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Multitrace operators and the generalized AdSÕCFT prescription

Pablo Minces*
Instituto de Fı´sica Teo´rica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900, Sa˜o Paulo, SP, Brazil

~Received 2 December 2002; published 29 July 2003!

We show that multitrace interactions can be consistently incorporated into an extended AdS conformal field
theory~CFT! prescription involving the inclusion of generalized boundary conditions and a modified Legendre
transform prescription. We find new and consistent results by considering a self-contained formulation which
relates the quantization of the bulk theory to the AdS/CFT correspondence and the perturbation at the boundary
by double-trace interactions. We show that there exist particular double-trace perturbations for which irregular
modes are allowed to propagate as well as the regular ones. We perform a detailed analysis of many different
possible situations, for both minimally and nonminimally coupled cases. In all situations, we make use of a
new constraint which is found by requiring consistency. In the particular nonminimally coupled case, the
natural extension of the Gibbons-Hawking surface term is generated.
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I. INTRODUCTION

In recent papers@1,2#, interest in the role of multitrace
interactions in the AdS conformal field theory~CFT! corre-
spondence@3# has been revived by introducing the propos
that to deform the boundary CFT by double-trace opera
gives rise to a new perturbation expansion for string the
which is based on a nonlocal worldsheet.

In the AdS/CFT picture, multitrace operators in th
boundary CFT are understood as multiparticle states in A
~see, for example,@4,5#!, and this raises the question of ho
to place a boundary condition on a multiparticle state a
perform explicit calculations in the context of the AdS/CF
correspondence.

A solution to this problem came with the proposal in@6,7#
that multitrace operators can be incorporated by generali
the usual Dirichlet prescription which is considered in t
case of single-trace operators. Such prescription reads@8,9#

exp~2I AdS@f0# ![ K expS E ddxO~xW !f0~xW ! D L , ~1!

whered11 is the dimension of the AdS bulk, andf0 is the
boundary value of the bulk fieldf which couples to the
boundary CFT operatorO.

The perturbation of the boundary CFT by multitrace o
erators can be written schematically as

I QFT@O#5I CFT@O#1E ddxW@O#, ~2!

whereW@O# is an arbitrary function ofO. In the particular
case of a double-trace perturbation of the form

W@O#5
b

2
O2, ~3!

where O has conformal dimensionD5d/2, it has been
shown in@6# that a generalized boundary condition gives r
to the correct renormalization formula for the couplingb.
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The purpose of this paper is to introduce a further dev
opment of the proposal in@6,7# by considering a generalize
AdS/CFT prescription in which multitrace interactions c
be consistently incorporated. More specifically, we aim
show that the recent proposal in@10# for a generalized AdS/
CFT prescription which makes use of generalized bound
conditions provides a natural frame for consistently desc
ing multitrace operators in the AdS/CFT correspondence.
the sake of simplicity, we will concentrate on the particu
case of double-trace interactions, for which we will relate t
coupling coefficient to specific boundary conditions on t
scalar field, or equivalently, to the addition of specific boun
ary terms to the usual bulk action. We will also interpret o
results in terms of the energy of the theory in the bulk a
the constraints which arise when performing its quantizati
In addition, we will extend the formulation to the nonmin
mally coupled case.

In considering the quantization of the scalar field theo
on AdS, it has been shown in@11–13# that there exist par-
ticular constraints on the mass and the coupling coefficien
the metric for which two different asymptotic behaviors
the field cause the energy to be conserved, positive, an
nite. Such asymptotic behaviors are of the form

fR;eD1, f I;eD2, ~4!

wherefR andf I stand for ‘‘regular’’ and ‘‘irregular’’ modes,
e is a measure of the distance to the boundary which
considered to be small, and

D65
d

2
6n, ~5!

where

n5Ad2

4
1M2. ~6!

Here M is the effective mass of the scalar field, and in t
nonminimally coupled case it is given by

M25m21%R, ~7!
©2003 The American Physical Society27-1
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whereR is the Ricci scalar of the metric~which is a negative
constant! and% is the coupling coefficient. In the minimally
coupled case%50, the above equation reduces toM5m.

Since there exist two possible quantizations of the the
on the bulk, we expect that there must exist two differe
boundary CFT’s. However, it has been pointed out in@14#
that the usual Dirichlet prescription Eq.~1! can only account
for one of them, namely the one with conformal dimensi
D1 , which corresponds to regular modes propagating in
bulk. In order to also account for the missing conformal
mensionD2 , the proposal in@14# is that its generating func
tional is the Legendre transform of the one which gives r
to the conformal dimensionD1 . It was explicitly shown in
@14# that in fact this prescription gives rise to the missi
conformal dimensionD2 .

Later, it was shown in@10# that there were still some
problems which needed to be considered. One of them is
fact that the usual AdS/CFT prescription is unable to rep
duce the constraints in% and n for which the energy in
@11–13# is conserved, positive, and finite for irregular mod
propagating in the bulk. The second problem is that the us
Legendre transform prescription leaves a coefficient to
fixed ‘‘by hand.’’ And the last problem regarding the usu
Legendre transform is that it does not work for some parti
lar values ofn.

Then, the proposal in@10# was to consider a generalize
formalism which involves modifications both in the bu
quantization and in the AdS/CFT prescription. From the b
point of view, it was suggested in@10# that the natural energy
to be considered in the AdS/CFT correspondence conte
the ‘‘canonical’’ energy, which is constructed out of the N
ether current corresponding to time translations, rather t
the ‘‘metrical’’ one, which is constructed through the stres
energy tensor, as in@11–13#. The reason for considering th
canonical energy is that, unlike the metrical one, it is sen
tive to the addition of boundary terms to the action, as
happens to the AdS/CFT prescription Eq.~1!.

Finally, from the AdS/CFT correspondence point of vie
the proposal in@10# was to consider a generalized AdS/CF
prescription of the form~see also@15# for previous results!

exp~2I AdS@ f 0# ![ K expS E ddxO~xW ! f 0~xW ! D L , ~8!

where, unlike the usual prescription Eq.~1!, we make use of
a generalized sourcef 0 which depends on the bounda
conditions.1 The formulation in@10# makes use of Dirichlet,
Neumann, and mixed boundary conditions on the scalar fi
in both the minimally and nonminimally coupled cases.
addition, it involves a generalized Legendre transform p
scription of the form

1Note that the addition of boundary terms to the action chan
the boundary conditions under which the action is stationary, an
the other hand it also changes the generating functional for
boundary CFT. This is the reason why considering generali
boundary conditions as in Eq.~8! involves more information than
making use of the usual prescription Eq.~1!.
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Ĩ AdS@ f 0 , f̃ 0#5I AdS@ f 0#2E ddx f0~xW ! f̃ 0~xW !, ~9!

which differs from the usual one in@14# by the fact that it
involves the whole on-shell action rather than only the le
ing nonlocal term. It was shown in@10# that the divergent
local terms of the action contain information about the tra
formed generating functional, and then they have to be ta
into account. In addition, the prescription above leaves
coefficient to be fixed ‘‘by hand.’’ After performing the Leg
endre transformation, the transformed boundary CFT can
determined from the prescription

exp~2 Ĩ AdS@ f̃ 0# ![ K expS E ddxÕ~xW ! f̃ 0~xW ! D L . ~10!

It was shown in@10# that this generalized Legendre tran
form prescription removes all problems mentioned above
garding the usual prescription. In addition, the key result
@10# has been to show that the generalized prescription E
~8!–~10! gives rise to precisely the same constraints on%
andn for which irregular modes propagate in the bulk wh
the quantization is performed by making use of the canon
energy rather than the metrical one.

One of the purposes of this paper is to show that
introduction of double-trace perturbations at the bound
CFT can be understood in terms of the formulation in@10#.
This would be a powerful result for many reasons. The fi
one is that it would lead in a natural way to a generaliz
AdS/CFT prescription in which multitrace interactions c
be consistently incorporated.

The second reason is that it would enable us to relate
coupling coefficient of the double-trace perturbation to s
cific boundary conditions on the bulk field, or equivalent
to the addition of specific boundary terms to the action.
particular, we will show that there exist particular couplin
which require us to consider new boundary conditions t
have not been analyzed in@10#. In this article, we will also
perform a detailed analysis of such new boundary conditio
In all cases, we will find the explicit form of the couplin
coefficients and the surface terms.

The third reason is that to consider double-trace opera
in terms of the formulation in@10# allows us to relate the
corresponding coupling coefficients to the constraints on%
andn for which irregular modes propagate in the bulk wh
the canonical energy is employed instead of the metrical o
In particular, we will show that, when such constraints a
satisfied, the couplings of the double-trace perturbations
verge. This result is consistent with the statement in@6# that,
as the coupling grows, the system approaches the cond
that is suitable for quantization to get a field of dimensi
D2 . It is also important to point out that, in this formulation
the canonical energy in the bulk depends on the bound
multitrace perturbations.

And the last reason why it is useful to analyze doub
trace operators in terms of the formulation in@10# is that it
allows us to extend, in a natural way, the formulation
double-trace perturbations to the nonminimally coupled ca
In particular, an interesting result that we will find is that th

s
n
e
d

7-2



ar
su
n
e

fo
la
fo

i

a
he

s-
s
fo

o
t
th
fo
a
e
th
rs
to
ul
ke
-
o
a

isi
e
lso
ju

in
o

e
i

ge
rm
ni
he
a
ow
rm
an

re
a

rre

o
-

ry

ns.

re-

ns

is

of

o-

nd
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introduction of a double-trace perturbation at the bound
generates the natural extension of the Gibbons-Hawking
face term@16#, which is added to the Einstein-Hilbert actio
in order to have a well-defined variational principle und
variations of the metric.

We also aim at connecting to the recently proposed
mulation in @17# for an improved correspondence formu
which gives correct boundary field theory correlators
multitrace perturbations. In particular, the key observation
@6,17# is that the conformal operatorO is to be identified

with the Legendre transformed fieldf̃0. In this paper, we
claim that, in order to map to the boundary all the inform
tion contained in the bulk, we also need to identify, in t

transformed formulation, the conjugated operatorÕ with the
field f0. In particular, we will show that to require consi
tency imposes a precise constraint between the coupling
the double-trace perturbations corresponding to the con

mal operatorsO and Õ. Another difference with respect t
the formulation in@17# is that, in this work, we consider tha
the coupling of the double-trace perturbation depends on
distance to the boundary. We will show that this is needed
consistency. In particular, a result that we will find is th
when the constraints for which irregular modes are allow
to propagate in the bulk are satisfied, the couplings of
double-trace perturbations corresponding to the operatoO

and Õ have different asymptotic behaviors. A final thing
be mentioned is that, in this paper, we will consider the f
functionals containing all local and nonlocal terms, unli
the formalism in@17#, which considers only the leading non
local term. We do so because the divergent local terms c
tain information about the transformed generating function
and then they have to be taken into account@10#.

The paper is organized as follows. In Sec. II, we rev
the formulation in@17# and claim that, in order to map to th
boundary all the information contained in the bulk, we a
need to identify, in the transformed formulation, the con
gated operatorÕ with the fieldf0. We find the explicit form
of the generating functionals for the boundary CFT’s
terms of the couplings of the double-trace perturbations c
responding to the operatorsO andÕ. We also show that the
requirement for consistency imposes a constraint betw
such couplings. In Sec. III, we analyze the precise way
which the introduction of double-trace perturbations chan
the boundary conditions on the field by adding surface te
to the action, and extend the formulation to the nonmi
mally coupled case. In this situation, we will show that t
introduction of double-trace perturbations generates the n
ral extension of the Gibbons-Hawking term. We also sh
how double-trace perturbations can be understood in te
of the generalized AdS/CFT prescription and the new qu
tization in the bulk as developed in@10#. In addition, an
interesting result that we will find is that irregular modes a
allowed to propagate precisely when the asymptotic beh
iors of the couplings of the double-trace perturbations co
sponding to the operatorsO andÕ are different. In this situ-
ation, the coupling corresponding to the operator
conformal dimensionD1 diverges. We also show that a com
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plete formulation requires the inclusion of new bounda
conditions which have not been considered in@10#. We per-
form a detailed analysis of such new boundary conditio
Finally, Sec. IV contains our conclusions.

II. DOUBLE-TRACE OPERATORS AND ADS ÕCFT

Throughout this paper, we work in the Euclidean rep
sentation of the AdSd11 in Poincare´ coordinates, described
by the half spacex0.0, xiPR with the metric

ds25
1

x0
2 (

m50

d

dxmdxm, ~11!

where we have fixed the radius of AdSd11 equal to 1. We
consider the space as foliated by a family of surfacesx05e
homeomorphic to the boundary atx050. The corresponding
outward pointing unit normal vector is

nm5~2e21,0!. ~12!

The limit e→0 is to be taken only at the end of calculatio
@18#.

The usual action for the massive scalar field reads

I 05
1

2E dd11xAg~gmn]mf]nf1M2f2!. ~13!

Performing an infinitesimal variation of the scalar fieldf
→f1df, the action above transforms as

dI 05E ddxAh]nfedfe , ~14!

wherehmn is the induced metric at the surfacex05e, fe is
the value of the field atx05e, and]nf is the Lie derivative
of f alongnm . It is given by

]nf5nm]mf. ~15!

Note that, in Eq.~14!, the absence of a bulk contribution
due to the equation of motion

¹2f2M2f50. ~16!

The variation Eq.~14! shows that the actionI 0 is stationary
for a Dirichlet boundary condition which fixes the value
the scalar fieldf at x05e, namely

dfe50. ~17!

Integrating by parts and making use of the equation of m
tion, the action Eq.~13! can be written as the following
pure-surface term:

I 05
1

2E ddxAhfe]nfe . ~18!

The next step involves solving the equation of motion a
writing ]nfe in terms of the boundary datafe . This proce-
dure has been carried out in@18,19#, where the final result
7-3
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PABLO MINCES PHYSICAL REVIEW D68, 024027 ~2003!
was expanded in powers of the distance to the boundar
order to select the leading nonlocal term, which is und
stood as the generating functional for the boundary CFT@8#.
However, the divergent local terms of the action contain
formation about the Legendre transformed generating fu
tional @10#, and then we need to take them into account. T
means that, instead of the leading nonlocal term, we
make use of the full action containing all local and nonlo
terms. It reads

I 0@ f e#52
1

2E ddxddyAh fe~xW ! f e~yW !

3E ddk

~2p!d
e2 ikW•(xW2yW )F~ke!, ~19!

where f e(xW ) is the source which couples to the bounda
conformal operator through the prescription Eq.~1!, xW

5(x1, . . . ,xd), k5ukW u and

F~ke!5
d

2
1n2ke

Kn11~ke!

Kn~ke!
. ~20!

HereKn is the modified Bessel function.
The action Eq.~19! is only one of the two functionals

which contain the information about the boundary CFT
The another one is obtained by performing the Legen
transformation Eq.~9!, which gives rise to the following
transformed functional containing all local and nonloc
terms@10#

Ĩ 0@ f̃ e#5
1

2E ddxddyAh f̃e~xW ! f̃ e~yW !

3E ddk

~2p!d
e2 ikW•(xW2yW )

1

F~ke!
. ~21!

Both functionalsI 0 and Ĩ 0 are needed in order to map to th
boundary all the information contained in the bulk. Each o
of the sourcesf e and f̃ e will couple, after performing the
limit e→0 in a proper way and through the prescriptio
Eqs.~8! and ~10!, to the corresponding boundary conform
operator.

The important result in@6,17# is that the transformed
sourcef̃ 0 can be identified with the conformal operatorO. In
order to do this, we transform back the functionalĨ 0@ f̃ e# and
find

I 05E ddxddyAhE ddk

~2p!d
e2 ikW•(xW2yW )

3F1

2

1

F~ke!
f̃ e~xW ! f̃ e~yW !1 f e~xW ! f̃ e~yW !G . ~22!

Now we will analyze the way in which the results above a
affected by perturbing at the boundary with a double-tra
operator of the form
02402
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W@O#5
b

2
O2, ~23!

where b is the coupling coefficient. Following@6,17#, the
next step is to identifyO with f̃ 0. This would give

W@ f̃ 0#5
b

2
f̃ 0

2 . ~24!

However, it is important to note that the limite→0 is to be
taken only at the very end of calculations@18#.2 This means
that, instead of the above equation, we must consider

We@ f̃ e#5
b~e!

2
f̃ e

2 , ~25!

where we have replacedf̃ 0 with f̃ e . Note that there is still
another important difference between Eqs.~24!, ~25!, namely
that we have also introduced a dependence of the couplinb
on the distance to the boundarye. We will show that this is
needed for consistency.

From the above considerations, we write the perturb
functional as

I 5E ddxddyAhE ddk

~2p!d
e2 ikW•(xW2yW )

3F1

2 S 1

F~ke!
1b~ke! D f̃ e~xW ! f̃ e~yW !1 f e~xW ! f̃ e~yW !G ,

~26!

which for b50 reduces to Eq.~22!. The above expression i
to be contrasted with the one in@17#. There are two impor-
tant differences, namely thatb depends one and thatF(ke)
contains all local and nonlocal terms, rather than only
leading nonlocal term.3

Setting]I /] f̃ e50, we get

f̃ e52
F~ke!

11b~ke!F~ke!
f e , ~27!

and introducing this into Eq.~26! we find

2This acquires a new importance in the light of the result in@10#
that the divergent local terms of the action contain informat
about the transformed generating functional. To take the limie
→0 at this early stage would imply losing information.

3The formulation in@17# makes use, instead ofF(ke), of the
conformal Green function G(k)52$@G(12n)#/@G(11n)#%
3(k/2)2n, which involves a procedure in which the Legendre tran
formation is performed after having selected the leading nonlo
term, rather than following the opposite way as in@10#.
7-4
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I @ f e#52
1

2E ddxddyAh fe~xW ! f e~yW !

3E ddk

~2p!d
e2 ikW•(xW2yW )

F~ke!

11b~ke!F~ke!
. ~28!

Comparison with Eq.~19! shows that the double-trace pe
turbation Eq.~23! has introduced the replacement

F~ke!→ F~ke!

11b~ke!F~ke!
. ~29!

In the next section, we will show that this can be understo
as a modification of the boundary conditions on the field,
equivalently, as the addition of a surface term to the act
Eq. ~13!. We will also show how to extend the formulation
the case of a scalar field nonminimally coupled to the met

It has been stated in@17# that the above formulation ap
plies to both regular and irregular modes propagating in
bulk. However, the formulation remains incomplete, beca
so far we have only considered a perturbation in the con
mal operatorO @see Eq.~23!#. We still need to consider a
perturbation in the conjugated operatorÕ, and we will show
that the requirement for consistency imposes a precise
straint between both perturbations.

Note that, in the transformed situation, we identifyf 0

with the conjugated operatorÕ. In order to do this, we per
form a Legendre transform in Eq.~19! and get

Ĩ 052E ddxddyAhE ddk

~2p!d
e2 ikW•(xW2yW )

3F1

2
F~ke! f e~xW ! f e~yW !1 f̃ e~xW ! f e~yW !G . ~30!

We introduce the following double-trace perturbation inÕ,

W̃@Õ#5
b̃

2
Õ2, ~31!

and, identifyingf 0 with the conjugated operatorÕ, we write
the perturbed functional as

Ĩ 52E ddxddyAhE ddk

~2p!d
e2 ikW•(xW2yW )

3H 1

2
@F~ke!2b̃~ke!# f e~xW ! f e~yW !1 f̃ e~xW ! f e~yW !J .

~32!

Note that, as we have done with the couplingb, we have
introduced a dependence ofb̃ on e. Setting] Ĩ /] f e50, we
get

f e52
1

F~ke!2b̃~ke!
f̃ e , ~33!
02402
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and introducing this into Eq.~32! we find

Ĩ @ f̃ e#5
1

2E ddxddyAh f̃e~xW ! f̃ e~yW !

3E ddk

~2p!d
e2 ikW•(xW2yW )

1

F~ke!2b̃~ke!
. ~34!

There is still one last thing to be considered in order to ha
a complete and consistent formulation, and it is to require
expression above to be actually the Legendre transform
Eq. ~28!. As anticipated, this will impose a precise constra
betweenb and b̃. By Legendre transforming Eq.~28!, we
find

Ĩ @ f̃ e#5
1

2E ddxddyAh f̃e~xW ! f̃ e~yW !

3E ddk

~2p!d
e2 ikW•(xW2yW )

11b~ke!F~ke!

F~ke!
. ~35!

From Eqs.~34!,~35! we find the constraint

b̃~ke!5
b~ke!F2~ke!

11b~ke!F~ke!
, ~36!

which is required for consistency. Note that both function
Eqs.~28!,~35! are needed in order to map to the boundary
the information contained in the bulk. The correspondi
boundary CFT’s can be obtained through the prescripti
Eqs. ~8!, ~10!. We emphasize that the functionals Eqs.~28!,
~35! contain all local and nonlocal terms, and that this
needed in order to map to the boundary the constraints
the quantization imposes in the bulk@10#. This topic will be
discussed in the following section.

So far, we have developed a generic formulation in wh
the double-trace perturbations at the boundary of AdSd11
can be consistently incorporated into an extended AdS/C
prescription. We still need to understand the precise way
which such perturbations change the boundary conditions
the field by adding surface terms to the action Eq.~13!, and
to extend the formalism to the nonminimally coupled ca
This is left for the following section, where we will connec
the formulation developed so far to the generalized AdS/C
prescription in@10#, which analyzes the role of boundar
conditions in the AdS/CFT correspondence. We will also
late the previous formalism to the energy of the theory on
bulk, and to the existence of constraints for which the irreg
lar modes are allowed to propagate. We will find the expli
expressions of the couplings, and show that they exhibit v
interesting behaviors when irregular modes are also allow
to propagate.

III. GENERALIZED BOUNDARY CONDITIONS

In this section, we will show that the double-trace pert
bations at the boundary of AdSd11 can be understood as th
introduction of Dirichlet, Neumann, and mixed bounda
conditions on the scalar field. We will consider both min
7-5
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PABLO MINCES PHYSICAL REVIEW D68, 024027 ~2003!
mally and nonminimally coupled cases. We begin by conc
trating on the minimally coupled case.

A. The minimally coupled case

In this case, we set%50 in Eq. ~7!, thus gettingn
5A(d2/4)1m2. It is natural to begin by analyzing the sim
plest case in which the couplingb does not depend on th
distance to the boundary. For this purpose, we set

b~ke!522l, ~37!

wherel is a real coefficient. Then, from Eq.~36! we also
find

b̃~ke!52
2lF2~ke!

122lF~ke!
. ~38!

Note, then, that consistency of the formulation requires t
at least one of the couplings depends on the distance to
boundary, as anticipated in the previous section. We will la
show that the particular cases for which irregular modes
also allowed to propagate in the bulk correspond to the s
ations in whichb andb̃ have different asymptotic behavior

Under the identification Eq.~37!, the functionals Eqs
~28!,~35! read

I @ f e#52
1

2E ddxddyAh fe~xW ! f e~yW !

3E ddk

~2p!d
e2 ikW•(xW2yW )

F~ke!

122lF~ke!
, ~39!

Ĩ @ f̃ e#5
1

2E ddxddyAh f̃e~xW ! f̃ e~yW !

3E ddk

~2p!d
e2 ikW•(xW2yW )

122lF~ke!

F~ke!
. ~40!

The key result is that the above functionals are precisely
ones found in@10# when considering a boundary conditio
which fixes at the border the field

f12l]nf. ~41!

Then, for the particular choice Eq.~37!, the double-trace
perturbation acts by turning the usual Dirichlet bounda
condition into a mixed one.4 This is also equivalent to addin
to the action Eq.~13! a boundary term of the form@10#

I 5I 01lE ddxAh~]nfe!
2. ~42!

Note that, in the particular casel50, we recover the usua
Dirichlet boundary condition. One important point is that f
generall both functionals Eqs.~39!,~40! correspond to the

4In @10#, this particular boundary condition was called the ‘‘typ
II’’ mixed boundary condition.
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same boundary conformal dimension, namelyD1 . However,
in the particular situation in which both constraints@10#

l5
1

2D2
~43!

and

n,1 ~44!

are satisfied, the divergent local terms of both function
Eqs.~39!,~40! cancel out. This fact encodes the informatio
that the Legendre transform interpolates between differ
conformal dimensions, namelyD1 andD2 . In this situation,
the addition of counterterms is not required. From the b
point of view, in this case both regular and irregular mod
can propagate, because the canonical energy is conse
positive, and finite for both of them. When Eq.~43! is satis-
fied, but Eq. ~44! is not, the conformal dimensionD2

reaches the unitarity bound (d22)/2, and becomes indepen
dent of the mass. The unitarity bound is also reached fom
50. For details, see@10#.

We will now show that there exists an interesting relati
between the values and asymptotic behaviors ofb andb̃ and
the phenomenon of the propagation of irregular modes in
bulk. Let us first consider the situation in which Eq.~43! is
not satisfied. For simplicity, we concentrate on the case on
not an integer.5 By expanding the Bessel functions in E
~38! in powers ofe, we find

b̃~ke!52
2lD2

2

122lD2
1•••, ~45!

where the dots stand for higher-order terms ine. Comparison
with Eq. ~37! shows that in this case, where only regul
modes are allowed to propagate in the bulk,b and b̃ have
the same asymptotic behavior, namely, both of them di
from a constant only on terms which vanish as we appro
the boundary. We also note from Eq.~45! that b̃ diverges as
we get closer to the critical value Eq.~43! for which irregular
modes are also allowed to propagate. Note that this resu
consistent with the statement in@6# that, as the coupling
grows, the system approaches the condition that is suit
for quantization to get a field of dimensionD2 .

We finally consider the situation where Eq.~43! is satis-
fied and irregular modes are allowed to propagate as w
We expect from the above results that something special
happen in this particular situation. We will show that, in fa
in this caseb andb̃ have different asymptotic behaviors, an
the last one diverges as we approach the boundary. We
to consider separately the cases where Eq.~44! is, or is not,
also satisfied. Expanding in Eq.~38! we find, forn,1,

5The case ofn integer is analogous. The only difference is th
there arise additional logarithmic terms which must be taken i
account~see, for example,@15#!.
7-6
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b̃~ke!5222n21D2
2 G~n!

G~12n!
~ke!22n1•••, ~46!

whereas forn.1 we get

b̃~ke!522~n21!D2
2 ~ke!221•••. ~47!

In the above equations, the dots stand for higher-order te
in e. As anticipated, we find that, in the particular situati
where irregular modes are also allowed to propagate in
bulk, the couplingsb and b̃ have different asymptotic be
haviors, and the last one, which corresponds to the oper
of conformal dimensionD1 @10#, diverges as we approac
the boundary.

So far, we have considered the situation whereb does not
depend on the distance to the boundary. As the next step,
natural to analyze the case whereb depends one, and b̃
does not. In order to do this, we consider, instead of Eq.~37!,
the following starting point:

b̃~ke!522l, ~48!

where, as before,l is a real coefficient. From Eq.~36!, we
get

b~ke!52
2l

F~ke!

1

F~ke!12l
. ~49!

From the above equation, we write the functionals E
~28!,~35! as

I @ f e#52
1

2E ddxddyAh fe~xW ! f e~yW !

3E ddk

~2p!d
e2 ikW•(xW2yW )@F~ke!12l#, ~50!

Ĩ @ f̃ e#5
1

2E ddxddyAh f̃e~xW ! f̃ e~yW !

3E ddk

~2p!d
e2 ikW•(xW2yW )

1

F~ke!12l
. ~51!

The functionals above have not been considered in@10#.
However, by following an analogous procedure, it can
verified that they correspond to considering a Dirich
boundary condition and adding to the usual action Eq.~13! a
boundary term of the form

I 5I 02lE ddxAhfe
2 . ~52!

The fact that the above action is stationary under a Dirich
boundary condition can be verified by noting that, unde
transformationf→f1df, its variation is given by the fol-
lowing surface term:

dI 5E ddxAh~]nfe22lfe!dfe , ~53!
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which vanishes fordfe50. Since we are still considering
Dirichlet boundary condition, it may seem that in this situ
tion the double-trace perturbation causes no effect. Howe
this is not the case, because the importance of the sur
term in Eq.~52! is that it allows for irregular modes to propa
gate in the bulk for particular values ofl. This can be veri-
fied by making use of a formalism which is analogous to
one developed in@10# for other possible boundary cond
tions. In particular, it can be seen that for

l52
D2

2
, ~54!

the canonical energy is conserved, positive, and finite
both regular and irregular modes propagating in the bu
provided that the constraint Eq.~44! is satisfied as well.6 We
emphasize that, when both constraints Eqs.~44!,~54! are sat-
isfied, the Legendre transform interpolates between differ
conformal dimensionsD1 and D2 , due to the cancellation
of the divergent local terms of the functionals Eqs.~50!,~51!.
This statement can be verified by following a procedu
analogous to the one in@10#. When Eq.~54! is satisfied, but
Eq. ~44! is not, the conformal dimensionD2 reaches the
unitarity bound (d22)/2.

Now we analyze the existing relation between the valu
and asymptotic behaviors ofb andb̃ and the phenomenon o
the propagation of irregular modes. We have seen that in
previously analyzed mixed boundary condition, the coupl
b̃ diverges when the critical value Eq.~43! is reached. Since
in the current Dirichlet situation the conformal dimensio
D2 corresponds to the conformal operatorÕ, rather than to
O,7 then in this situation we expect that it will beb, rather
than b̃, the coupling which diverges as we approach t
critical value Eq.~54!. We now verify this statement. Again
we concentrate on the case ofn not an integer. Let us firs
consider the situation when Eq.~54! is not satisfied. Expand
ing in e in Eq. ~49!, we find

b~ke!52
2l

D2~D212l!
1•••, ~55!

6Since this particular case has not been analyzed in@10#, we sum-
marize here the main results. Making use of global coordina

(t,r,VW ) defined as in@10# ~recall here thatt is the time coordinate,

r is the radial coordinate, andVW are the angular coordinates! we
find from the action Eq.~52! that the canonical energy is of th
form E52*ddxAg@Qt

t1l¹m(nmf2)#, where the integration is
carried out over the spatial coordinates, andQmn5]mf]nf
2

1
2 gmn@gab]af]bf1m2f2#. It can be verified that, for regula

modes propagating in the bulk, the canonical energy is conser
positive, and finite for any values ofl andn, whereas for irregular
modes propagating in the bulk the canonical energy is conser
positive, and finite only when the constraints Eqs.~44!,~54! are
satisfied.

7This result can be found by computing the boundary CF
through the prescription Eqs.~8!,~10!.
7-7
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where the dots stand for higher-order terms ine. We note
from Eq. ~48! that, as in the previous mixed case,b and b̃
have the same asymptotic behavior when only regular mo
propagate in the bulk. Note also that, as expected,b diverges
as we approach the critical value Eq.~54! for which irregular
modes are allowed to propagate as well.

Now we analyze the case when the constraint Eq.~54! is
satisfied. The calculations are analogous to the ones
formed in the previous mixed case, and the results are
follows. Forn,1 we get

b~ke!522n
l

D2

G~n!

G~12n!
~ke!22n1•••, ~56!

whereas forn.1 we find

b~ke!54~n21!
l

D2
~ke!221•••. ~57!

Then, as in the previous mixed case, in the situation w
the irregular modes are also allowed to propagate the c
plings have different asymptotic behaviors, as noticed
comparing Eqs.~56!,~57! to Eq. ~48!. We also note that in
this case the couplingb, which corresponds to the conform
operator of dimensionD1 , diverges as we approach th
boundary.

So far, we have considered the situations in which one
the couplings does not depend one. Since the consistenc
relation Eq. ~36! makes it impossible to consider a ca
where both couplings are simultaneously independent of
distance to the boundary, there is only one case left to
considered, namely the situation in which both couplings
pend one. In order to analyze this case, we set

b~ke!52
11F~ke!@F~ke!22l#

F~ke!
, ~58!

and from Eq.~36! we also find

b̃~ke!5
11F~ke!@F~ke!22l#

F~ke!22l
. ~59!

The reason why we choose the particular expressions a
will be clarified later. Inserting Eq.~58! into Eqs.~28!,~35!,
we get

I @ f e#5
1

2E ddxddyAh fe~xW ! f e~yW !

3E ddk

~2p!d
e2 ikW•(xW2yW )

1

F~ke!22l
, ~60!

Ĩ @ f̃ e#52
1

2E ddxddyAh f̃e~xW ! f̃ e~yW !

3E ddk

~2p!d
e2 ikW•(xW2yW )@F~ke!22l#. ~61!
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The key result is that, as can be verified, the above funct
als correspond to adding to the action Eq.~13! the following
surface terms:

I 5I 02lE ddxAhfe
22E ddxAhfe]nfe , ~62!

which give rise to an action which is stationary under
boundary condition which fixes at the border the field8

]nf12lf. ~63!

This means that the double-trace perturbation Eq.~58! turns
the usual Dirichlet boundary condition into a mixed o
which is different from the previously analyzed mixe
boundary condition@see Eq.~41!#. This clarifies the reason
why we chose the specific coupling Eq.~58!. Different
choices may not make sense in terms of a problem of bou
ary conditions on the scalar field. Note that, in the particu
casel50, this new mixed boundary condition reduces to
Neumann one. Even when this boundary condition has
been analyzed in@10#, the procedure is analogous, and it c
be verified that in this situation the irregular modes are
lowed to propagate in the bulk as well as the regular o
only when the constraint9

l5
D2

2
~64!

is satisfied together with Eq.~44!. It can be shown that in this
situation the divergent local terms of the functionals E
~60!,~61! cancel out and, correspondingly, the Legend
transform interpolates between different conformal dime
sions, namelyD1 and D2 . When Eq.~64! is satisfied, but
Eq. ~44! is not, the conformal dimensionD2 reaches the
unitarity bound (d22)/2.

Regarding the relation between the values and asymp
behaviors ofb and b̃ and the phenomenon of the propag
tion of irregular modes, we expect to find results which a
analogous to the ones found in the previous cases. In par
lar, we expect that in this situation the couplingb̃, which is
the one that corresponds to the conformal operator of dim
sion D1 ,10 should diverge as we approach the critical val

8Note that, under a transformationf→f1df, the variation of
the action Eq. ~62! is given by the surface termdI 5

2*ddxAhfed(]nfe12lfe), which vanishes under a boundar
condition which fixes at the border the field Eq.~63!.

9Since this particular case has not been analyzed in@10#, we give
here the main results. The canonical energy corresponding to
action Eq. ~62! is given by E52*ddxAg@Qt

t1l¹m(nmf2)
1

1
2 (¹2f22]t]tf

2)#, where we consider global coordinate

(t,r,VW ) defined as in@10#, the integration is carried out over th
spatial coordinates, and Qmn5]mf]nf2

1
2 gmn@gab]af]bf

1m2f2#. It can be shown that the canonical energy is conserv
positive, and finite for irregular modes propagating in the bulk o
when both constraints Eqs.~44!,~64! are satisfied.

10This result can be found by computing the boundary CF
through the prescription Eqs.~8!,~10!.
7-8
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MULTITRACE OPERATORS AND THE GENERALIZED . . . PHYSICAL REVIEW D68, 024027 ~2003!
Eq. ~64!. Now we verify this statement for the case ofn not
an integer. Since calculations are analogous to the ones
formed in the previous cases, we just present the main
sults. Let us first consider that Eq.~64! is not satisfied. Then
expanding in Eqs.~58!,~59!, we find

b~ke!52
1

D2
@11D2~D222l!#1•••, ~65!

b̃~ke!5
1

D222l
@11D2~D222l!#1•••, ~66!

where, as in the previous cases, the dots stand for hig
order terms ine. As anticipated, we note thatb and b̃ have
the same asymptotic behavior, and thatb̃ diverges as we
approach the critical value Eq.~64!.

Finally, we consider the situation in which the constra
Eq. ~64! is satisfied. Forn,1 we find

b~ke!52
1

D2
1•••, ~67!

b̃~ke!5222n21
G~n!

G~12n!
~ke!22n

1•••, ~68!

whereas forn.1 we get

b~ke!52
1

D2
1•••, ~69!

b̃~ke!522~n21!~ke!221•••.
~70!

Then, as expected, the couplings have different asymp
behaviors, andb̃ diverges as we approach the boundary.

B. The nonminimally coupled case

In the previous subsection, we have shown, for the p
ticular minimally coupled case, that the perturbation of t
conformal field theory by a double-trace operator can be
derstood as the introduction of a generalized boundary c
dition on the scalar field. Now we consider the more gene
situation of a nonminimally coupled scalar field. In this ca
we have a nonvanishing coupling coefficient% in Eq. ~7!.
But, as pointed out in@10#, the effect of the nonminima
coupling does not limit itself to a redefinition of the effectiv
mass of the theory. In this subsection we will show, in p
ticular, that the introduction of a double-trace perturbation
the boundary generates the natural extension of the Gibb
Hawking surface term@16#, which is added to the Einstein
Hilbert action in order to have a well-defined variation
principle under variations of the metric. As in the minimal
coupled case, we will consider different boundary conditio
on the scalar field and perform a detailed analysis of e
one of them.

We begin by considering the simplest case where the c
pling b̃ does not depend on the distance to the boundary

b̃~ke!52%d, ~71!
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where % has been introduced in Eq.~7!. Recall here that,
throughout this section, we will consider n
5A(d2/4)1m21%R. From Eq.~36!, we also find

b~ke!5
2%d

F~ke!

1

F~ke!22%d
. ~72!

Inserting the above equation into Eqs.~28!,~35!, we get

I @ f e#52
1

2E ddxddyAh fe~xW ! f e~yW !

3E ddk

~2p!d
e2 ikW•(xW2yW )@F~ke!22%d#, ~73!

Ĩ @ f̃ e#5
1

2E ddxddyAh f̃e~xW ! f̃ e~yW !

3E ddk

~2p!d
e2 ikW•(xW2yW )

1

F~ke!22%d
. ~74!

The above functionals are precisely the same as the o
found in @10# when considering, in the nonminimall
coupled case, a Dirichlet boundary condition which fixes
field f at the border. We note from@10# that the above func-
tionals correspond to adding to the usual action Eq.~13! a
boundary term of the form

I 5I 02%E ddxAhK efe
2 , ~75!

whereK is the trace of the extrinsic curvature at the boun
ary. The above surface term is just the natural extension
the usual Gibbons-Hawking term@16#. The importance of
this surface term is that, even when we are considerin
Dirichlet boundary condition, it allows irregular modes
propagate in the bulk for particular values of% @10#. We
have just shown that such a surface term can be generate
perturbing the conformal field theory with a double-trace o
erator. Note that in the particular case%50, corresponding
to the minimally coupled case, we recover the usual Dirich
boundary condition. We also point out that for general%
both functionals Eqs.~73!,~74! give rise to the same confor
mal dimensionD1 , with one particular exception, namel
the situation in which both constraints Eq.~44! and @10#

%5
d21

8d F16A11S 4m

d21D 2G ~76!

are satisfied.11 In this case, the divergent local terms of bo
functionals Eqs.~73!,~74! cancel out, making the addition o
counterterms unnecessary, and the Legendre transform i

11It is interesting to note that, in the particular casem50, one of
the solutions in Eq.~76! vanishes, whereas the another one redu
to the conformal value for which the ‘‘improved’’ stress-energy te
sor of the scalar field becomes traceless. This means that, in
ticular, Weyl-invariant theories in the bulk allow for irregula
modes to propagate as well, and give rise to functionals in wh
the divergent local terms cancel out.
7-9
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PABLO MINCES PHYSICAL REVIEW D68, 024027 ~2003!
polates between different conformal dimensions, namelyD1

and D2 . From the bulk point of view, both regular and i
regular modes can propagate, because the canonical e
is conserved, positive, and finite for both of them. When E
~76! is satisfied but Eq.~44! is not, the conformal dimension
D2 reaches the unitarity bound (d22)/2. For details, see
@10#.

Now we concentrate on the relation between the val
and asymptotic behaviors ofb andb̃ and the phenomenon o
the propagation of irregular modes in the bulk. Note that
this case, the conformal dimensionD2 corresponds to the
conformal operatorÕ @10#, and we expectb to diverge as we
approach any of the critical values Eq.~76!. We begin by
considering the situation in which Eq.~76! is not an satisfied.
Expanding forn not integer in Eq.~72!, we find

b~ke!5
2%d

D2~D222%d!
1•••, ~77!

where the dots stand for higher-order terms ine. From Eqs.
~71!,~77!, we find thatb and b̃ have the same asymptot
behavior, as expected. Also as expected, we note from
above equation thatb diverges as we approach any of th
critical values Eq.~76!.12

We still need to consider the case when Eq.~76! is satis-
fied. This is done as in the previous cases. Forn,1, we get

b~ke!5222n
%d

D2

G~n!

G~12n!
~ke!22n1•••, ~78!

whereas forn.1 we find

b~ke!524~n21!
%d

D2
~ke!221•••. ~79!

As expected, if irregular modes are also allowed to pro
gate, then the couplings have different asymptotic behavi
as noticed from Eqs.~71!,~78!, and~79!. In this situation,b
diverges as we approach the boundary.

Finally, we consider a situation in which both couplingsb

and b̃ depend on the distance to the boundary. This is d
by setting

b~ke!52
11F~ke!@F~ke!12%d#

F~ke!
. ~80!

From Eq.~36!, we also get

b̃~ke!5
11F~ke!@F~ke!12%d#

F~ke!12%d
. ~81!

Introducing Eq.~80! into Eqs.~28!,~35!, we find

12Recall here thatD2 depends on%.
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I @ f e#5
1

2E ddxddyAh fe~xW ! f e~yW !

3E ddk

~2p!d
e2 ikW•(xW2yW )

1

F~ke!12%d
, ~82!

Ĩ @ f̃ e#52
1

2E ddxddyAh f̃e~xW ! f̃ e~yW !

3E ddk

~2p!d
e2 ikW•(xW2yW )@F~ke!12%d#. ~83!

The key result is that the above functionals are precisely
same as the ones considered in@10# when analyzing a bound
ary condition which fixes at the boundary the field

]nf12%Kf. ~84!

This means that, for the particular choice Eq.~80!, the
double-trace perturbation acts by turning the Dirich
boundary condition into a mixed one, which is different fro
the ones considered in the minimally coupled case@see Eqs.
~41!,~63!#.13 It is also interesting to note from Eq.~84! that,
in the particular minimally coupled case (%50), this mixed
boundary condition reduces to a Neumann one. We a
point out that setting this mixed boundary condition
equivalent to adding to the usual action Eq.~13! the follow-
ing boundary terms@10#:

I 5I 02%E ddxAhK efe
22E ddxAhfe]nfe , ~85!

where the first surface term is the same as the one that a
in the Dirichlet situation Eq.~75!, whereas the second su
face term is new. We emphasize that the new surface t
does not spoil the property of having a well-defined var
tional principle under variations of the metric. We also po
out that for general% both functionals Eqs.~82!,~83! give
rise to the same conformal dimensionD1 , with one particu-
lar exception, namely the situation in which both constrai
Eq. ~44! and @10#

%52
3d11

8d F17A11S 4m

3d11D 2G ~86!

are satisfied. In analogy to the former cases, in this situa
the divergent local terms of the functionals Eqs.~82!,~83!
cancel out, and this fact encodes the information that
Legendre transform interpolates between different confor
dimensionsD1 andD2 . In this case, there is no need to ad
any counterterms. From the bulk point of view, both regu
and irregular modes are allowed to propagate, because
canonical energy is conserved, positive, and finite for both
them. In addition, when Eq.~86! is satisfied but Eq.~44! is

13In @10#, this particular boundary condition was called the ‘‘typ
I’’ mixed boundary condition.
7-10
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MULTITRACE OPERATORS AND THE GENERALIZED . . . PHYSICAL REVIEW D68, 024027 ~2003!
not, the conformal dimensionD2 reaches the unitarity boun
(d22)/2 and becomes independent of the effective ma
For details, see@10#.

We still need to analyze the relation between the val
and asymptotic behaviors ofb andb̃ and the phenomenon o
the propagation of irregular modes. In this particular ca
we expectb̃ to diverge as we approach any of the critic
values Eq.~86!. This is due to the fact thatb̃ corresponds to
the conformal operator of dimensionD1 @10#. Let us first
consider the situation where Eq.~86! is not satisfied. Ex-
panding in Eqs.~80!,~81!, we get

b~ke!52
1

D2
@11D2~D212%d!#1•••, ~87!

b̃~ke!5
1

D212%d
@11D2~D212%d!#1•••.

~88!

As expected,b and b̃ have the same asymptotic behavio
andb̃ diverges as we approach any of the critical values
~86!.14

Finally, we consider the situation in which Eq.~86! is
satisfied. Forn,1, we get

b~ke!52
1

D2
1•••, ~89!

b̃~ke!5222n21
G~n!

G~12n!
~ke!22n1•••, ~90!

whereas forn.1 we have

b~ke!52
1

D2
1•••, ~91!

b̃~ke!522~n21!~ke!221•••. ~92!

As expected,b and b̃ have different asymptotic behavior
and b̃ diverges as we approach the boundary.

IV. CONCLUSIONS

In this work, we have introduced a generalized AdS/C
prescription, which is suggested by the results in@6,7,10#,
and can consistently incorporate double-trace perturbat
at the boundary CFT. This leads to a formalism in which
can perform explicit calculations. We have analyzed b
minimally and nonminimally coupled cases, and obtain
new results for both of them.

We have shown that the consistency of the formalism
poses a precise relation between the couplingsb and b̃ @see
Eq. ~36!#, and requires that at least one of them depends
the distance to the boundary. We have considered many
sible couplings, and in all situations we have shown tha

14Recall here thatD2 depends on%.
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introduce a double-trace perturbation at the border is equ
lent to adding a surface term to the usual action Eq.~13!.
This gives rise to different kinds of Dirichlet, Neumann, a
mixed boundary conditions on the scalar field. In all cas
we have performed the explicit calculation ofb andb̃ and of
the corresponding surface terms. We have found that th
exist particular values ofb and b̃ which allow for irregular
modes to propagate as well. We have computed the exp
expressions of such special couplings. We have shown
as we get closer to the situation in which irregular modes
allowed to propagate, the coupling corresponding to the
erator of conformal dimensionD1 diverges. This result is
consistent with the statement in@6# that, as the coupling
grows, the system approaches the condition that is suit
for quantization to get a field of dimensionD2 . In addition,
we have shown that, when the constraints for which irregu
modes propagate are satisfied,b and b̃ have different
asymptotic behaviors, and the coupling corresponding to
operator of conformal dimensionD1 diverges as we ap
proach the boundary.

We have also shown that there exist particular values ob

and b̃ which require the introduction of new boundary co
ditions which have not been considered in@10#. We have
included these new boundary conditions in our analysis.

In the particular nonminimally coupled case, we have a
shown that the introduction of a double-trace perturbation
the boundary generates the natural extension of the Gibb
Hawking surface term.

In general, we have shown that the introduction
double-trace perturbations can be understood in terms of
formulation in@10#. In particular, this enables us to relate th
double-trace perturbations to the quantization which ma
use of the canonical energy instead of the metrical one. S
quantization appears to be the natural one to be considere
the AdS/CFT context.

Throughout this article, we have only considered the s
plest nontrivial case of multitrace perturbations, namely t
of double-trace ones. It would be interesting to extend t
formalism to the case of higher power trace perturbations
should be noted that in such a case nonlinear boundary
ditions would arise which would require us to consider
perturbative approach. More complex calculations would
involved to first extend the formulation in@10# and then to
employ it to describe the more complicated multitrace p
turbations. We also would like to be able to reproduce
constraints for which irregular modes propagate in the b
and the couplings diverge by performing calculations exc
sively on the boundary CFT side. It also would be interest
to understand the meaning of the generalized boundary
ditions in the string theory context. This requires a mo
detailed study.
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