. tomentosum, as previously
described. On the other hand, themean described better the continuous
process of leaf senescence of the M. rubiginosa, an evergreen species.

The weak classifiers chosen by MSC training algorithm for the
A. tomentosum and M. rubiginosa species are presented in Table 3.
Those results confirm that the statistical measure of mean is better
to characterize plant species. In addition, as for the color features,
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they also show that coarse scales provide better results than fine
ones for the species identification.

The strong fine-scale variation in the vegetation leads to a high
spectral variation, which is translated into higher variation of textural
measures. For that reason, the temporal variation in image texture is
useful information to distinguish plant species.

4.2. Application in phenology studies

The species identification in the digital image is a key issue for the
near-remote phenological observation of tree crowns, especially in
tropical vegetations where one single image may include a high num-
ber of species. Usually, this task is very time-consuming since it has to
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be done in the field, first by matching each crown in the image to the
tree in the soil and then by identifying the tree at species level.

In this sense, our framework can help phenology experts to find
the species in the image, since we can use the MSC approach to auto-
matically identify similar ROIs (tree crowns), reducing the area on the
ground over which to look for a similar species' ROI, making such a
task much easier and faster.

For that, we use the MSC approach to classify segmented regions
from the digital images. Next, we create an image map based on the
assigned labels, indicating graphically the areas where the probability
of finding individuals from a given species is higher.

Fig. 13 presents the image maps produced for the analyzed species
using the feature combination that achieved the highest classification
accuracy (i.e., 6 h/G, for the A. tomentosum; and 6–18 h/RGB, for the
M. rubiginosa). Different color scales were used to maximize the dif-
ference between the assigned labels: (i) a green scale, for similar
Please cite this article as: Almeida, J., et al., Applying machine learning b
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pattens (between +1.0 and +0.3); (ii) a gray scale, for undefined
patterns (between +0.3 and −0.3); and (iii) a red scale, for inverted
patterns1 (between −0.3 and −1.0).

In this figure, the green areas indicate the segmented regions with a
high probability of belonging to the same species. Notice how the search
efforts can be greatly reduced by employing our approach. This opens
up a number of possibilities that deserve much deeper study, but an
immediate consequence is that we can help phenology experts with a
new tool to identify plant species, increasing their accuracy on defining
the relationship between phenology and climate.

The automatic identification of regions in the digital image with
similar phenological patterns have allowed us to find more crowns
of the analyzed species, which were validated by the on site
ased on multiscale classifiers to detect remote phenology patterns in
.1016/j.ecoinf.2013.06.011
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(a) Aspidosperma tomentosum (b) Miconia rubiginosa

Fig. 13. Image maps produced for different species using the feature combination with the highest classification accuracy. Different color scales were used to maximize the difference
between the assigned labels: (i) a green scale, for similar pattens; (ii) a gray scale, for undefined patterns; and (iii) a red scale, for inverted patterns. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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identification of the trees. Also, from the point of view of phenology, it
has helped us to distinguish different regions in our study area re-
gardless of their individual species and to understand the predomi-
nant phenology of a whole community.

5. Conclusions

We conclude that machine learning based on multiscale classifiers
can be applied to detect phenological patterns in the high diversity of
the tropical Cerrado savanna vegetation. Using a conventional tool to
measure the color change information, we were able to define the
best hours of the day for characterizing plant species. Different from
the suggestion of using midday hours reported in ecological studies,
the extreme hours (morning and afternoon) have shown the best
results for the species identification using machine learning. Moreover,
the data validation at species level has also revealed that different plant
species present a different behavior with respect to the color change
information. In this way, we were able to distinguish species and func-
tional groups of plants using digital images. Another significant finding
of our study was that textural measures exhibit a temporal-change
pattern with respect to phenological changes. The potential upside of
temporal variation in image texture is that texture differences among
multitemporal images contain useful information to characterize plant
species. Finally, based on those results, we have introduced a new tool
to help phenology experts in the species identification on-the-ground,
making such a task much easier and faster. Future work includes the
evaluation of other visual features (e.g., color (Almeida et al., 2013)
and shape (Torres et al., 2013)) and/or learning methods (e.g., genetic
programming (Andrade et al., 2012)).

Acknowledgments

This researchwas supported by the FAPESP–Microsoft Research Vir-
tual Institute (grant 2010/52113-5). JA receives a postdoctoral fellow-
ship from FAPESP (grant 2011/11171-5), JAS a doctoral scholarship
from FAPESP (grant 2008/58528-2), and BA a master scholarship from
CAPES; LPCM and RST receive a Productivity Research Fellowship
from CNPq (grants 306243/2010-5 and 306587/2009-2). Also, we
have been benefited from funds of CNPq, CAPES, and FAPESP (grants
2007/52015-0, 2007/59779-6, and 2009/18438-7).

References

Ahrends, H., Etzold, S., Kutsch, W., Stoeckli, R., Bruegger, R., Jeanneret, F., Wanner, H.,
Buchmann, N., Eugster, W., 2009. Tree phenology and carbon dioxide fluxes: use
of digital photography for process-based interpretation at the ecosystem scale.
Climate Research 39, 261–274.

Alberton, B., Almeida, J., Henneken, R., Torres, R. da S., Menzel, A., Morellato, L.P.C.,
2012. Near remote phenology: applying digital images to monitor leaf phenology
Please cite this article as: Almeida, J., et al., Applying machine learning b
Cerrado savanna trees, Ecological Informatics (2013), http://dx.doi.org/10
in a Brazilian Cerrado savanna. International Conference on Phenology (Phenology'12),
p. 2.

Almeida, J., dos Santos, J.A., Alberton, B., Torres, R. da S., Morellato, L.P.C., 2012. Remote
phenology: applying machine learning to detect phenological patterns in a Cerrado
savanna. IEEE International Conference on eScience (eScience'12), pp. 1–8.

Almeida, J., dos Santos, J.A., Alberton, B., Morellato, L.P.C., Torres, R. da S., 2013. Visual
rhythm-based time series analysis for phenology studies. IEEE International
Conference on Image Processing (ICIP'13), pp. 1–5.

Alpaydin, E., 2010. Introduction to Machine Learning. Adaptive Computation and
Machine Learning. MIT Press.

Andrade, F.S.P., Almeida, J., Pedrini, H., Torres, R. da S., 2012. Fusion of local and global
descriptors for content-based image and video retrieval. Iberoamerican Congress
on, Pattern Recognition (CIARP'12), pp. 845–853.

Cheng, H.-D., Jiang, X., Sun, Y., Wang, J., 2001. Color image segmentation: advances and
prospects. Pattern Recognition 34 (12), 2259–2281.

Cope, J.S., Corney, D.P.A., Clark, J.Y., Remagnino, P., Wilkin, P., 2012. Plant species
identification using digital morphometrics: a review. Expert Systemswith Applications
39 (8), 7562–7573.

Coutinho, L.M., 1978. O conceito de cerrado. Brazilian Journal of Botany 1, 17–23.
Culbert, P.D., Pidgeon, A.M., St.-Louis, V., Bash, D., Radeloff, V.C., 2009. The impact of

phenological variation on texture measures of remotely sensed imagery. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing 2 (4), 299–309.

dos Santos, J.A., Faria, F.A., Torres, R. da S., Rocha, A., Gosselin, P.-H., Philipp-Foliguet,
S., Falcão, A.X., 2012a. Descriptor correlation analysis for remote sensing image
multiscale classification. IEEE International Conference on Pattern Recognition
(ICPR'12), pp. 3078–3081.

dos Santos, J.A., Gosselin, P.-H., Philipp-Foliguet, S., Torres, R. da S., Falcão, A.X., 2012b.
Multiscale classification of remote sensing images. IEEE Transactions on Geoscience
and Remote Sensing 50 (10), 3764–3775.

Grabner, H., Bischof, H., 2006. On-line boosting and vision. IEEE International Conference
on Computer Vision and, Pattern Recognition (CVPR'06), pp. 260–267.

Guigues, L., Cocquerez, J., Le Men, H., 2006. Scale-sets image analysis. International
Journal of Computer Vision 68, 289–317.

Haralick, R.M., Shanmugam, K., Dinstein, I., 1973. Textural features for image classification.
IEEE Transaction on Systems, Man and Cybernetics 3 (6), 610–621.

Ide, R., Oguma, H., 2010. Use of digital cameras for phenological observations. Ecological
Informatics 5, 339–347.

Keeling, C.D., Chin, J.F.S., Whorf, T.P., 1996. Increased activity of northern vegetation
inferred from atmospheric co2 measurements. Nature 382, 146–149.

Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., Kress, W.J., Lopez, I.C., Soares,
J.V.B., 2012. Leafsnap: a computer vision system for automatic plant species
identification. European Conference on Computer Vision (ECCV'12), pp. 502–516.

Kurc, S., Benton, L., 2010. Digital image-derived greenness links deep soil moisture to
carbon uptake in a creosotebush-dominated shrubland. Journal of Arid Environments
74, 585–594.

Lechervy, A., Gosselin, P.-H., Precioso, F., 2013. Boosted Kernel for Image Categorization.
Multimedia Tools and Applications.

Loustau, D., Bosc, A., Colin, A., Davi, H., François, C., Dufrêne, E., Équé, M., Cloppet, E.,
Arrouays, D., Le Bas, C., Saby, N., Pignard, G., Hamza, N., Granier, A., Breda, N.,
Ciais, P., Viovy, N., Ogée, J., Delage, J., 2005. Modeling the climate change effects
on the potential reduction of french plains forests at the sub regional level. Tree
Physiology 25, 813–823.

Morellato, L.P.C., Rodrigues, R.R., Leitão Filho, H.F., Joly, C.A., 1989. Estudo
comparativo da fenologia de espécies arbóreas de floresta de altitude e floresta
mesófila semidecídua na serra do iapí, jundiaí, são paulo. Brazilian Journal of
Botany 12, 85–98.

Nagai, S., Maeda, T., Gamo, M., Muraoka, H., Suzuki, R., Nasahara, K.N., 2011. Using
digital camera images to detect canopy condition of deciduous broad-leaved
trees. Plant Ecology and Diversity 4, 79–89.

Negi, G.C.S., 2006. Leaf and bud demography and shoot growth in evergreen and deciduous
trees of Central Himalaya, India. Trees 20, 416–429.

Parmesan, C., Yohe, G.A., 2003. A globally coherent fingerprint to climate change
impacts accross natural systems. Nature 421, 37–42.
ased on multiscale classifiers to detect remote phenology patterns in
.1016/j.ecoinf.2013.06.011

http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0005
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0005
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0005
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0170
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0170
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0170
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0175
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0175
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0175
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0180
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0180
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0180
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0010
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0010
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0185
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0185
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0185
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0015
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0015
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0020
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0020
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0020
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0025
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0190
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0190
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0190
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0195
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0195
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0195
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0200
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0200
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0205
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0205
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0035
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0035
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0040
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0040
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0045
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0045
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0050
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0050
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0210
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0210
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0055
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0055
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0055
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0060
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0060
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0065
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0065
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0065
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0070
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0070
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0070
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0070
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0075
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0075
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0075
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0080
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0080
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0085
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0085
http://dx.doi.org/10.1016/j.ecoinf.2013.06.011


13J. Almeida et al. / Ecological Informatics xxx (2013) xxx–xxx
Reich, P.B., 1995. Phenology of tropical forests: patterns, causes and consequences.
Canadian Journal of Botany 73, 164–174.

Reys, P., 2008. Estrutura e fenologia da vegetação de borda e interior em um fragmento
de cerrado Sensu Stricto no sudeste do brasil (itirapina, são paulo). (Ph.D. thesis)
Bioscience Institute, Sao Paulo State University, Rio Claro, SP, Brazil.

Richardson, A.D., Jenkins, J.P., Braswell, B.H., Hollinger, D.Y., Ollinger, S.V., Smith, M.L.,
2007. Use of digital webcam images to track spring greep-up in a deciduous broadleaf
forest. Oecologia 152, 323–334.

Richardson, A.D., Braswell, B.H., Hollinger, D.Y., Jenkins, J.P., Ollinger, S.V., 2009. Near-surface
remote sensing of spatial and temporal variation in canopy phenology. Ecological
Applications 19, 1417–1428.

Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q., Casassa, G., Menzel, A., Root, T.L.,
Estrella, N., Seguin, B., Tryjanowski, P., Liu, C., Rawlins, S., Imeson, A., 2008. Attributing
physical and biological impacts to anthropogenic climate change. Nature 453, 353–357.

Rostamizadeh, A., Talwalker, A., 2012. Foundations of Machine Learning. Adaptive
Computation and Machine Learning Series. University Press Group Limited.

Rotzer, T., Grote, R., Pretzsch, H., 2004. The timing of bud burst and its effect on tree
growth. International Journal of Biometeorology 48, 109–118.

Schapire, R.E., 1999. A brief introduction to boosting. In: Dean, T. (Ed.), International
Joint Conference on, Artificial Intelligence (IJCAI'99), pp. 1401–1406.

Schwartz, M.D., 2003. Phenology: An Integrative Environmental Science. Academic
Publishers.

Schwartz, M.D., Reed, B.C., White, M.A., 2002. Assessing satellite derived start-of-season
measures in the coterminous. International Journal of Climatology 22, 1793–1805.
Please cite this article as: Almeida, J., et al., Applying machine learning b
Cerrado savanna trees, Ecological Informatics (2013), http://dx.doi.org/10
Staggemeier, V.G., Diniz-Filho, J.F., Morellato, L.P.C., 2010. The shared influence of phy-
logeny and ecology on the reproductive patterns of Myrteae (Myrtaceae). Journal
of Ecology 98, 1409–1421.

Tan, P.-N., Steinbach, M., Kumar, V., 2005. Introduction to Data Mining. Addison-Wesley.
Torres, R. da S., Falcão, A.X., 2006. Content-based image retrieval: theory and applications.

Revista de Informática Teórica e Aplicada 13 (2), 161–185.
Torres, R. da S., Hasegawa, M., Tabbone, S., Almeida, J., dos Santos, J.A., Alberton, B.,

Morellato, L.P.C., 2013. Shape-based time series analysis for remote phenology
studies. IEEE International Geoscience and Remote Sensing Symposium (IGARSS'13),
pp. 1–4.

Unser, M., 1986. Sum and difference histograms for texture classification. IEEE Transactions
on Pattern Analysis and Machine Intelligence 8 (1), 118–125.

Viola, P., Jones, M., 2001. Rapid object detection using a boosted cascade of simple
features. IEEE International Conference on Computer Vision and, Pattern Recognition
(CVPR'01), pp. 511–518.

Walther, G.R., 2004. Plants in a warmer world. Perspectives in Plant Ecology Evolution
and Systematics 6, 169–185.

Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin,
J.M., Hoegh-Guldberg, O., Bairlein, F., 2002. Ecological responses to recent climate
change. Nature 416, 389–395.

White, M.A., Running, S.W., Thornton, P.E., 1999. The impact of growing-season
length variability on carbon assimilation and evapotranspiration over 88 years
in the eastern us deciduous forest. International Journal of Biometeorology 42,
139–145.
ased on multiscale classifiers to detect remote phenology patterns in
.1016/j.ecoinf.2013.06.011

http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0090
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0090
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0215
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0215
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0215
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0100
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0100
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0095
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0095
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0095
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0105
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0105
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0110
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0110
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0115
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0115
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0220
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0220
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0125
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0125
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0130
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0130
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0135
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0135
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0135
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0140
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0225
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0225
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0230
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0230
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0230
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0150
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0150
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0235
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0235
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0235
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0155
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0155
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0160
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0160
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0165
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0165
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0165
http://refhub.elsevier.com/S1574-9541(13)00065-4/rf0165
http://dx.doi.org/10.1016/j.ecoinf.2013.06.011


68 
 

5 CONCLUSIONS 

In this project we intended to incorporate new technologies of phenological 

observations using digital cameras installed in the field and test them as an innovative and 

complementary tool for collecting phenological data of leaf flushing in a high diverse cerrado 

savanna.  

In the first chapter, we concluded that: (i) digital cameras are reliable tools to capture 

leaf changes in tropical cerrado savanna vegetation; (ii) three leaf exchange strategies were 

depicted from the species patterns of green color change; and (iii) the greening patterns and 

leaf functional groups were validated by our on-the-ground phenology. In the second chapter, 

we presented: (i) a method capable of distinguishing species and functional groups of plants 

in images by a machine learning approach based on multiscale classifiers; and (ii) concluded 

that the use of this new tool can help phenology experts in the species identification on-the-

ground. 

As a next step to explore in the field of remote phenology, we plan to monitor leafing 

along a seasonal gradient of tropical vegetation. By monitoring from very seasonal areas such 

as caatinga, then the cerrado savanna to low seasonal communities as the Atlantic forest, we 

aim to verify the changes in community color patterns, and investigate which factors will 

affect most the growing season and ecosystems process for each vegetation type.  

The so-called near-remote phenology is a great opportunity to obtain an impartial and 

comparable assessment of leaf seasonal changes in tropical environments. Near-surface 

remote phenology has becoming more and more common for phenological research. The 

arrivals of novel technologies follow by the advance of e-science methods for dealing with 

large data sets are changing the scenario of plant ecology studies. 

 

 


