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We show that multitrace interactions can be consistently incorporated into an extended AdS conformal field
theory(CFT) prescription involving the inclusion of generalized boundary conditions and a modified Legendre
transform prescription. We find new and consistent results by considering a self-contained formulation which
relates the quantization of the bulk theory to the AdS/CFT correspondence and the perturbation at the boundary
by double-trace interactions. We show that there exist particular double-trace perturbations for which irregular
modes are allowed to propagate as well as the regular ones. We perform a detailed analysis of many different
possible situations, for both minimally and nonminimally coupled cases. In all situations, we make use of a
new constraint which is found by requiring consistency. In the particular nonminimally coupled case, the
natural extension of the Gibbons-Hawking surface term is generated.
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[. INTRODUCTION The purpose of this paper is to introduce a further devel-
opment of the proposal if6,7] by considering a generalized
In recent paper$l,2], interest in the role of multitrace AdS/CFT prescription in which multitrace interactions can
interactions in the AdS conformal field theot@FT) corre- be consistently incorporated. More specifically, we aim to
spondencé¢3] has been revived by introducing the proposalshow that the recent proposal[ih0] for a generalized AdS/
that to deform the boundary CFT by double-trace operator€FT prescription which makes use of generalized boundary
gives rise to a new perturbation expansion for string theoryconditions provides a natural frame for consistently describ-
which is based on a nonlocal worldsheet. ing multitrace operators in the AAS/CFT correspondence. For
In the AdS/CFT picture, multitrace operators in the the sake of simplicity, we will concentrate on the particular
boundary CFT are understood as multiparticle states in Ad$ase of double-trace interactions, for which we will relate the
(see, for exampld4,5]), and this raises the question of how coupling coefficient to specific boundary conditions on the
to place a boundary condition on a multiparticle state andscalar field, or equivalently, to the addition of specific bound-
perform explicit calculations in the context of the AdS/CFT ary terms to the usual bulk action. We will also interpret our
correspondence. results in terms of the energy of the theory in the bulk and
A solution to this problem came with the proposa[@7]  the constraints which arise when performing its quantization.
that multitrace operators can be incorporated by generalizingn addition, we will extend the formulation to the nonmini-
the usual Dirichlet prescription which is considered in themally coupled case.
case of single-trace operators. Such prescription rgg@ In considering the quantization of the scalar field theory
on AdS, it has been shown [11-13 that there exist par-
> , (1 ficular constraints on the mass and the coupling coefficient to
the metric for which two different asymptotic behaviors of
the field cause the energy to be conserved, positive, and fi-
nite. Such asymptotic behaviors are of the form

exp(— | aad do]) = < exp( f d9%O(X) po(X)

whered+ 1 is the dimension of the AdS bulk, arf, is the
boundary value of the bulk fieldd which couples to the

boundary CFT operatd®. PR~ e+, pl~er-, (4)
The perturbation of the boundary CFT by multitrace op-
erators can be written schematically as wheregR and¢' stand for “regular” and “irregular” modes,
€ is a measure of the distance to the boundary which is
IQFT[O]ZICFT[O]+f d9xwW[ O], (2)  considered to be small, and
d
whereW[ O] is an arbitrary function oD. In the particular A=5%v, )
case of a double-trace perturbation of the form
where
wiol= 202, @
2 12
, , _ v=1/—5+M2 (6)
where O has conformal dimensiod=d/2, it has been 4
shown in[6] that a generalized boundary condition gives rise
to the correct renormalization formula for the couplidg Here M is the effective mass of the scalar field, and in the
nonminimally coupled case it is given by
*Email address: pablo@fma.if.usp.br M?=m?+¢R, (7)
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whereR is the Ricci scalar of the metrigvhich is a negative _ ~ e .
constantand g is the coupling coefficient. In the minimally IAdS[anfO]ZIAdS[fo]_f d%fo(x)Fo(X), 9
coupled cas@ =0, the above equation reducesNb=m.
Since there exist two possible quantizations of the theoryyhich differs from the usual one ifL4] by the fact that it
on the bulk, we expect that there must exist two differentinyolves the whole on-shell action rather than only the lead-
boundary CFT's. However, it has been pointed oufid]  jng nonlocal term. It was shown ifL0] that the divergent
that the usual Dirichlet prescription E€l) can only account |ocal terms of the action contain information about the trans-
for one of them, namely the one with conformal dimensionformed generating functional, and then they have to be taken
A, which corresponds to regular modes propagating in theéhto account. In addition, the prescription above leaves no
bulk. In order to also account for the miSSing conformal di-Coefﬁcient to be fixed “by hand.” After performing the Leg-
mensionA _, the proposal i14] is that its generating func-  endre transformation, the transformed boundary CFT can be
tional is the Legendre transform of the one which gives risejetermined from the prescription
to the conformal dimension , . It was explicitly shown in
[14] that in fact this prescription gives rise to the missing - doB g o
conformal dimension _ . eXIi—'Ads[fo])E<eXl{J d™*O(x)fo(x)
Later, it was shown i10] that there were still some
problems which needed to be considered. One of them is thg was shown in[10] that this generalized Legendre trans-
fact that the usual AAS/CFT prescription is unable to reproform prescription removes all problems mentioned above re-
duce the constraints i@ and v for which the energy in  garding the usual prescription. In addition, the key result in
[11-13 is conserved, positive, and finite for irregular modes[10] has been to show that the generalized prescription Egs.
propagating in the bulk. The second problem is that the USUQB)_(]_O) gives rise to precisely the same constraintsgn
Legendre transform prescription leaves a coefficient to beind» for which irregular modes propagate in the bulk when
fixed “by hand.” And the last problem regarding the usual the quantization is performed by making use of the canonical
Legendre transform is that it does not work for some particuenergy rather than the metrical one.
lar values ofv. One of the purposes of this paper is to show that the
Then, the proposal ii10] was to consider a generalized introduction of double-trace perturbations at the boundary
formalism which involves modifications both in the bulk CFT can be understood in terms of the formulatior i0)].
quantization and in the AdS/CFT prescription. From the bulkThis would be a powerful result for many reasons. The first
point of view, it was suggested [10] that the natural energy one is that it would lead in a natural way to a generalized
to be considered in the AdS/CFT correspondence context isdS/CFT prescription in which multitrace interactions can
the “canonical” energy, which is constructed out of the No- pe consistently incorporated.
ether current corresponding to time translations, rather than The second reason is that it would enable us to relate the
the “metrical” one, which is constructed through the stress-coupling coefficient of the double-trace perturbation to spe-
energy tensor, as if11-13. The reason for considering the cific boundary conditions on the bulk field, or equivalently,
canonical energy is that, unlike the metrical one, it is sensito the addition of specific boundary terms to the action. In
tive to the addition of boundary terms to the action, as itparticular, we will show that there exist particular couplings
happens to the AdS/CFT prescription Ed). which require us to consider new boundary conditions that
Finally, from the AdS/CFT correspondence point of view, have not been analyzed ji0]. In this article, we will also
the proposal if10] was to consider a generalized AdS/CFT perform a detailed analysis of such new boundary conditions.
prescription of the forntsee alsd15] for previous resulls  |n all cases, we will find the explicit form of the coupling
coefficients and the surface terms.
The third reason is that to consider double-trace operators
' ® in terms of the formulation iN10] allows us to relate the
corresponding coupling coefficients to the constraintspon

where, unlike the usual prescription H@), we make use of andw for which irregular modes propagate in the bulk when

a generalized sourcé, which depends on the boundary the canonical energy is employed instead of the metrical one.
conditions® The formulation in[10] makes use of Dirichlet, In particular, we will show that, when such constraints are

Neumann, and mixed boundary conditions on the scalar fielgatisfied, the couplings of the double-trace perturbations di-
in both the minimally and nonminimally coupled cases. Inverge. This result is consistent with the statemerjbirthat,

addition, it involves a generalized Legendre transform pre@s the coupling grows, the system approaches the condition
scription of the form that is suitable for quantization to get a field of dimension

A _ . Itis also important to point out that, in this formulation,
the canonical energy in the bulk depends on the boundary

INote that the addition of boundary terms to the action change&nultitrace perturbations. o
the boundary conditions under which the action is stationary, and on And the last reason why it is useful to analyze double-
the other hand it also changes the generating functional for th&race operators in terms of the formulation[#0] is that it
boundary CFT. This is the reason why considering generalize@llows us to extend, in a natural way, the formulation of
boundary conditions as in E@8) involves more information than double-trace perturbations to the nonminimally coupled case.
making use of the usual prescription Ed). In particular, an interesting result that we will find is that the

o

exp(— agsl fol) = < exp( f d9%O(x)fo(X)
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introduction of a double-trace perturbation at the boundarnplete formulation requires the inclusion of new boundary
generates the natural extension of the Gibbons-Hawking suconditions which have not been consideredif]. We per-
face term[16], which is added to the Einstein-Hilbert action form a detailed analysis of such new boundary conditions.
in order to have a well-defined variational principle underFinally, Sec. IV contains our conclusions.
variations of the metric.

We also aim at connecting to the recently proposed for-  Il. DOUBLE-TRACE OPERATORS AND ADS /CFT
mulation in[17] for an improved correspondence formula

hich ai t bound field th lat f Throughout this paper, we work in the Euclidean repre-
which gives correct bounadary fie €ory correlalors 10rgq yation of the AdS ; in Poincarecoordinates, described

multitrace perturbations. In particular, the key observation Ny th : :
: . X o e half space,>0, x; e R with the metric
[6,17] is that the conformal operatdd is to be identified y Paceo 1<

with the Legendre transformed fieid,. In this paper, we 1
claim that, in order to map to the boundary all the informa- dSZ:; Z:O dxtdx*, (12)
tion contained in the bulk, we also need to identify, in the 0

transformed formulation, the conjugated operfbowith the  where we have fixed the radius of AgS equal to 1. We
field ¢o. In particular, we will show that to require consis- consider the space as foliated by a family of surfaggs e
tency imposes a precise constraint between the couplings dbbmeomorphic to the boundarya=0. The corresponding
the double-trace perturbations corresponding to the confomutward pointing unit normal vector is

mal operatorsD and O. Another difference with respect to
the formulation in[17] is that, in this work, we consider that

the coupling of the double-trace perturbation depends on th¢pe |imit 0 is to be taken only at the end of calculations
distance to the boundary. We will show that this is needed fo[1g).

consistency. In particular, a result that we will find is that  The ysual action for the massive scalar field reads
when the constraints for which irregular modes are allowed

to propagate in the bulk are satisfied, the couplings of the 1( gi1 , 5 o
double-trace perturbations corresponding to the oper&ors 'ozif A x99 9, Bd, b+ M?$2). (13

and O have different asymptotic behaviors. A final thing to

be mentioned is that, in this paper, we will consider the fullPerforming an infinitesimal variation of the scalar fiefd

functionals containing all local and nonlocal terms, unlike— ¢+ d¢, the action above transforms as

the formalism in[17], which considers only the leading non-

local term. We do so because the divergent local terms con- _ d

tain information about the transformed generating functional, olo= J dhand 9., (14

and then they have to be taken into accdur]. _ _ _ )
The paper is organized as follows. In Sec. Il, we revisitVhereh,, is the induced metric at the surfagg=e, ¢, is

the formulation in[17] and claim that, in order to map to the the value of the field axo= €, andd,¢ is the Lie derivative

boundary all the information contained in the bulk, we also©f ¢ alongn, . Itis given by

need to |dent|1y, n-w the trgnsformed f.ormulatlon,.tr.]e conju- Onb=1"d, . (15)

gated operato® with the field ¢,. We find the explicit form

of the generating functionals for the boundary CFT's inNote that, in Eq(14), the absence of a bulk contribution is

terms of the couplings of the double-trace perturbations cordue to the equation of motion

responding to the operato@andO. We also show that the 5 5

requirement for consistency imposes a constraint between Vip—M“¢=0. (16)

such couplings. In Sec. Ill, we analyze the precise way i

which the introduction of double-trace perturbations change

the boundary conditions on the field by adding surface term

to the action, and extend the formulation to the nonmini-

mally coupled case. In this situation, we will show that the 56.=0 17)

introduction of double-trace perturbations generates the natu- ¢

ral extension of the Gibbons-Hawking term. We also showntegrating by parts and making use of the equation of mo-

how double-trace perturbations can be understood in termgon the action Eq(13) can be written as the following
of the generalized AdS/CFT prescription and the new quanpyre-surface term:

tization in the bulk as developed iri0]. In addition, an

d

n,=(—¢ 10). (12)

he variation Eq(14) shows that the actioh, is stationary
or a Dirichlet boundary condition which fixes the value of
the scalar fieldp at xg= €, namely

interesting result that we will find is that irregular modes are 10

allowed to propagate precisely when the asymptotic behav- |0:§f d% Ve dne. . (18)
iors of the couplings of the double-trace perturbations corre-

sponding to the operatof3 andO are different. In this situ- The next step involves solving the equation of motion and

ation, the coupling corresponding to the operator ofwriting d,¢. in terms of the boundary daia, . This proce-
conformal dimensiom . diverges. We also show that a com- dure has been carried out 8,19, where the final result
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was expanded in powers of the distance to the boundary in B

order to select the leading nonlocal term, which is under- W[O]= 502, (23
stood as the generating functional for the boundary C8T

However, the divergent local terms of the action contain in-

formation about the Legendre transformed generating funcwhere 3 is the coupling coefficient. Following6,17], the
tional [10], and then we need to take them into account. Thisext step is to identifyfO with f,. This would give

means that, instead of the leading nonlocal term, we will

make use of the full action containing all local and nonlocal ,6’

terms. It reads W[fo]— 2 (24)

1 - >
lolfd=—5 f dxdy Vhf.00f ()

However, it is important to note that the limit—0 is to be
taken only at the very end of calculatiof8].2 This means

ddk . . . .
f de*'k'(X*y)F(ke), (19 that, instead of the above equation, we must consider
(2m)
oy : ,3(6)~2
where f (x) is the source which couples to the boundary wT.]= (25)

conformal operator through the prescription Ed), X
—(yl d I
=0 X9, k=[k| and where we have replaceid with T,. Note that there is still
K, 1(Ke) another important difference between E@s), (25), namely
F(ke)= §+ v— kem. (200  that we have also introduced a dependence of the cougling
v on the distance to the boundagy We will show that this is

needed for consistency.

From the above considerations, we write the perturbed
functional as

HereK, is the modified Bessel function.

The action Eq.(19) is only one of the two functionals
which contain the information about the boundary CFT's.
The another one is obtained by performing the Legendre
transformation Eq.9), which gives rise to the following

transformed functional containing all local and nonlocal I—f ddxddy\/—f i e ik (x=y)
terms[10] (2m)
1 x{l( ik ))“f’(”ﬁ (¥)+ T Y)
TrF 1= = dy, 4d \F (v 5 €) |TX)T LY X)TeY) s
FoT.d= 5 | a*xaty (REGITL) 2| Flke)
4 (26)
xf Tkt —— (21)
(2m)d F(ke) which for 8=0 reduces to Eq22). The above expression is

B to be contrasted with the one jia7]. There are two impor-
Both functionalsl; and |, are needed in order to map to the tant differences, namely thgt depends ore and that~(ke)
boundary all the information contained in the bulk. Each onecontains all local and nonlocal terms, rather than only the

of the sources, andf, will couple, after performing the I€ading nonlocal term.

limit e—0 in a proper way and through the prescriptions Settingdl/df =0, we get
Egs.(8) and(10), to the corresponding boundary conformal

operator. F(ke)

The important result in6,17] is that the transformed f=—r———f_, (27
~ R 1+ B(ke)F(ke)
sourcef ; can be identified with the conformal operafrIn

order to do this, we transform back the functiohgfif.] and . . o .
find S W unctiohgif ] and introducing this into Eq26) we find

lo= f dxd%y \/_f ——e g ik(x=y) 2This acquires a new importance in the light of the resuftli@]
(2m) that the divergent local terms of the action contain information

1 1 about the transformed generating functional. To take the limit
—0 at this early stage would imply losing information.

12 F(ke) TO0T ) +10Tly) | 22 3The formulation in[17] makes use, instead d¢%(ke), of the
conformal Green function G(k)=—{[T'(1—v)]/[T(1+»)]}

Now we will analyze the way in which the results above arex(k/2)2*, which involves a procedure in which the Legendre trans-

affected by perturbing at the boundary with a double-trac&ormation is performed after having selected the leading nonlocal

operator of the form term, rather than following the opposite way aq 19].
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1l oy .. and introducing this into E(32) we find
I[fd=- zf dxdyVhf(x)f(y)

~— 1 o~
I[f. :—J d%d%\hf (x)f,
o F(ke) [fd=3 yVhT(0Fy)
Xf — ek~ - ___ (29
(2m)8 1+ B(ke)F(ke) d9k o 1
Xf e kb~ (39
Comparison with Eq(19) shows that the double-trace per- (2m)¢ F(ke)—B(ke)

turbation Eq.(23) has introduced the replacement . . . .
a3 P There is still one last thing to be considered in order to have

a complete and consistent formulation, and it is to require the
expression above to be actually the Legendre transform of
Eq. (28). As anticipated, this will impose a precise constraint

In the next section, we will show that this can be understoodPetweeng and 8. By Legendre transforming E¢28), we
as a modification of the boundary conditions on the field, orfind
equivalently, as the addition of a surface term to the action
Eqg. (13). We will also show how to extend the formulation to
the case of a scalar field nonminimally coupled to the metric.

It has been stated ifl7] that the above formulation ap-

F(ke)

F(ke)— 1+ B(ke)F(ke)

(29

f1=% fddxddyf

)T oy)

plies to both regular and irregular modes propagating in the Xj d’k e*'k oy LT Bke)F (ke) (35

bulk. However, the formulation remains incomplete, because (21)¢ F(ke)

so far we have only considered a perturbation in the confor-

mal operatorO [see Eq.(23)]. We still need to consider a From Egs.(34),(35) we find the constraint

perturbation in the conjugated operaf@r and we will show 5

that the requirement for consistency imposes a precise con- B(ke)= Bke)F (ke) (36)
1+ B(ke)F(ke)’

straint between both perturbations.
Note that, in the transformed situation, we identify

with the conjugated operat®. In order to do this, we per-
form a Legendre transform in E¢L9) and get

f dd%y \/_f

SF(ke)f () y)+T () Fy)].

e ik-(X-y)

2)d

(30

We introduce the following double-trace perturbationQn

W01=50% (31)

and, identifyingf, with the conjugated operat@, we write
the perturbed functional as

e ik-(x-y)

f ddxddy\/—f

(27 )d
1 - e L
X1 5[F(ke)=Bke) [T X)Tly) +TOTy) -

(32

Note that, as we have done with the couplidg we have

introduced a dependence Bfon e. Settingdl/dof =0, we
get

f.=— ;ﬁff, (33
F(ke)— B(ke)

which is required for consistency. Note that both functionals
Eqgs.(28),(35) are needed in order to map to the boundary all
the information contained in the bulk. The corresponding
boundary CFT'’s can be obtained through the prescriptions
Egs.(8), (10). We emphasize that the functionals E(8),

(35) contain all local and nonlocal terms, and that this is
needed in order to map to the boundary the constraints that
the quantization imposes in the byik0]. This topic will be
discussed in the following section.

So far, we have developed a generic formulation in which
the double-trace perturbations at the boundary of A4S
can be consistently incorporated into an extended AdS/CFT
prescription. We still need to understand the precise way in
which such perturbations change the boundary conditions on
the field by adding surface terms to the action E), and
to extend the formalism to the nonminimally coupled case.
This is left for the following section, where we will connect
the formulation developed so far to the generalized AdS/CFT
prescription in[10], which analyzes the role of boundary
conditions in the AdS/CFT correspondence. We will also re-
late the previous formalism to the energy of the theory on the
bulk, and to the existence of constraints for which the irregu-
lar modes are allowed to propagate. We will find the explicit
expressions of the couplings, and show that they exhibit very
interesting behaviors when irregular modes are also allowed
to propagate.

I1l. GENERALIZED BOUNDARY CONDITIONS

In this section, we will show that the double-trace pertur-
bations at the boundary of A¢$S; can be understood as the
introduction of Dirichlet, Neumann, and mixed boundary
conditions on the scalar field. We will consider both mini-
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mally and nonminimally coupled cases. We begin by concensame boundary conformal dimension, namgly. However,

trating on the minimally coupled case. in the particular situation in which both constraifi€]
A. The minimally coupled case 1
. . : A= (43
In this case, we sep=0 in Eq. (7), thus gettingw 2A_

= /(d%/4)+mZ. It is natural to begin by analyzing the sim-
plest case in which the coupling does not depend on the and
distance to the boundary. For this purpose, we set

B(ke)=—2X, (37)

where\ is a real coefficient. Then, from E@36) we also
find

v<1 (44)

are satisfied, the divergent local terms of both functionals
Egs.(39),(40) cancel out. This fact encodes the information
that the Legendre transform interpolates between different
2\F2(ke) conformal dimensions, namely, andA _ . In this situation,
- (38)  the addition of counterterms is not required. From the bulk
1-2\F(ke) . ) Lo .
point of view, in this case both regular and irregular modes

Note, then, that consistency of the formulation requires thafan Propagate, because the canonical energy is conserved,
at least one of the couplings depends on the distance to trRositive, and finite for both of them. When E@3) is satis-
boundary, as anticipated in the previous section. We will latefied, but Eq. (44) is not, the conformal dimensiom
show that the particular cases for which irregular modes ar&eaches the unitarity bound - 2)/2, and becomes indepen-
also allowed to propagate in the bulk correspond to the situdent of the mass. The unitarity bound is also reachedrfor
ations in which@ and have different asymptotic behaviors. =0. For_ details, sef10]. . . . .

Under the identification Eq(37), the functionals Egs. We will now show that there exists an mterestmg relation
(28),(35) read between the values and asymptotic behavior8 ahd 3 and

the phenomenon of the propagation of irregular modes in the

B(ke)=

10 4 - - bulk. Let us first consider the situation in which E¢3) is
I[fe]=— Ef dxdyvhf()f(y) not satisfied. For simplicity, we concentrate on the case of
not an integer. By expanding the Bessel functions in Eq.
d% - - - F(ke) (38) in powers ofe, we find
J —e kY~ (39
(2m)d 1-2\F(ke) oy A2
B(ke)= oA T (45)

~ 1 e~ -

If1=5 f dxdy VRT () To(y)
where the dots stand for higher-order termg.ifComparison

XJ d% - -_};)1—2)\F(ke) with Eq. (37) shows that in this case, where only regular

—ik-(x ~
(zw)de F(ke) (40 modes are allowed to propagate in the bytkand 8 have

the same asymptotic behavior, namely, both of them differ
The key result is that the above functionals are precisely théfom a constant only on terms which vanish as we approach

ones found in[10] when considering a boundary condition the boundary. We also note from Eg5) that 3 diverges as

which fixes at the border the field we get closer to the critical value E@3) for which irregular
modes are also allowed to propagate. Note that this result is

¢+ 2Ndn¢. (41 consistent with the statement %] that, as the coupling

Then, for the particular choice E37), the double-trace grows, the system approaches the condition that is suitable
! ! for quantization to get a field of dimensidn_ .

perturbation acts by turning the usual Dirichlet boundary . . N . .
condition into a mixed on&This is also equivalent to adding _. we fmglly consider the situation where E@3) is safis-
fied and irregular modes are allowed to propagate as well.

to the action Eq(13) a boundary term of the forfi} We expect from the above results that something special will
§ ) happen in this particular situation. We will show that, in fact,
' =I0+)\J d X\/ﬁ(‘?nﬁbe) : (42) in this case8 and B have different asymptotic behaviors, and
the last one diverges as we approach the boundary. We have
Note that, in the particular case=0, we recover the usual to consider separately the cases where(E4). is, or is not,
Dirichlet boundary condition. One important point is that for also satisfied. Expanding in E8) we find, for v<<1,
general\ both functionals Eqs(39),(40) correspond to the

5The case ofv integer is analogous. The only difference is that
“4In [10], this particular boundary condition was called the “type there arise additional logarithmic terms which must be taken into
11" mixed boundary condition. account(see, for exampld,15]).
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- I'(v) which vanishes fob¢_=0. Since we are still considering a
B(ke)=—22""1A% m(kf)_b+ -+, (46)  Dirichlet boundary condition, it may seem that in this situa-
tion the double-trace perturbation causes no effect. However,
whereas forr>1 we get this is not the case, because the importance of the surface
term in Eq.(52) is that it allows for irregular modes to propa-
B(ke)=—2(v—1)A% (ke) 2+ --. (47)  gate in the bulk for particular values &f This can be veri-

fied by making use of a formalism which is analogous to the
In the above equations, the dots stand for higher-order termsne developed if10] for other possible boundary condi-
in e. As anticipated, we find that, in the particular situationtions. In particular, it can be seen that for
where irregular modes are also allowed to propagate in the

bulk, the couplings3 and 3 have different asymptotic be- A
haviors, and the last one, which corresponds to the operator A= o (54
of conformal dimensiom\, [10], diverges as we approach
the boundary. ) ) N .

So far, we have considered the situation whergoes not the canonical energy is conserved, positive, and finite for
depend on the distance to the boundary. As the next step, it Roth regular and irregular modes propagating in the bulk,
natural to analyze the case wheedepends ore, and B provided that the constraint E¢i4) is satisfied as wefi.We

does o I order oo e, we conscer, nsead o, | STCISS1S UL Uhen bl consans g6 00 e s
the following starting point: ' 9 P

conformal dimension& , andA_, due to the cancellation
E(ke) ——2\ (48) of the divergent local terms of the functionals EG0),(51).
' This statement can be verified by following a procedure

where, as before is a real coefficient. From Eq36), we  analogous to the one {i10]. When Eq.(54) is satisfied, but

get Eq. (44) is not, the conformal dimensioA_ reaches the
unitarity bound ¢1—2)/2.
2\ 1 Now we analyze the existing relation between the values
B(ke)= (49)

a F(ke) F(ke)+2\~ and asymptotic behaviors gfand3 and the phenomenon of
the propagation of irregular modes. We have seen that in the

From the above equation, we write the functionals EQSpreviously analyzed mixed boundary condition, the coupling

(28),(35) as B diverges when the critical value E@i3) is reached. Since
in the current Dirichlet situation the conformal dimension

l >, . ~
I[fel=— Ef ddUyVhf (x)f (y) A _ corresponds to the conformal opera@y rather than to
O,” then in this situation we expect that it will b, rather
ddk i Gy than B, the coupling which diverges as we approach the
(27m)¢ e [F(ke)+2)x],  (50) critical value Eq.(54). We now verify this statement. Again,

we concentrate on the case ofnot an integer. Let us first
consider the situation when E(h4) is not satisfied. Expand-

T[?e]:%J ddy Vh ()T (y) ing in € in Eq. (49), we find
d iy L 2\
7Ik(X7 ) = .o ..
Xf 2 Fkeran &Y Bke) == 3R san " (55

The functionals above have not been considered1id.

However, by following an analogous procedure, it can be °Since this particular case has not been analyz¢dGh we sum-
verified that they correspond to considering a Dirichletmarize here the main results. Making use of global coordinates
boundary condition and adding to the usual action®& a  (r,p,Q) defined as if10] (recall here that is the time coordinate,

boundary term of the form p is the radial coordinate, and are the angular coordinatewe
find from the action Eq(52) that the canonical energy is of the

— _rqd T 2 ; ion i
IZIO_)‘J ddx\/ﬁzﬁi. (52) form E=—-/d x\/§[®T+AVM(n“¢ )1, yvhere the integration is

carried out over the spatial coordinates, a@y,,=d, ¢d,¢

o _ o —30,,[9%%d,$3 0+ mPH?]. It can be verified that, for regular
The fact that the above action is stationary under a Dirichlefyodes propagating in the bulk, the canonical energy is conserved,
boundary condition can be verified by noting that, under aositive, and finite for any values af and v, whereas for irregular
transformationg— ¢+ &¢, its variation is given by the fol- modes propagating in the bulk the canonical energy is conserved,

lowing surface term: positive, and finite only when the constraints E¢¢4),(54) are
satisfied.
TThi ; )
_ d _ This result can be found by computing the boundary CFT’s
ol f d X\/ﬁ(ﬁ”¢f 2hpe) 6, (53 through the prescription Eq€3),(10).

024027-7



PABLO MINCES PHYSICAL REVIEW D68, 024027 (2003

where the dots stand for higher-order termseinWe note  The key result is that, as can be verified, the above function-
from Eq. (48) that, as in the previous mixed caggand g  als correspond to adding to the action Ef) the following
have the same asymptotic behavior when only regular modes/rface terms:

propagate in the bulk. Note also that, as expegtediverges

as we approach the critical value Eg4) for which irregular |:|O_>\f ddX\/Hd’i—j di%\he .., (62)
modes are allowed to propagate as well.

Now we analyze the case when the constraint(&4) is which give rise to an action which is stationary under a

satisfied. The calculations are analogous to the ones pelS'oundary condition which fixes at the border the field

formed in the previous mixed case, and the results are as

follows. Forv<<1 we get Inp+2\ . (63
o I'(v) o This means that the double-trace perturbation (B8) turns
Blke)=2 IF(l—v)(ke) T (58)  the usual Dirichlet boundary condition into a mixed one
which is different from the previously analyzed mixed
whereas forv>1 we find boundary conditioffsee Eq.(41)]. This clarifies the reason

why we chose the specific coupling E¢8). Different
N choices may not make sense in terms of a problem of bound-
B(ke)=4(v—1) A—(ke)_2+ R (57)  ary conditions on the scalar field. Note that, in the particular
- case\ =0, this new mixed boundary condition reduces to a

Then, as in the previous mixed case, in the situation whefléumann one. Even when this boundary condition has not
the irregular modes are also allowed to propagate the cod2€en analyzed ifL0], the procedure is analogous, and it can
plings have different asymptotic behaviors, as noticed b)pe verified that in th!s situation the irregular modes are al-
comparing Eqs(56),(57) to Eq. (48). We also note that in lowed to propagate in the bulk as well as the regular ones
this case the coupling, which corresponds to the conformal ©nly when the constraifit
operator of dimensiom\ ,, diverges as we approach the A
boundary. A= —
So far, we have considered the situations in which one of 2
the couplings does not depend en Since the consistency
relation Eq.(36) makes it impossible to consider a case
where both couplings are simultaneously independent of th

(64)

is satisfied together with E¢44). It can be shown that in this
gituation the divergent local terms of the functionals Egs.

distance to the boundary, there is only one case left to b 60).(61) cancel out and, correspondingly, the Legendre

considered, namely the situation in which both couplings de-sr.i?gorr]rgm'gerpogzz betv\\//veﬁ:n déffe(reeg)t _(S:osnaf?g?j:é dblmten-
pend one. In order to analyze this case, we set 1ons, W " q: ' Istied, bu

Eqg. (44) is not, the conformal dimensioA _ reaches the
1+ E(ke)E(ke)— 2\ unitarity b(_)und (j—2)/2. _
B(ke)=— ( EI):[ k( ©) ] , (58 Regarding the relation between the values and asymptotic
(ke) behaviors of3 and 8 and the phenomenon of the propaga-
tion of irregular modes, we expect to find results which are
analogous to the ones found in the previous cases. In particu-
_ 1+ F(ke)[F(ke)—2\] lar, we expect that in this situation the coupliBg which is
(ke)= (59 the one that corresponds to the conformal operator of dimen-
F(kf) - 2)\ . 10 . ..
sion A, ,~ should diverge as we approach the critical value

and from Eq.(36) we also find

The reason why we choose the particular expressions above
will be clarified later. Inserting Eq58) into Egs.(28),(35),

we get 8Note that, under a transformatiap— ¢+ 5¢, the variation of

the action Eq. (62 is given by the surface termsl=
1 — Jd%he_5(d,p.+2N,), which vanishes under a boundary
I[fe]:_f d¥xd%hf (x)f(y) condition which fixes at the border the field E§3).
2 9Since this particular case has not been analyzdddh we give
4% here the main results. The canonical energy corresponding to the
y f R N (60)  action Eq. (62 is given by E=—fd%\g[OI+\V,(n"¢?)
(277)9 F(ke)—2\’ +3(V2¢p2—979,4%)], where we consider global coordinates
(T,p,ﬁ) defined as if10], the integration is carried out over the
o 1 R spatial  coordinates, and®,,=d,¢d,d— %gw[g“ﬂaa¢aﬁ¢
I[f]=— Ef dixddyvht (x)F(y) +m2¢?]. It can be shown that the canonical energy is conserved,
positive, and finite for irregular modes propagating in the bulk only

d9k o when both constraints Eq§44),(64) are satisfied.
Xj e_ik‘(x_y)[F(ke)—Z)\]. (62) This result can be found by computing the boundary CFT’s
(277-)d through the prescription Eq$8),(10).
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Eq. (64). Now we verify this statement for the casemwhot  where ¢ has been introduced in E¢7). Recall here that,
an integer. Since calculations are analogous to the ones pehroughout this section, we will consider v

formed in the previous cases, we just present the main re=/(d%/4)+m?+ oR. From Eq.(36), we also find
sults. Let us first consider that E@4) is not satisfied. Then, 20d 1

expanding in Eqs(58),(59), we find =
p g in Eqs( i( ) B(ke) Fke) F(ke)—20d" (72
Blke)=——[1+A_(A_=2M)]+- -, (65 Inserting the above equation into E488),(35), we get
1
~ 1 _ . s
Blke)=g—5[1+A (A —20)]+---, (60 l[fe]——gf d¥dyVhf (x)f(y)
. . . d
where, as in the previous cases, the dots stand for higher- J d’k —ik-(X—Y)
~ x| ——e F(ke)—2pd], (73
order terms ine. As anticipated, we note thg and 3 have (2m)¢ [F(ke)—2ed], (79

the same asymptotic behavior, and tifatdiverges as we 1
approach the critical value E¢64). T[?E]=—J dixddy Vht.(x)T(y)

Finally, we consider the situation in which the constraint 2
Eq. (64) is satisfied. Fow<1 we find

—e —.
B(ks):_Ai+...’ (67) (2)¢ F(ke)—2¢d
) T(v) The above functionals are precisely the same as the ones
B(ke)= _ZZV*l—V(kE)fb found in [10] when considering, in the nonminimally
I'(l-v) coupled case, a Dirichlet boundary condition which fixes the
g (69) field ¢ at the border. We note frofil0] that the above func-
’ tionals correspond to adding to the usual action @48) a
Whereas forr>1 we get boundary term Of the form
1
Blke)=— 1+, (69 I=Io—efddx¢ﬁicf¢§, (75
B(ke)=—2(v—1)(ke) 2+ ---. whereC is the trace of the extrinsic curvature at the bound-

(70)  ary. The above surface term is just the natural extension of
the usual Gibbons-Hawking terfii6]. The importance of
Then, as expected, the couplings have different asymptotithis surface term is that, even when we are considering a
behaviors, angB diverges as we approach the boundary.  Dirichlet boundary condition, it allows irregular modes to
propagate in the bulk for particular values @f[10]. We
B. The nonminimally coupled case have just shown that such a surface term can be generated by
i i perturbing the conformal field theory with a double-trace op-
In the previous subsection, we have shown, for the parg, a6 Note that in the particular cage=0, corresponding

ticular minimally coupled case, that the perturbation of the, ¢e minimally coupled case, we recover the usual Dirichlet
conformal field theory by a double-trace operator can be ””boundary condition. We also point out that for genegal

d.e.rstood as the mtrqducuon of a gene_rallzed boundary corso, fynctionals Eqs(73),(74) give rise to the same confor-
dition on the scalar field. Now we consider the more gener

. f inimall led lar field. In thi al dimensionA , , with one particular exception, namely
situation of a honminimally coupled scaiar Tield. n this caseypq situation in which both constraints Ed4) and[10]
we have a nonvanishing coupling coefficiemtin Eq. (7).

But, as pointed out if10], the effect of the nonminimal d-1 / 4m \?
coupling does not limit itself to a redefinition of the effective e=3q 1xy1+ d—1
mass of the theory. In this subsection we will show, in par-

ticular, that the introduction of a double-trace perturbation atre satisfied! In this case, the divergent local terms of both
the boundary generates the natural extension of the Gibbonfunctionals Eqs(73),(74) cancel out, making the addition of
Hawking surface terni16], which is added to the Einstein- counterterms unnecessary, and the Legendre transform inter-
Hilbert action in order to have a well-defined variational

principle under variations of the metric. As in the minimally

coupled case, we will consider different boundary conditions it is interesting to note that, in the particular case:0, one of

on the scalar field and perform a detailed analysis of eackhe solutions in Eq(76) vanishes, whereas the another one reduces

one of them. to the conformal value for which the “improved” stress-energy ten-
We begin by considering the simplest case where the cousor of the scalar field becomes traceless. This means that, in par-

pling 'B does not depend on the distance to the boundary, ticular, Weyl-invariant theories in .the pulk allow _for irrggula_r
modes to propagate as well, and give rise to functionals in which

B(ke)=20d, (71)  the divergent local terms cancel out.

(76)
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polates between different conformal dimensions, namely 1 .
andA_ . From the bulk point of view, both regular and ir- |[fe]=§f ddyvh (x)f (y)
regular modes can propagate, because the canonical energy
is conserved, positive, and finite for both of them. When Eq. dik - - . 1
(76) is satisfied but Eq44) is not, the conformal dimension J de_""(’<_y)|:|(—+2d, (82)
A _ reaches the unitarity boundi - 2)/2. For details, see (2m) (ke)+2¢
[10].
Now we cc.mcentra.te on the Lelanon between the values TF.]=— lf dixddy Jif.(X)F (¥)
and asymptotic behaviors gfand 8 and the phenomenon of 2
the propagation of irregular modes in the bulk. Note that, in di
this case, the con~formal dimensidn_ corresponds to the XJ e K OCN[F(ke)+20d]. (83
conformal operato® [10], and we expecB to diverge as we (2m)°

approach any of the critical values E(.6). We begin by ) ) .
considering the situation in which E76) is not an satisfied. The key result is that the above functionals are precisely the

Expanding forv not integer in Eq(72), we find same as the ones consideredllifi] when analyzing a bound-
ary condition which fixes at the boundary the field
20d
= = ... Inp+20K . (84)

This means that, for the particular choice E&O), the
where the dots stand for higher-order terms:ifFrom Eqs.  double-trace perturbation acts by turning the Dirichlet

(72),(77), we find thatg andf% have the same asymptotic boundary condition into a mixed one, which is different from
behavior, as expected. Also as expected, we note from thif'€ ones considered in the minimally coupled cesee Eqs.

above equation tha8 diverges as we approach any of the (41),(63)].1% It is also interesting to note from E¢B4) that,
critical values Eq(76).12 in the particular minimally coupled case € 0), this mixed

We still need to consider the case when E&f) is satis- boundary condition reduces to a Neumann one. We also
fied. This is done as in the previous cases. Farl, we get point out that setting this mixed boundary condition is
’ equivalent to adding to the usual action Eg3) the follow-

od TI'(v) ing boundary term$10]:
— _92v =
B(ke)=—27"1— T1=y)

(ke) 2"+, (79
=lo-¢ [ a\iK g2 [ axihgan. @9

whereas forv>1 we find
where the first surface term is the same as the one that arises
od in the Dirichlet situation Eq(75), whereas the second sur-
B(ke)= —4(v—1)A—(ke)*2+ cee (79 face term is new. We emphasize that the new surface term
- does not spoil the property of having a well-defined varia-
. tional principle under variations of the metric. We also point
As expected, if irregular modes are also allowed to propag i that for generab both functionals Eqs(82),(83) give
gate, then the couplings have different asymptotic behaviorgise tg the same conformal dimensian , with one particu-
as noticed from Eqs(71),(78), and(79). In this situation,8  |5r exception, namely the situation in which both constraints

diverges as we approach the boundary. Eq. (44) and[10]
Finally, we consider a situation in which both couplings
and B depend on the distance to the boundary. This is done 3d+1 am \?2
by setting 0=~ —3q |1*V1tizg1 (86)
Ke)— — 1+F(ke)[F(ke)+2¢d] I satisfied. In analogy to the former cases, in this situation
Blke)= F(ke) ' the divergent local terms of the functionals E¢82),(83)

cancel out, and this fact encodes the information that the
Legendre transform interpolates between different conformal
dimensionsA , andA _ . In this case, there is no need to add
any counterterms. From the bulk point of view, both regular
1+F(k€)[F(kE)+29d]. (82) and irregular modes are allowed to propagate, because the
F(ke)+2¢d canonical energy is conserved, positive, and finite for both of
them. In addition, when E(q86) is satisfied but Eq(44) is

From Eq.(36), we also get

Blke)=

Introducing Eq.(80) into Egs.(28),(35), we find

B3In [10], this particular boundary condition was called the “type
2Recall here that _ depends orp. I” mixed boundary condition.
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not, the conformal dimensioh _ reaches the unitarity bound introduce a double-trace perturbation at the border is equiva-
(d—2)/2 and becomes independent of the effective masdent to adding a surface term to the usual action ).

For details, se¢10].

This gives rise to different kinds of Dirichlet, Neumann, and

We still need to analyze the relation between the valuesnixed boundary conditions on the scalar field. In all cases,

and asymptotic behaviors gfand and the phenomenon of we have performed the explicit calculation®fandB and of
the propagation of irregular modes. In this particular casethe corresponding surface terms. We have found that there

we expectB to diverge as we approach any of the critical exist particular values of and B which allow for irregular

values Eq(86). This is due to the fact tha& corresponds to
the conformal operator of dimensiak, [10]. Let us first
consider the situation where E(B6) is not satisfied. Ex-
panding in Eqs(80),(81), we get

B(kE):—i[l+A_(A_+2Qd)]+...' (87)

~ 1
B(kf):m[l+A_(A_+2Qd)]+ -
(88

modes to propagate as well. We have computed the explicit
expressions of such special couplings. We have shown that,
as we get closer to the situation in which irregular modes are
allowed to propagate, the coupling corresponding to the op-
erator of conformal dimensiod , diverges. This result is
consistent with the statement i8] that, as the coupling
grows, the system approaches the condition that is suitable
for quantization to get a field of dimensidn_ . In addition,

we have shown that, when the constraints for which irregular
modes propagate are satisfied, and B8 have different
asymptotic behaviors, and the coupling corresponding to the
operator of conformal dimensioA, diverges as we ap-

As expected8 and B have the same asymptotic behavior, proach the boundary.
and 3 diverges as we approach any of the critical values Eq. We have also shown that there exist particular valugs of

(86).14
Finally, we consider the situation in which E(B6) is
satisfied. Fow<1, we get

B(ke)=—£+---, (89)
y VR N N
,8(ke)=—22 lm(kf) vy I (90
whereas forr>1 we have
1
B(ke):—I+~-~, (91
B(ke)=—2(v—1)(ke) 2+---. (92

As expectedB and B have different asymptotic behaviors,

and B diverges as we approach the boundary.

IV. CONCLUSIONS

and B which require the introduction of new boundary con-
ditions which have not been considered[i0]. We have
included these new boundary conditions in our analysis.

In the particular nonminimally coupled case, we have also
shown that the introduction of a double-trace perturbation at
the boundary generates the natural extension of the Gibbons-
Hawking surface term.

In general, we have shown that the introduction of
double-trace perturbations can be understood in terms of the
formulation in[10]. In particular, this enables us to relate the
double-trace perturbations to the quantization which makes
use of the canonical energy instead of the metrical one. Such
quantization appears to be the natural one to be considered in
the AAS/CFT context.

Throughout this article, we have only considered the sim-
plest nontrivial case of multitrace perturbations, namely that
of double-trace ones. It would be interesting to extend this
formalism to the case of higher power trace perturbations. It
should be noted that in such a case nonlinear boundary con-
ditions would arise which would require us to consider a
perturbative approach. More complex calculations would be
involved to first extend the formulation {iL0] and then to

In this work, we have introduced a generalized AdS/CFTemploy it to describe the more complicated multitrace per-

prescription, which is suggested by the resultd 67,10,

turbations. We also would like to be able to reproduce the

and can consistently incorporate double-trace perturbation@enstraints for which irregular modes propagate in the bulk
at the boundary CFT. This leads to a formalism in which weand the couplings diverge by performing calculations exclu-
can perform explicit calculations. We have analyzed bottsively on the boundary CFT side. It also would be interesting
minimally and nonminimally coupled cases, and obtained© understand the meaning of the generalized boundary con-

new results for both of them.

ditions in the string theory context. This requires a more

We have shown that the consistency of the formalism im-detailed study.

poses a precise relation between the couplifigsd 3 [see

Eq. (36)], and requires that at least one of them depends on
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