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1 Introduction

The study of four-dimensional N = 2 superconformal field theories (SCFTs) has benefited

considerably in recent years from the construction of a class of such theories (sometimes

called class S) as compactifications of the mysterious 6D (2,0) SCFTs on Riemann surfaces

with a partial twist [1–10]. The realization of many Lagrangian theories whose Seiberg-

Witten curves were previously unknown, the discovery of a multitude of interacting SCFTs

that generalize the Minahan-Nemeschansky EN theories [11, 12], and the understanding of

S-duality [13] are just a few of the remarkable features of this class of theories.

The key ingredient, greatly expanding the class of 4D theories one can obtain, is the

possibility of adding codimension-two defects of the (2,0) theories localized at points on

the Riemann surface C. Depending on our choice of these punctures on C, we get different

4D N = 2 SCFTs. A yet-wider class of theories can be obtained by including outer-

automorphism twists [9] on C, such that, when traversing an incontractible cycle on C

(either going around a handle of C, or circling a puncture on C) the ADE Lie algebra

comes back to itself up to an outer-automorphism. In particular, this introduces a new

class of codimension-two defects, which we refer to as “twisted punctures”, and whose local

properties were studied in [8].

In [3], we started our program of classifying the 4D N = 2 SCFTs that arise from

the 6D (2,0) theories by focusing on the AN−1 series. In that paper, we constructed the

possible “fixtures” (three-punctured spheres) and the cylinders that connect them, which

are the basic building blocks for any pair-of-pants decomposition of a Riemann surface.

In [4] we carried out a similar program for the DN theories, and in [14] we studied the

SCFTs that arise from incorporating outer-automorphism twists in the A2N−1 theories. In

this paper, we want to continue our classification program by adding outer-automorphism

twists to the theories of type DN . Preliminary studies of the twisted DN series were made

in [9, 10, 15].

The DN Dynkin diagram is invariant under a Z2 outer automorphism group. Corre-

spondingly, there is a Z2 bundle over the punctured surface; if the monodromy is nontrivial

around the puncture, then we say that the puncture at p is twisted (otherwise, untwisted).1

(For the D4 theory, the Z2 enhances to a non-abelian S3 group. The study of the 4D N = 2

SCFTs that arise from such enhancement is work in progress.)

For a given puncture, we explain how to compute all the local properties that con-

tribute to determining the 4D N = 2 SCFT. Among these, are the contribution to the

graded Coulomb branch dimensions, the global symmetry group, flavour-current central

1Such bundles are classified by γ ∈ H1(C − {pi},Z2). The untwisted theory is γ = 0.
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charges, the conformal-anomaly central charges (a, c), and the “pole structure” and “con-

straints”, which determine the contribution to the Seiberg-Witten curve. From this infor-

mation, it is possible to determine gauge groups, hypermultiplet matter representations,

and other properties.

Along the way, we will discover a plethora of new, isolated, interacting N = 2 SCFTs

arising from 3-punctured spheres (fixtures). In this, and our other papers, we have labeled

these SCFTs by their global symmetries (including the levels). Alas, such a labeling is not

entirely unique. We know that there are examples of N = 2 SCFTs with the same global

symmetries and levels, which are nonetheless distinct. Consider, for instance,

and

in the D8 theory. Both of these have Spin(16)2
28 global symmetry,2 but have different values

of (nh, nv), different superconformal indices, etc. They are clearly distinct SCFTs, and we

would need a more elaborate labeling scheme to distinguish between them. When such

subtleties do not arise, we will, for brevity’s sake, label SCFTs by their global symmetries

and levels.

As an application of our results, we are able to find realizations of Spin(8) gauge theory

with matter in the 6(8v), or with matter in the 5(8v)+1(8s). These two cases, of vanishing

β-function for Spin(8), were the ones that were not captured by the untwisted sector of

the DN series. Similarly, for Spin(7) gauge theory, we find the theory with matter in the

5(7), and in the 1(8)+4(7); the other combinations with vanishing β-function were already

found in the untwisted sector of the DN series. We also study various realizations of Sp(N)

gauge theory, including Sp(3) with matter in the 11
2 (6) + 1

2(14′) and in the 3(6) + 1(14′),

where the 14′ is the 3-index traceless antisymmetric tensor representation.

2 The Z2-twisted DN Theory

The Coulomb branch geometry of the 4D N = 2 compactification [1, 2] of the 6D N = (2, 0)

theories of type DN is governed by the Hitchin equations on C with gauge algebra so(2N).

In particular, the Seiberg-Witten curve Σ is a branched cover of C described by the spectral

curve [9],

Σ : det(Φ− λI) = λ2N +
N−1∑
j=1

φ2jλ
2N−2j + φ̃2 = 0, (2.1)

2We follow the standard practice of denoting a global symmetry G together with its level, k, as Gk.

– 3 –
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where Φ is the so(2N)-valued Higgs field, while the k-differentials φk (k = 2, 4, 6, . . . , 2N−2)

and the Pfaffian N -differential φ̃ are associated with the Casimirs of the DN Lie algebra.

In the rest of the paper, N will always stand for the rank of DN .

Introducing punctures on C corresponds to imposing local boundary conditions on the

Hitchin fields. We consider untwisted and twisted punctures under the action of the Z2

outer-automorphism group of the so(2N) Lie algebra. Untwisted punctures are labeled

by sl(2) embeddings in so(2N), or, equivalently, by nilpotent orbits in so(2N), or by D-

partitions3 of 2N . Instead of a compact curve, C, consider a semi-infinite cigar, with the

puncture at the tip. Reducing along the circle action, we get 5D SYM on a half-space,

with a Nahm-type boundary condition of the sort studied by Gaiotto and Witten in [16].

For that reason, we call the D-partition that labels the untwisted puncture the Nahm pole.

To describe the local Hitchin boundary condition for an untwisted puncture with

Nahm-pole D-partition p, one must recall the Spaltenstein map,4 which takes p into a

new D-partition d(p), called the Hitchin pole of the puncture.5 Then, the local boundary

condition corresponding to p is

Φ(z) =
X

z
+ so(2N)

where X is an element of the nilpotent orbit6 associated to d(p), and so(2N) above denotes

a generic regular function in z valued in so(2N).

On the other hand, we have a sector of twisted punctures, with monodromy given by

the action of the nontrivial element o of the Z2 outer automorphism group of DN . The

action of o splits so(2N) as

so(2N) = so(2N − 1)⊕ o−1,

where so(2N − 1) and o−1 are the eigenspaces with eigenvalues +1 and -1, respectively.

The action of o on the k-differentials is also quite simple:

o : φ2k 7→ φ2k (k = 1, 2, . . . , N − 1)

φ̃ 7→ −φ̃
(2.2)

3A D-partition of 2N is a partition of 2N where each even part appears with even multiplicity. However,

“very even” D-partitions — those where all of the parts are even — correspond to not one, but two,

nilpotent orbits. To distinguish between the two orbits, we assign a red or blue colour to the very-even

Young diagrams.
4This Spaltenstein map consists in taking the “D-collapse” of the transpose of the D-partition. The

D-collapse operation is explained in the untwisted D-series paper [4], as well as in the book [17].
5When p is non-special (i.e., when it does not lie in the image of the Spaltenstein map), the information

encoded in d(p) must be supplemented by a nontrivial “Sommers-Achar” finite group, C, whose definition

can be found in [8]. This additional discrete information encodes the disconnected part of the group of gauge

transformations which we mod out by in constructing the solutions to the Hitchin system. In particular,

it determines the presence (or absence) of the “a-type” constraints, on the gauge-invariant k-differentials.

This, in turn affects the local contributions to the graded Coulomb branch dimensions. In the tables, we

denote the Hitchin pole for non-special punctures as a pair (d(p), C).
6Using a nilpotent element X in this equation amounts to writing the local boundary condition in the

absence of mass deformations. The mass-deformed boundary condition involves semisimple (diagonalizable)

elements of so(2N), whose eigenvalues take values in the Cartan subalgebra of the flavour Lie algebra for

the puncture. For the untwisted A series, a recipe for mass-deformed local boundary conditions was given

in [5]. A general prescription is given in section 2.4 of [8].
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Following [8], the twisted punctures of the DN series are labeled by embeddings of sl(2)

in sp(N − 1) (the Langlands dual of so(2N − 1)), or, equivalently, by nilpotent orbits in

sp(N − 1), or by C-partitions7 of 2N − 2.

To describe the local boundary condition for a twisted puncture, we need to recall the

relevant Spaltenstein map.8 This is a map d that takes a C-partition p of 2N − 2 into a

B-partition d(p) of 2N−1. A B-partition of 2N−1 labels an sl(2) embedding in so(2N−1),

or equivalently a nilpotent orbit in so(2N − 1). So, in our nomenclature, the Nahm pole

p of a twisted puncture is a C-partition of 2N − 2, and its Hitchin pole9 is a B-partition

d(p) of 2N − 1. The local boundary condition for the Higgs field is then:

Φ(z) =
X

z
+
o−1

z1/2
+ so(2N − 1) .

Here X is an element of the so(2N − 1) nilpotent orbit d(p), while o−1 and so(2N − 1)

in the equation above denote generic regular functions in z valued in these linear spaces,

respectively.

2.1 Local properties of punctures

2.1.1 Global symmetry group and central charges

The local properties of a puncture that we list in our tables are the pole structure (with

constraints), the flavour group (with flavour-current central charges for each simple factor)

and the contributions (δnh, δnv) to, respectively, the effective number of hypermultiplets

and vector multiplets (or, equivalently, to the conformal-anomaly central charges (a, c)).

We will discuss how to compute pole structures and constraints in section 2.1.2 and sec-

tion 2.1.3. Here we want to focus briefly on the other properties.

Given the Nahm partition, for every part l, let its multiplicity be nl. Then, the flavour

group of untwisted and twisted punctures are, respectively,

Gflavour =
∏
l even

Sp
(nl

2

)
×
∏
l odd

SO(nl) (untwisted)

Gflavour =
∏
l even

SO(nl)×
∏
l odd

Sp
(nl

2

)
(twisted) .

The flavour-current central charges for each simple factor above can be computed using the

formulas in section 3 of [8]. In that reference, one can also see how to compute δnh and δnv.

Instead of reviewing the general formulas, we find it more useful to discuss an example.

Consider the D6 twisted puncture with Nahm pole C-partition [32, 14]. The flavour

group is Gflavour = Sp(2) × SU(2). To compute the central charges, we need to know how

the adjoint representation of Sp(5) decomposes under the subgroup SU(2) × Gflavour (the

7A C-partition of 2N is a partition of 2N where each odd part appears with even multiplicity. A

B-partition of 2N − 1 is a partition of 2N − 1 where each even part appears with even multiplicity.
8This Spaltenstein map consists in adding a part “1” to a C-partition p, taking the transpose, and then

doing a B-collapse. The result is always a B-partition. The “B-collapse” is discussed in [8, 15] and in [17].
9Again, when the Nahm pole p is non-special, the complete Hitchin pole information is not just d(p),

but a pair (d(p), C), with C the Sommers-Achar group [8].
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first factor being the embedding of SU(2), corresponding to this partition). The C-partition

itself tells us that the fundamental of Sp(5) decomposes as 10 = (1; 4, 1) + (3; 1, 2). The

embedding indices of each factor of SU(2) × Gflavour = SU(2) × Sp(2) × SU(2) in Sp(5)

are 8,1 and 3, respectively. With this information, it is not hard to see that the adjoint

representation of Sp(5) decomposes as

55 = (1; 10, 1) + (1; 1, 3) + (3; 1, 1) + (3; 4, 2) + (5; 1, 3). (2.3)

Now, to find δnh and δnv, we use eq. (3.19) of [8]. In the notation of that paper, we

have j = so(12), g = sp(5), and, in their respective usual root bases, the Weyl vectors

ρSpin(12) = (5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0), ρSp(5) = (5, 4, 3, 2, 1, 0, 0, 0, 0, 0). We also find h/2 =

(1, 1, 0, 0, 0,−1,−1, 0, 0, 0) using, say, the formulas of section 5.3 of [17]. Since the adjoint

representation of Sp(5) decomposes under the Nahm-pole SU(2) as 55 = 13(1)+9(3)+3(5),

we have dim g0 = 13+9+3 = 25 and dim g1/2 = 0. Thus, eq. (3.19) of [8] yields δnh = 368

and δnv = 717
2 .

Finally, from (2.3) above as well as eq. (3.20) of [8], we compute the flavour-current

central charges for each simple factor of Gflavour,

kSp(2) = 1× lSp(2)(10) + 2× lSp(2)(4) = 8

kSU(2) = 1× lSU(2)(3) + 1× lSU(2)(3) + 4× lSU(2)(2) = 12

where lh(R) denotes the index of the representation R of h.

2.1.2 Pole structures

The pole structure of a puncture is the set of leading pole orders {p2, p4, p6, . . . , p2N−2; p̃}
in the expansion of the k-differentials φk(z) (k = 2, 4, 6, . . . , 2N − 2) and the Pfaffian φ̃(z)

around the position of the puncture on C. Knowing the pole structures of the various

punctures allows us to write down the Seiberg-Witten curve (2.1) of a theory. The pole

orders are all integers, except for p̃ in a twisted puncture, which must be a half-integer

because of the monodromy (2.2).

We already saw in [4] how to read off the pole structure of an untwisted puncture from

its Hitchin-pole D-partition p. Basically, regard p as a partition in the untwisted A-series,

use the procedure to write down the pole structure [3], and discard the pole orders that

would correspond to φk with odd k. Finally, divide the pole order p2N of φ2N by two, to

obtain the pole order p̃ of the Pfaffian φ̃. p2N will always be even, so that p̃ will come out

to be an integer, as expected for an untwisted puncture.

To compute the pole structure of a twisted puncture, we use its Hitchin B-partition p.

Simply, add 1 to the first (i.e., the largest) part in p, and use the same procedure to compute

the pole structure as for an untwisted D-series puncture. Notice that upon adding 1 to the

largest part, the B-partition becomes a partition of 2N , and one can show that the pole

order p2N of φ2N is always odd, so that the pole order p̃ of the Pfaffian is a half-integer, as

it should be.

For instance, consider the D6 twisted puncture with Nahm-pole C-partition [42, 12].

The Hitchin B-partition is [5, 22, 12]. Following our prescription, we add 1 to the largest

– 6 –
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part, so we get [6, 22, 12], and read off the pole structure as in the untwisted A-series. We

thus get {1, 2, 3, 4, 5, 5, 6, 6, 7, 7, 7} (corresponding to scaling dimensions 2, 3, 4, . . . , 11, 12).

We discard the pole orders at odd dimensions, and divide the pole order of φ12 = φ̃2 by

two, and we are left with the correct pole structure, {1, 3, 5, 6, 7; 7
2}.

2.1.3 Constraints

In the untwisted D-series, punctures featured “constraints”, which are either: 1) relations

among leading coefficients in the k-differentials (“c-constraints”); or 2) expressions defining

new parameters a(k) of scaling dimension k as, roughly, the square roots of a leading

coefficient c(2k) of dimension 2k (“a-constraints”). Both kinds of constraints affect the

counting of graded Coulomb branch dimensions of the theory, as well as the Seiberg-Witten

curve. As expected, we find a-constraints and c-constraints also in the twisted sector. The

pole structure and the constraints provide a “fingerprint” [18] that allows us to identify

the puncture uniquely.

Let us briefly review our nomenclature. For a puncture at z = 0, we consider the coef-

ficients c
(2k)
l and c̃l of the leading singularities in the expansion in z of the 2k-differentials

(2k = 2, 4, . . . , 2N − 2) and the Pfaffian φ̃, respectively,

φ2k(z) =
c

(2k)
l

zl
+ . . .

φ̃(z) =
c̃l
zl

+ . . .

where . . . denotes less singular terms. (The pole orders l above are, of course, the same as

those in the pole structure, so we have l = p2k or l = p̃, respectively; in this subsection we

just write l to keep expressions simple.)

An a-constraint of scaling dimension 2k is an expression linear in c
(2k)
l that defines (up

to sign) a new parameter a
(k)
l/2 of dimension k,

c
(2k)
l =

(
a

(k)
l/2

)2
+ . . . ,

where . . . stands for a polynomial in leading coefficients (of dimension less than 2k) as

well as new coefficients a
(j′)
l′ (which would themselves be defined by other a-constraints).

This polynomial is homogeneous in dimension and pole order, i.e., in every term in the

polynomial, the sum of the scaling dimensions of every factor must be 2k, and the sum of

pole orders must be l. The existence of an a-constraint implies that, in counting graded

Coulomb branch dimensions, a parameter of scaling dimension 2k is to be replaced by one

of dimension k.

A c-constraint of dimension 2k is an expression linear in c
(2k)
l , which relates it to other

leading coefficients, and perhaps also to new parameters ajl defined by a-constraints,

c
(2k)
l = . . .

where, again, the ellipsis denotes a homogeneous polynomial in leading coefficients and new

parameters. For even N , if the puncture is very-even, a “very-even” c-constraint, which is

– 7 –
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linear in the leading coefficients of both φN and the Pfaffian, may appear,

c
(N)
l ± 2c̃l = . . .

Unlike an a-constraint, a c-constraint does not define any new parameters; it simply tells

us that c
(2k)
l (or, say, c(N) for a very-even c-constraint) is not independent, and so it should

not be considered when counting Coulomb branch dimensions.

Finally, at every scaling dimension 2k, we find at most one constraint, which can be

either an a-constraint or a c-constraint.

Below, we present algorithms10 to compute the scaling dimensions 2k at which a-

constraints and c-constraints appear for a given puncture. This information is enough to

compute the local contribution to the graded Coulomb branch dimensions.

Untwisted punctures. Let p be the Nahm pole D-partition of an untwisted puncture.

Also, let q = {q1, q2, . . . } be the transpose partition, and s = {s1, s2, . . . } the sequence of

partial sums of q (si = q1 + q2 + · · · + qi). Below, s1 denotes the first element of s, and

plast, the last element of the D-partition p. (By the conditions that define a D-partition,

s1 is always an even number.)

Then, an a-constraint of dimension 2k exists if the following conditions are met:

1. 2k belongs to s, say, sj = 2k.

2. j is even.

3. If sj is a multiple of s1, say, sj = rs1, one has r ≥ 2
⌊plast

2

⌋
+ 1.

4. sj is not the last element of s.

On the other hand, a c-constraint of scaling dimension 2k exists if the following con-

ditions are met:

1. 2k belongs to s, say, sj = 2k.

2. If j is even, one has that: a) sj is a multiple of s1, say, sj = rs1; b)
⌊plast

2

⌋
+ 1 ≤ r ≤

2
⌊plast

2

⌋
; c) sj is not the last element of s.

10As in our previous papers, the a-constraints and c-constraints of a special puncture can be read off

directly from the k-differentials for the Hitchin field with the appropriate boundary condition at the punc-

ture. It is harder to compute the constraints of a non-special puncture in this way. In practice, we use the

fact that every non-special puncture belongs to a special piece which contains a (unique) special puncture;

their constraints are the same, except that some a-constraints are relaxed as dictated by the Sommers-

Achar group; see §3.4 and §3.5 of [8], and §2.1 of [4]. For the twisted D-series, one can also compute the

c-constraints, and partial information about the a-constraints, both for special and non-special punctures,

by studying the linear SO−Sp quiver corresponding to the puncture; see appendix B of [9]. The constraints

are non-trivially consistent with the dimension of the Hitchin nilpotent orbit, the value of δnv, and the

collisions of punctures using k-differentials. The general recipes for the constraints in terms of partitions

that we show in this paper were found by studying a large number of examples, and we have checked their

consistency up to high N . However, we do not have a rigorous proof of them.

– 8 –
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3. If j is odd, one has that: a) sj is neither the first nor the last element of s; b) both

sj−1 and sj+1 are even; c) sj =
sj−1+sj+1

2 ; d) if sj is divisible by s1, say, sj = rs1,

one has r ≥
⌊plast

2

⌋
+ 1.

Finally, if p is very even, an additional, “very-even”, c-constraint exists at 2k = N if

N belongs to s and N = s1plast
2 . As already mentioned, this very-even c-constraint is linear

in both leading coefficients c
(N)
l and c̃l. (The pole orders of φN and φ̃ are the same if the

conditions just mentioned hold, so such a linear constraint is possible.) A generic very-

even puncture may or may not have this very-even c-constraint. In particular, a very-even

puncture could have a c-constraint of dimension N which is not very even (in the sense

that it is not linear in both c
(N)
l and c̃l).

Twisted punctures. Suppose we have a twisted puncture labeled by the Nahm-pole

C-partition p. Let q be the transpose partition, and s the sequence of partial sums of q.

It is convenient to define another sequence s′, obtained by adding 2 to every element in s.

(As a check, the last element of s′ must be 2N .) Let s′ = {s′1, s′2, . . . }.
Then, an a-constraint of scaling dimension 2k exists if the following conditions are met:

1. 2k belongs to s′, say, s′j = 2k.

2. j is odd.

3. s′j is not the last element of s′.

On the other hand, a c-constraint of scaling dimension 2k exists if the following con-

ditions are met:

1. 2k belongs to s′, say, s′j = 2k.

2. j is even.

3. s′j is not the last element of s′

4. Both s′j−1 and s′j+1 are even, and s′j =
s′j−1+s′j+1

2 .

Constraint structure. The constraints of twisted punctures are very simple. c-con-

straints are always “cross-terms” between a-constraints, or between an a-constraint and

the Pfaffian (where φ2N = φ̃2 is seen as another “a-constraint”). As a schematic example,

c(k+m) below is a cross-term for the “squares” at dimensions 2k and 2m:

c(2k) =
(
a(k)

)2
, c(k+m) = 2a(k)a(m), c(2m) =

(
a(k)

)2
. (2.4)

(In an actual example, k + m would always turn out to be even). a-constraints also

generically contain cross-terms, in addition to the quadratic term in the new parameter.

Many examples can be found in the tables.

The constraints of untwisted punctures are slightly more complicated, but they re-

semble the constraints of twisted punctures in the A2N−1 series [14], so we refrain from

repeating the details. To be brief, there is a sequence of c-constraints (illustrated below in

an example), all related to each other, and which are associated to the first terms in the

set of partial sums s. c-constraints outside this sequence are simply cross-terms between
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a-constraints and/or the Pfaffian, as in (2.4). For a very-even puncture, the very-even c-

constraint, if it exists, becomes part of the sequence just mentioned. As usual, a-constraints

can include cross-terms in addition to the quadratic term that defines the new parameter.

Let us discuss the constraints of a D6 very-even puncture, [62]. In this case, q = [26]

and s = [2, 4, 6, 8, 10, 12]. Also, plast = 6 and s1 = 2. So, there are c-constraints at 2k = rs1

with 4 ≤ r ≤ 6, that is, at 2k = 8, 10. There is also a very-even c-constraint (at 2k = 6).

These c-constraints all belong to the sequence mentioned in the previous paragraph. Also,

there are no a-constraints, and the pole structure is {1, 2, 3, 4, 5; 6}. The structure of the

c-constraints is the clearest in terms of auxiliary quantities t
(2)
1 , t

(4)
2 and t

(6)
3 :

c
(0)
0 = 1, c

(8)
4 =

1

4

(
t
(4)
2

)2
+

1

2
t
(6)
3 t

(2)
1 ,

c
(2)
1 ≡ t(2)

1 , c
(10)
5 = t

(6)
3 t

(4)
2 ,

c
(4)
2 ≡ 1

4

(
t
(2)
1

)2
+ t

(4)
2 , c

(12)
6 =

1

4

(
t
(6)
3

)2
,

c
(6)
3 ≡ 1

2
t
(2)
1 t

(4)
2 + t

(6)
3 , and c

(12)
6 ≡

(
c̃

(6)
3

)2
.

Let us explain how this sequence can be constructed iteratively. The rule is that each

term we construct must be interpreted as either a cross-term or a square. First, we write

c
(0)
1 = 1, which is trivially true. We define t

(2)
1 ≡ c

(2)
1 . Since, from our rules, c

(2)
1 is not

constrained, so in particular it cannot be a square, we interpret t
(2)
1 as the cross-term

2 × (1) ×
(

1
2 t

(2)
1

)
. Since this is a cross-term, we want to have also the squares of 1 and

1
2 t

(2)
1 . The square of 1 already appears as c

(0)
0 = 1, and the square of 1

2 t
(2)
1 should appear

in the expression at dimension 2k = 4. But c
(4)
2 should not be constrained, so c

(4)
2 cannot

just be equal to 1
4

(
t
(2)
1

)2
. Thus, the expression at 2k = 4 defines t

(4)
2 as the difference

between these quantities, t
(4)
2 ≡ c

(4)
2 − 1

4

(
t
(2)
1

)2
. Each time we introduce a new quantity

such as t
(4)
2 , the cross-terms between this and other quantities, as well as the square of

the new quantity, must appear at higher 2k. For example, at 2k = 6, there must now be

a cross-term 2 ×
(

1
2 t

(2)
1

)
×
(

1
2 t

(4)
2

)
= 1

2 t
(2)
1 t

(4)
2 . But c

(6)
3 is not constrained, so it cannot

actually be equal to 1
2 t

(2)
1 t

(4)
2 ; hence, we introduce another new quantity, t

(6)
3 , which is the

difference. This is actually the last new quantity we need to introduce in this example,

because the expressions at higher 2k are constraints. The rest of the terms at higher 2k

can now be seen to be squares or cross-terms of the quantities 1, 1
2 t

(2)
1 , 1

2 t
(4)
2 and 1

2 t
(6)
3 . The

second to last equation says that c
(12)
6 is equal to the square of 1

2 t
(6)
3 ; but at the same time,

φ12 is the square of the Pfaffian, so we must have t
(6)
3 = ±2c̃3. This is how we recover the

very-even constraint at 2k = 6.

Solving for t
(2)
1 , t

(4)
2 and t

(6)
3 , we find our actual c-constraints:

c
(6)
3 ∓ 2c̃3 =

1

2
c

(2)
1

(
c

(4)
2 −

1

4

(
c

(2)
1

)2
)
,

c
(8)
4 =

1

4

(
c

(4)
2 −

1

4

(
c

(2)
1

)2
)2

± c̃4c
(2)
1 ,
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c
(10)
5 = ±c̃3

(
c

(4)
2 −

1

4

(
c

(2)
1

)2
)
.

Flipping the sign of c̃3 switches between the constraints for the red and the blue versions

of this puncture.

2.2 Collisions

When two punctures collide, a new puncture appears. This process can be described at the

level of the Higgs field, using the local boundary conditions discussed in section 2, or at

the level of the k-differentials, using the pole structures and the constraints of section 2.1.2

and section 2.1.3. Of course, both mechanisms are quite related, because the k-differentials

are, essentially, the trace invariants of the Higgs field. These procedures are analogous to

those for the twisted A2N−1 series described in [14].

Let us start by discussing collisions using the Higgs field. Consider two untwisted

punctures at z = 0 and z = x on a plane. The respective local boundary conditions are:

Φ(z) =
X1

z
+ so(2N),

Φ(z) =
X2

z − x
+ so(2N),

where X1 and X2 are representatives of the respective Hitchin-pole orbits for the punctures.

Then, in the collision limit, x→ 0, a new untwisted puncture appears at z = 0,

Φ(z) =
X1 +X2

z
+ so(2N).

Here, X1 +X2 is an element of the mass-deformed Hitchin-pole orbit for the new puncture,

and the mass deformations correspond to the VEVs of the decoupled gauge group. Taking

the mass deformations to vanish, X1 + X2 becomes the Hitchin-pole nilpotent orbit for

the new puncture. The fact that the new residue is X1 +X2 also follows from the residue

theorem applied to the three-punctured sphere that appears in the degeneration limit;

another derivation ensues from an explicit ansatz for the Higgs field on the plane with two

punctures [14], where the limit x→ 0 can be taken.

Now consider an untwisted and a twisted puncture, at z = 0 and z = x, respectively.

The respective local boundary conditions are:

Φ(z) =
X

z
+ so(2N),

Φ(z) =
Y

z − x
+

o−1

(z − x)1/2
+ so(2N − 1).

Then, the local boundary condition for the new twisted puncture is:

Φ(z) =
X|so(2N−1) + Y

z
+
o−1

z1/2
+ so(2N − 1),

where X|so(2N−1) is the restriction of X ∈ so(2N) to the subalgebra so(2N − 1).
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Finally, consider two twisted punctures at z = 0 and z = x,

Φ(z) =
Y1

z
+
o−1

z1/2
+ so(2N − 1),

Φ(z) =
Y2

z − x
+

o−1

(z − x)1/2
+ so(2N − 1).

Then, the local boundary condition for the new untwisted puncture is:

Φ(z) =
Y1 + Y2 + o−1

z
+ so(2N),

where o−1 denotes a generic element in such space.

The procedure to collide punctures using k-differentials is explained in [14] for the case

of the twisted A2N−1 series. The discussion is entirely analogous, so we leave the details

to that paper. Here we will just give an example of how to use it.

Consider the collision of three punctures,

[2(N − r)− 1, 2r + 1]× [2(N − r)− 1, 2r + 1]× [2(N − 1)],

which yields the [2(N − 2r− 1), 14r] puncture with an Sp(r)× Sp(r) gauge group. We will

use this result in section 2.5.4. Let us show how to derive it for the particular case r = 3.

The puncture [2N − 7, 7] has pole structure {1, 2, 3, 4, 5, 6, 6, 6, . . . , 6; 3}, no a-con-

straints, and three c-constraints at 2k = 8, 10, 12:

c
(8)
4 =

1

4

(
c

(4)
2 −

1

4

(
c

(2)
1

)2
)2

+
1

2
c

(2)
1

(
c

(6)
3 −

1

2
c

(2)
1

(
c

(4)
2 −

1

4

(
c

(2)
1

)2
))

,

c
(10)
5 =

1

2

(
c

(4)
2 −

1

4

(
c

(2)
1

)2
)(

c
(6)
3 −

1

2
c

(2)
1

(
c

(4)
2 −

1

4

(
c

(2)
1

)2
))

,

c
(12)
6 =

1

4

(
c

(6)
3 −

1

2
c

(2)
1

(
c

(4)
2 −

1

4

(
c

(2)
1

)2
))2

.

(2.5)

On the other hand, the puncture [2(N − 1)], which is the “minimal” twisted puncture, has

pole structure {1, 1, 1, . . . , 1; 1
2}, and no constraints.

First, consider two [2N − 7, 7] punctures on the plane, at positions z = 0 and z = x,

and write down the k-differentials:

φ2k(z) =
u2k + v2kz + . . .

zk(z − x)k
(2k = 2, 4, 6, 8, 10, 12)

φ2k(z) =
u2k + . . .

z6(z − x)6
(2k = 14, 16, . . . , 2N − 2)

φ̃(z) =
ũ+ . . .

z3(z − x)3
.

Then, in the x → 0 limit, which corresponds to the collision, we find the pole orders

{2, 4, 6, 8, 10, 12, 12, 12, . . . , 12; 6}. So, at first sight, we would have gauge-group Casimirs

at 2k = 2, 4, 6, 8, 10, 12. However, the c-constraints (2.5) from the two [2N−7, 7] punctures

imply that the leading and subleading coefficients u2k and v2k for 2k = 8, 10, 12 are de-

pendent on the coefficients u2, u4, u6, and furthermore vanish when we take u2, u4, u6 → 0.
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Thus, the only independent gauge-group Casimirs are u2, u4, u6, and the massless puncture

has pole structure {1, 3, 5, 6, 8, 10, 12, 12, . . . , 12; 6}, with no constraints. These properties

single out the puncture [2N−13, 26, 1], which has Sp(3) flavour symmetry. Thus, the gauge

group must be Sp(3).

Colliding the new puncture [2N −13, 26, 1] with the minimal twisted puncture is much

easier, because none is constrained. So all we need to do is add up pole orders, and identify

gauge-group Casimirs. The sum of the pole structures is {2, 4, 6, 7, 9, 11, 13, 13, . . . , 13; 13
2 }.

Hence, we have again a gauge group with Casimirs 2, 4, 6, and a new puncture with pole

structure {1, 3, 5, 7, 9, 11, 13, 13, . . . , 13; 13
2 }, with no constraints. These properties corre-

spond to the puncture [2N − 14, 112], which has flavour symmetry Sp(6), and the gauge

group is an Sp(3) subgroup of Sp(6). Actually, the Sp(3) flavour group of the [2N−13, 26, 1]

puncture that we found in the previous paragraph can be interpreted as the commutant

in Sp(6) of the Sp(3) of [2N − 14, 112]. Thus, the simple factors of a non-simple subgroup

Sp(3)× Sp(3) ⊂ Sp(6) are being gauged by two consecutive cylinders. (We studied exam-

ples of this “atypical” gauging in the twisted A2N−1 series [14]; see also [9] for an earlier

discussion in the context of SO − Sp linear quivers.)

Let us derive the same result by doing the collisions in a different order: first, we

collide a [2N −7, 7] puncture (at z = 0) with the minimal twisted puncture (at z = x). We

use the k-differentials11

φ2k(z) =
u2k + . . .

zk(z − x)
(2k = 2, 4, 6, 8, 10, 12),

φ2k(z) =
u2k + . . .

z6(z − x)
(2k = 14, 16, . . . , 2N − 2),

φ̃(z) =
ũ+ . . .

z3(z − x)1/2
.

This time, solving the c-constraints is less simple. The constraints are not solvable unless

one introduces parameters r2, r4, r6 of dimension 2,4,6 such that:

u2 = r2x
1/2, u4 = −(r2)2

4
+ r4x

1/2, u6 = −r2r4 + r6x
1/2 .

(See section 4.1.3 of [14] for a similar example in more detail.) Then, the constraints imply:

u8 = −1

4
((r4)2 + 2r2r6), u10 = −1

2
r6r4, u12 = −1

4
(r6)2

and in the limit x→ 0, we get a pole structure {1, 3, 4, 5, 6, 7, 7, 7, . . . , 7
2}, with constraints

c
(4)
3 = −(r2)2

4
, c

(10)
6 = −r4r6

2

c
(6)
4 = −r2r4, c

(12)
7 = −(r6)2

4

c
(8)
5 = −(r4)2 − r2r6

2
11In this subsection, we use generic names for Coulomb branch parameters such as u2k, v2k, rk, etc. They

are understood to be different variables in different collisions.
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that is, we have a-constraints at 2k = 4, 8, 12 and c-constraints at 2k = 6, 10. These

properties uniquely identify the twisted puncture [2N − 8, 6]. Notice that there are no

gauge-group Casimirs, so our interpretation is that the cylinder is “empty”. This is an

example of an “atypical degeneration”, as we will recall in section 2.5.4.

Let us now collide the new puncture [2N−8, 6] (at z = 0) with the remaining untwisted

puncture [2N − 7, 7] (at z = x). We have the k-differentials

φ2(z) =
u2 + . . .

z(z − x)

φ2k(z) =
xu2k + v2kz + . . .

zk+1(z − x)k
(2k = 4, 6, 8, 10, 12)

φ2k(z) =
u2k + . . .

z7(z − x)6
(2k = 14, 16, 18, . . . , 2N − 2)

φ̃(z) =
ũ+ . . .

z7/2(z − x)3
.

Taking the collision limit x→ 0, we get the pole orders {2, 4, 6, 8, 10, 12, 13, 13, . . . , 13; 13
2 }.

So, in principle, the gauge-group VEVs are u2, v4, v6, v8, v10, v12. However, v8, v10, v12 are

polynomials in u2, v4, v6 and in three new parameters r2, r4, r6, of respective dimensions

2,4,6, which arise from combining the a-/c-constraints of [2N−8, 6] with the c-constraints of

[2N−7, 7]. So the actual gauge-group VEVs are u2, v4, v6, r2, r4, r6. These VEV dimensions

are consistent with an Sp(3) × Sp(3) gauge group, as before, except that now both Sp(3)

factors are supported on a single cylinder. Setting to zero the gauge-group VEVs, we get

the massless pole orders {1, 3, 5, 7, 9, 11, 13, 13, . . . , 13; 13
2 }, with no constraints, which, as

before, correspond to the [2N − 14, 112] puncture.

2.3 Gauge couplings

Consider an N = 2 supersymmetric gauge theory, with simple gauge group, G, and matter

content chosen so that the β-function vanishes. This gives rise to a family of SCFTs,

parametrized by

τ =
θ

π
+

8πi

g2
.

A rich class of (though not all) such theories can be realized as compactifications of the

(2, 0) theory on a sphere with four untwisted punctures. If the four puncture are distinct,

then the S-duality group, Γ(2) ⊂ PSL(2,Z), is generated by

T 2 : τ 7→ τ + 2, ST 2S : τ 7→ τ

1− 2τ
.
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The fundamental domain for Γ(2) is isomorphic to M0,4 ' CP1. In particular, the coordi-

nate on the complex plane, f , is given by12

f(τ) = −θ
4
2(0, τ)

θ4
4(0, τ)

= −
(

16q1/2 + 128q + 704q3/2 + . . .
)
.

Since Γ(2) is index-6 in PSL(2,Z), the generators of the latter group act on M0,4 as

T : f 7→ f

f − 1
, S : f 7→ 1

f
.

These generate an S3 action on M0,4, as depicted in the figure

�✁ ✂ ✁ ✄ ☎ ✁ ☎

✆✁ ✝ ✞ ✟✠ ✄ ☎

✆✁ � ✞ ✟✠ ✄ ☎

The points, {0, 1,∞}, of the compactification divisor, are fixed points with stabilizer group

Z2. The points {−1, 1/2, 2} are also fixed points with stabilizer group Z2. Finally, the

points (1 ± i
√

3)/2 are fixed points with stabilizer group Z3. The j-invariant (invariant

12Our θ-function conventions are

θ2(0, τ) =
∑
n∈Z

q(n+1/2)2/2

θ3(0, τ) =
∑
n∈Z

qn
2/2

θ4(0, τ) =
∑
n∈Z

(−1)nqn
2/2

where q = e2πiτ .
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under the action of PSL(2,Z)) is

j(τ) = 256
(1− f + f2)

3

f2(1− f)2

=
1

q
+ 744 + 196884q + . . .

Of course, while the j-invariant is invariant under the full PSL(2,Z), the physics generically

is not.

If two of the punctures are identical, then τ 7→ −1/τ leaves the physics unchanged.

The S-duality group is Γ0(2) ⊂ PSL(2,Z), generated by T 2 : τ 7→ τ +2 and S : τ 7→ −1/τ ,

whose fundamental domain is the Z2 quotient of M0,4 by f 7→ 1/f . The physics at f = 0

and at f = ∞ are both that of a weakly-coupled G gauge theory. The other boundary

point, f = 1, and the interior point, f = −1 are fixed-points of the Z2 action.

If three of the punctures (or all four) are identical, then the S-duality group is the full

PSL(2,Z), the physics at all three boundary points is that of a weakly-coupled G-gauge

theory and the fundamental domain is just the shaded region in the figure.

How this picture gets modified, in the presence of twisted punctures, will be one of our

main themes in this paper.

2.4 Very-even punctures

In the A2N−1 series, the outer automorphism twists acted trivially on the set of nilpotent

orbits. So the identities of the untwisted punctures were unaffected by the introduction of

twisted punctures. By contrast, in the DN series (for N even), the outer automorphism

twists act by exchanging the “red” and “blue” very-even punctures. Dragging an untwisted

very-even puncture around a twisted puncture turns it from red to blue, or vice-versa.

To illustrate the phenomenon, let us look at an example in the twisted D4 theory.

�
✁

�
✂

�
✄

�
☎

Here, it is useful to recall [4] that the very-even puncture13 has only one constraint,

which is a very-even c-constraint,

c
(4)
3 ± 2c̃3 = 0,

where the top (bottom) sign corresponds to a red (blue) puncture.

13As in [3, 4, 14], a Nahm-pole partition p is represented by a Young diagram such that the column

heights are equal to the parts of p. (So is the puncture with Nahm pole D-partition [24].) In this

paper we do not use Young diagrams to represent Hitchin-pole partitions.
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The Higgs field (with Coulomb branch parameters u2, u4, ũ, u6) yields the differentials

φ2(z) =
u2z12z34(dz)2

(z − z1)(z − z2)(z − z3)(z − z4)

φ4(z) =
z24z34(dz)4

(z − z1)(z − z2)3(z − z3)3(z − z4)3

×
[
u4(z−z3)(z−z4)z12z23+2ũ(z2−z)

(
(z−z3)(z13z23z14z24)1/2+(z−z4)z13z23

)]
φ6(z) =

u6z12z23z24z
3
34(dz)6

(z − z1)(z − z2)3(z − z3)4(z − z4)4

φ̃(z) =
ũz24z

2
34(z13z23)1/2(dz)4

(z − z1)1/2(z − z2)3/2(z − z3)3(z − z4)3
.

The powers of zij ≡ zi − zj have been introduced to make the above expressions Möbius-

invariant14 , and hence well-defined on the moduli space. However, the (unavoidable)

square-roots mean that moduli space is, itself, a double-cover (in fact, a 4-fold cover, but the

SW geometry factors through a Z2 quotient) of the moduli space of the 4-punctured sphere.

Whether a very-even puncture is red or blue depends on the relative sign of the residues

of the cubic poles of φ4(z) and φ̃(z) at the location of the puncture. But the square-roots

are such that if we drag the very-even puncture (say, the one located at z3) around one

of the twisted punctures (say, the one located at z1), the relative sign changes, indicating

that the puncture has changed from red to blue, or vice versa.

Since the formulae are a little bit formidable-looking in their fully Möbius-invariant

form, it helps to fix the Möbius invariance by setting

(z1, z2, z3, z4)→ (0,∞, w2, 1) .

The expressions for φ4(z), φ̃(z) (which are all we need for the present discussion) simplify to

φ4(z) =
(w2 − 1)

[
u4(z − w2)(z − 1) + 2ũ

(
w(z − w2) + w2(z − 1)

)]
(dz)4

z(z − w2)3(z − 1)3

φ̃(z) =
ũw(w2 − 1)

2
(dz)4

z1/2(z − w2)3(z − 1)3
.

Dragging the point z3 = w2 around the origin changes the sign of w in the above expressions.

This changes the relative sign of the residues of φ4 and φ̃ at z = w2, whilst preserving the

relative sign of the residues at z = 1.

Of course, the Seiberg-Witten geometry is invariant under the operation of simultane-

ously flipping all of the colours of all of the very-even punctures. This gives a Z2 which

acts freely on the gauge theory moduli space. We will often find it useful to work on the

quotient, fixing the colour of one of the very-even punctures.

14To minimize the number of ensuing branch cuts, we have chosen not to preserve the obvious z3 ↔ z4
symmetry. We can restore it by redefining the Coulomb branch parameter

ˆ̃u = ũ

(
z13z24
z12z34

)1/2

.

The resulting theory lives naturally on the 4-fold branched cover of M0,4.
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Having seen the phenomenon in a global example, let us recover the same result,

working locally on the plane, with the Higgs field itself (rather than the gauge-invariant

k-differentials). Consider a very-even Higgs-field residue B ∈ so(2N), which belongs to

a, say, red nilpotent orbit. We can write B = B|so(2N−1) + B|o−1 , corresponding to the

splitting so(2N) = so(2N − 1)⊕ o−1. Then, one can check that the map B|o−1 7→ −B|o−1

puts the residue B in the other (blue) nilpotent orbit. This map defines an isomorphism

between the elements of the red and the blue nilpotent orbits.

Now suppose that the twisted puncture (with residue A ∈ so(2N − 1) is at z = 0 and

the very-even puncture (with residue B ∈ so(2N)) is at z = x. Then, the Higgs field for

this system is:

Φ(z) =
(z − x)A+ zB|so(2N−1)

z(z − x)
+
x1/2B|o−1 + (z − x)D + . . .

z1/2(z − x)
+ . . .

where D is a generic element in o−1, and the . . . denote regular terms. The factor of x1/2 is

necessary to make Φ well-defined as a one-form. Then, x parametrizes the distance between

the very-even puncture and the twisted puncture, and if x circles the origin, x1/2 → −x1/2,

it enforces B|o−1 → −B|o−1 , so our red puncture becomes blue, or vice versa.

2.5 Atypical degenerations

2.5.1 Atypical punctures

As an application of the formulas in section 2.1, let us find the series of punctures with

contribution n2 = 2. We will call these “atypical punctures”, as they give rise to theories

where the number of simple factors in the gauge group is not equal to the dimension of

the moduli space of the punctured Riemann surface, C. We have seen this phenomenon

already in the twisted A2N−1 series [14].

From our rules for a-constraints, it is easy to see that there are no untwisted atypical

punctures, and that for a twisted puncture to be atypical, its Nahm pole C-partition must

consist of exactly two parts. Hence, the atypical punctures are

[2(N−r−1),2r]

, for r = 1, 2, . . . ,

⌊
N − 1

2

⌋
with the addition of

[N−1,N−1]

if N is even.

These arise, respectively, as the coincident limit of

a)
[2(N−1)]

and
[2(N−r)−1,2r+1]

b)
[2(N−1)]

and
[N,N ]

(for N even)

Normally, the OPE of two (regular) punctures, p and p′, yields a third (regular) puncture,

p′′, coupled to a gauge theory, (X,H), where

• The gauge group, H, is a subgroup of the global symmetry group of p′′.

• In the coincident limit, the gauge coupling of H goes to zero.
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Here, when p′′ is atypical, the would-be gauge theory is empty : (X,H) = (∅, ∅). Instead,

the theory with an insertion of p′′ has one more simple factor in the gauge group than the

“expected” 3g − 3 + n.

For a surface, C, with n punctures, m of which are atypical, the number of simple

factors in the gauge group is 3g − 3 + n + m. “Resolving” each atypical puncture by the

pair of punctures, above, yields a surface with n + m punctures and the moduli space of

the gauge theory is a branched cover of Mg,n+m. In contrast to the usual case, where

each component of the boundary of the moduli space corresponds to one simple factor in

the gauge group becoming weakly-coupled, the boundaries of Mg,n+m, where an atypical

puncture arises in the OPE, do not typically correspond to any gauge coupling becoming

weak (that is, under the branched covering, they are the image of loci in the interior of the

gauge theory moduli space).

2.5.2 Gauge theory fixtures

In particular, for n = 3, m = 1 (or 2), we have a “gauge theory fixture.” Resolving the

atypical puncture yields a gauge theory moduli space which is branched cover of M0,4. We

may well ask, “Where, in the gauge theory moduli space, have we landed, in the coincident

limit which yields the atypical puncture?” The answer is that we are at the interior point,

“f(τ) = −1”, though the mechanics of how this happens varies between the cases.

Let us resolve

�✁✂✄ ☎ ✆ ☎ ✝✞✟ ✁✆✠

✡

☛

or
�✁✂ ✄ ☎✆

✝
✞

✟

✠

to

�✁✂✄ ☎ ✆✝✞

✟

✠

✡

☛☞✌✍ ✎ ✏✑ ✎ ✒✓ ☞✏ ✔ ✒✕

✖

✗

✆

and

�

✁

✂✄
☎
✆

✝

✂✞✟✄ ✠ ✁✡✆

☛

☞

✌

respectively. We have parametrized M0,4 by x, but the gauge theory moduli space is a

branched cover, parametrized by w, with

w2 = x .

The gauge coupling

f(τ) =
w − 1

w + 1
(2.6)
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so that f = 0 and f = ∞ both map to x = 1, while f = 1 maps to x = ∞. Our gauge-

theory fixture is whatever lies over the point x = 0. From (2.6), this is the interior point,

f(τ) = −1, of the gauge theory moduli space.

As an example, let us consider the D4 gauge theory fixture

whose resolution is

�
✁

✂

✄

Actually, since we have two very-even punctures, the full moduli space is a 4-sheeted cover

of M0,4. The SW geometry is invariant under simultaneously flipping the colours of both

punctures, so we can consistently work on the quotient by that Z2, and take the colour of

the puncture to be red.

SU(4) gauge theory, with matter in the 1(6) + 4(4) was studied in [3]. Near f(τ) = 0,

the weakly-coupled description is the Lagrangian field theory. Near f(τ) = 1, the weakly-

coupled description is an SU(2) gauging of the SU(8)8 × SU(2)6 SCFT, R0,4. Near f(τ) =

∞, the weakly-coupled description is SU(3), with two hypermultiplets in the fundamental,

coupled to the (E7)8 SCFT.

In the present case, the f → 1 theory arises as x→∞

�✁✂✄☎
✆ �✁✂✄☎✝✞

�✁✂✟☎✠ ✡ �✁✂✄☎☛ �☞✌✍✎✏✑✒✓
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Over x = 1, we have two distinct degenerations, which are exchanged by dragging the

puncture around the origin and returning it to its original position: the Lagrangian field

theory (f = 0)

�✁✂✄☎

✆✂✄☎

✝ ✞✟✠✡☛☞✌

✍✂✆☎

and the theory at f =∞

�✁✂✄☎

✂✆✝☎✞
�✟✠✡

☛ ☞✌✍✎✏✑✒

✓✂✄☎

✔ ✕✖✗✘✙✚✛✜✢

Having fixed the behaviour of f over this two-sheeted cover of M0,4, by reproducing the

correct asymptotics as x→ 1 and x→∞, we can now take x→ 0

�
✁ � ✂✄

☎✆✝☎✞ ✟✠✞✡☛☞ ✌✍✎✟✝☛✞✞✏✑✟☞

and recover that the gauge theory fixture is the aforementioned SU(4) gauge theory at

f(τ) = −1.

2.5.3 Gauge theory fixtures with two atypical punctures

When we resolve the gauge theory fixtures with two atypical punctures, we obtain a

branched covering of M0,5.
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The geometry of M0,5, and the relevant branched covering thereof, were discussed in

detail in section 5.1.2 of [14]. Here, we will simply borrow the relevant results.

The (compactified) M0,5 is a rational surface. The boundary divisor consists of ten

(−1)-curves (CP1s with normal bundle O(−1)). We label these curves as Dij , correspond-

ing to the locus where the punctures pi and pj collide. The Dij , in turn, intersect in 15

points.

The moduli space of the (2, 0) compactification is a branched covering, M̃ → M0,5,

which is branched over the boundary divisor.

The D4 gauge theory fixture

is an Sp(2) × SU(2) gauge theory, with matter in the 6(4, 1) + 4(1, 2), with gauge

couplings (fSp(2), fSU(2)) = (−1,−1). Resolving the atypical punctures, we have a 5-

punctured sphere,

�
✁

�
✂

�
✄

�
☎

�
✆

Since the resolution has two very-even punctures, M̃ is an 8-sheeted branched cover of

M0,5. However since the gauge couplings (and the rest of the physics) are invariant under

simultaneously flipping the colours of both very-even punctures, we can pass to the quotient,

X = M̃/Z2, and it is the geometry of 4-sheeted branched cover, X → M0,5, that was

studied in detail in [14].

Meromorphic functions on M0,5 are rational functions of the cross-ratios

s1 =
z13z25

z15z23
, s2 =

z14z25

z15z24

X is a branched 4-fold cover of M0,5, whose ring of meromorphic functions is generated

by rational functions of w1, w2

w2
1 = s1, w2

2 = s2 .

– 22 –



J
H
E
P
0
4
(
2
0
1
5
)
1
7
3

The gauge couplings are meromorphic functions on X, given by

fSp(2) =
w1 − 1

w1 + 1

w2 + 1

w2 − 1
, fSU(2) =

w1 − 1

w1 + 1

w2 − 1

w2 + 1
. (2.7)

There is a natural action of the dihedral group, D4, on X. The Z2 × Z2 subgroup is

generated by the deck transformations,

α : w1 → −w1, w2 → w2

β : w1 → w1, w2 → −w2

which act on the gauge couplings as

α : fSp(2) → 1/fSU(2), fSU(2) → 1/fSp(2)

β : fSp(2) ↔ fSU(2) .

Both α and β change the relative colour of the two very-even punctures. The additional

generator of D4,

γ : w1 ↔ w2

acts as S-duality for the Sp(2),

γ : fSp(2) → 1/fSp(2), fSU(2) → fSU(2)

At the boundary, various sheets come together, and the behaviour of the gauge couplings is

• Over D15 and D25, both couplings go to f = 1, but the ratio
fSp(2)−1

fSU(2)−1 is arbitrary.

• Over D35, both couplings are weak (f = 0 or f =∞), but the ratio
fSp(2)
fSU(2)

is arbitrary.

• Over D45, both couplings are weak (fSp(2) = 0, fSU(2) = ∞ or vice-versa), but the

product fSp(2) · fSU(2) is arbitrary.

• Over D12, one coupling is weak (f = 0 or ∞), while the other is arbitrary.

• Over D34, one coupling is f = 1, while the other is arbitrary.

• Over D13 and D23, fSp(2) = 1/fSU(2).

• Over D14 and D24, fSp(2) = fSU(2).

Over the intersections of these divisors, we see the various S-duality frames of the gauge

theory.

Over D12 ∩D34, we have

� ✁✂✄☎✆✝✞ ✁✂✄☎✆ � ✁✟✄☎✆✠✡
✁✟✄☎✆

☎✄☛� ☞✆ ☛✄☛� ☞✆ ✌ ☛✄☞� ☎✆ ✍✎✏✑✒
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and

�✁✂✄☎ ✆ �✁✂✄☎✝✞
�✁✂✄☎

✂✟✠☎✡ �☛☞✌ ✍ ✎✂✏✆ ✄☎ ✑✒✓✔✕

✆ �✁✂✄☎✖✗

✑✒✓✔✕

In the first case, fSp(2) = 0 or ∞ and fSU(2) = 1; in the latter, fSp(2) = 1 and fSU(2) = 0

or ∞.

Over D12 ∩D35 and D12 ∩D45, we have

� ✁✂✄☎✆✝✞
✁✂✄☎✆

☎✄✟� ✠✆ ✟✄✟� ✠✆ ✡ ✟✄✠� ☎✆☛☞✌✍✎

✏ ✑✒✓✔✕✖ ✗ ✑✘✓✔✕✙✚
✑✒✓✔✕✖ ✗ ✑✘✓✔✕

and

�✁✂✄ ☎✆ ✂✁✂✄ ☎✆ ✝ ✂✁☎✄ �✆

✞✟✠✡☛ ☞ ✞✌✠✡☛✍

✎✏✑✒✓

✔✕✁�✆
✄ ✔✖✁�✆✗✘ ✙ ✞✟✠✡☛ ☞ ✞✌✠✡☛✍ ✚✛

In both cases, the underlined gauge group on the right-hand cylinder is identified with the

gauge group on the left-hand cylinder. The notation, which we introduced in [14], indicated

that when the cylinder on the right pinches off, both factors in the gauge group become

weakly-coupled (f → 0 or ∞). When the cylinder on the left pinches off, only one of the

gauge group factors becomes weakly-coupled.
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Over D34 ∩D15 and D34 ∩D25, fSp(2) = fSU(2) = 1. So we have

�✁✂✄☎

✂✆✝☎✞ �✟✠✡ ☛ ☞✂✌✍ ✄☎✎✏✑✒✓

✔✕✖✗✘✙ ✚ ✔✕✖✗✘✛ ✔✕✖✗✘✜✢ ✛ ✔✕✖✗✘✙ ✚ ✔✕✖✗✘✣✤

✎✏✑✒✓

and

�✁✂✄☎

✂✆✝☎✞ �✟✠✡ ☛ ☞✂✌✍ ✄☎✎✏✑✒✓

✔✕✖✗✘ ✙ ✔✕✖✗✘✚✛ ✔✕✖✗✘✜✢ ✛ ✔✕✖✗✘ ✙ ✔✕✖✗✘✚ ✣✤

✎✏✑✒✓

These differ only very subtly, as to “which” SU(2) gauge coupling is controlled by the

cylinder on the left. In the first case, it is the SU(2) which couples to the (E7)8 (i.e., the

one which becomes weakly-coupled at fSp(2) = 1); in the second case, it is the SU(2) which

couples to the 4 fundamental hypermultiplets.

Over D13 ∩D45, D23 ∩D45, D14 ∩D35 and D24 ∩D35, we have

�

✁✂✁✄ ☎✆ ✝ ✁✂☎✄ ✞✆✟✠✡☛☞

✌✍✎✏✑ ✒ ✌✓✎✏✑
✔ ✌✍✎✏✑ ✒ ✌✓✎✏✑✕✖✄ � ✗✘

✞✂✁✄ ☎✆

Over D13 ∩D25, D14 ∩D25, D23 ∩D15 and D24 ∩D15, we have fSp(2) = 1, fSU(2) = 1:

�

✁✂✄☎✆ ✝✞✟✠ ✡ ☛✁☞✌ ✍☎✎✏✑✒✓

✔✕✖✗✘ ✙ ✔✕✖✗✘✌ � ✚✛ ✜ ✔✕✖✗✘ ✙ ✔✕✖✗✘✢✣

✎✏✑✒✓
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Finally, over D13 ∩D24 and D14 ∩D23, we recover our gauge theory fixture, and read off

that its gauge theory couplings are fSp(2) = fSU(2) = −1

�✁✂✄☎

✆ ✝ ✞✟ ✆ ✝ ✞✟
✝ ✝

�✁✂✄☎

2.5.4 Atypical degenerations and ramification

Once we introduce outer-automorphism twists, the moduli space of the gauge theory no

longer coincides with Mg,n, the moduli space of punctured curves. As we saw, in sec-

tion 2.5.1, even the dimensions don’t agree, until we “resolve” each atypical puncture,

replacing Mg,n by Mg,n+m (for m atypical punctures). Even then, the moduli space of

the gauge theory is a branched covering of Mg,n+m, branched over various components of

the boundary.

Over a generic point on “most” of the components of the boundary, the covering is

unramified, and the gauge couplings behave “normally”: one (and only one) gauge coupling

becomes weak at that irreducible component of the boundary. Here, we would like to

catalogue the exceptions: those components of the boundary where

• the covering is ramified

• an “unexpected” (either 0 or 2, in the cases at hand) number of gauge couplings

become weak

• both

Let us denote, by Dp1,p2,...pl , the component of the boundary of Mg,n+m where the punc-

tures p1, p2, . . . pl collide, bubbling off an (l + 1)-punctured sphere. All of our exceptional

cases will involve either Dp1,p2 or Dp1,p2,p3 .

DT,V . The first source of ramification, as we saw in section 2.4, is that the outer au-

tomorphism changes the colour of a very even puncture from red to blue and vice versa.

In general, this changes the physics of the gauge theory. So, for a theory with v very-

even punctures, we get a 2v sheeted cover of the moduli space of curves, ramified (with

ramification index 2) over DT,V where “T” denotes any twisted-sector puncture and “V ”

represents any very-even. As already noted, simultaneously changing the colour of all of

the very-even punctures leads to isomorphic physics so we can (and usually will) pass to

the Z2 quotient.

Generically, the gauge couplings behave “normally,” with one gauge coupling becoming

weak at DT,V .
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D[2(N−1)],[N2]. When N is even, there is one such collision where, in addition to ramifi-

cation, no gauge coupling becomes weak. Instead, the two punctures fuse (in non-singular

fashion) into an atypical puncture.

�✁✂✄ ☎ ✆✝✞

�✄
✟
✞

�✂✄ ☎ ✆✝
✟
✞✠

✡☛☞✌✍

D[2(N−1)],[2(N−r)−1,2r+1]. For r = 1, 2, . . . ,
⌊
N−1

2

⌋
, we again obtain an atypical punc-

ture as the OPE. No gauge coupling become weak, but the moduli space is ramified (with

ramification index 2).

�✁✂✄ ☎ ✆✝✞

�✁✂✄ ☎ ✟ ☎ ✆✝✠ ✁✟✞✡

☛☞✌✍✎

�✁✂✄ ☎ ✟✝ ☎ ✆✠ ✁✟ ✏ ✆✞

D[2(N−1)],[2(N−1)],[2(N−r)−1,2r+1]. The moduli space is unramified over this component

of the boundary. Nonetheless, two gauge couplings become weak.

�✁✂✄ ☎ ✆✝✞

�✁✂✄ ☎ ✟✝ ☎ ✆✠ ✁✟ ✡ ✆✞

�✁✂✄ ☎ ✟✝ ☎ ☛✠ ✁✟ ☎ ✆✠ ✆
☞
✞✌✍✂✁✝ ✎ ✌✍✂✁✝

✏✑✒✓✔

�✁✂✄ ☎ ✆✝✞

– 27 –



J
H
E
P
0
4
(
2
0
1
5
)
1
7
3

D[2(N−1)],[2(N−1)],[N2]. Here, again, an SU(2)× SU(2) gauge group becomes weak, but

now the moduli space is also ramified (with ramification index 2)

�✁✂✄ ☎ ✆✝✞

�✄
✟
✞

�✂✄ ☎ ✁✝
✟
✠ ✆

✡
✞☛☞✂✁✝ ✌ ☛☞✂✁✝

✍✎✏✑✒

�✁✂✄ ☎ ✆✝✞

Dt,u,u′. In all of the remaining cases, the moduli space is ramified (with ramification

index 2) and two gauge couplings become weak.

Over D[2(N−1)],[2(N−r)−1,2r+1],[2(N−r)−1,2r+1] (with the same untwisted puncture), we

have an Sp(r)× Sp(r) gauge group becoming weak

�✁✂✄ ☎ ✆✝✞

�✁✂✄ ☎ ✁✟ ☎ ✆✝✠ ✆
✡☛
✞☞✌✂✟✝ ✍ ☞✌✂✟✝

�✁✂✄ ☎ ✟✝ ☎ ✆✠ ✁✟ ✎ ✆✞

�✁✂✄ ☎ ✟✝ ☎ ✆✠ ✁✟ ✎ ✆✞

✏
✑
✂✁✟✠ ✆✝ ✎

✏
✑
✂✆✠ ✁✟✝

and, for N even, the gauge group which becomes weak is Sp
(
N
2

)
× Sp

(
N−2

2

)

�✁✂✄ ☎ ✆✝✞

�✄✟✞

�✆✟
✠✡☛☞✌

✞✍✎✏✡✟ ✑ ✒ ✍✎✓✡ ☛ ✟
✟ ✔�✄✟✞

✁✂✄✕ ✆✝
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Over Dt,u,u′ , with r′, r = 1, 2, . . . ,
⌊
N−1

2

⌋
(and, without loss of generality, r′ > r)

�✁✂✄ ☎ ✆✝✞
✟✠✡☛ ☞ ✌ ✍☞✌ ☞ ✎✏✑ ✠✡✌ ✍☞✌✏✑ ✎

✒✓
✔✕✖✂✗✝ ✘ ✕✖✂✗✝

�✁✂✄ ☎ ✗✝ ☎ ✆✙ ✁✗ ✚ ✆✞

�✁✂✄ ☎ ✗ ✛✝ ☎ ✆✙ ✁✗ ✛✚✆✞

✜✢✣✤✥

and, for N even,

�✁✂✄ ☎ ✆✝✞

�✄
✟
✞

�✂✄ ☎ ✁✠ ☎ ✆✝
✟
✡ ✆

☛☞
✞✌✍✂✠✝ ✎ ✌✍✂✠✝

✏✑✒✓✔

�✁✂✄ ☎ ✠✝ ☎ ✆✡ ✁✠ ✕ ✆✞

2.6 Global symmetries and the superconformal index

2.6.1 Computing the index in the Hall-Littlewood limit

Each puncture has a “manifest” global symmetry associated to it. The global symmetry

group of the SCFT associated to a fixture contains the product of the “manifest” global

symmetry groups, associated to each of the punctures, as a subgroup. But, in general, it

is larger. Here, we will outline how to use the superconformal index [19–22] to determine

the global symmetry group of the fixture and (in the case of a mixed fixture) the number

of free hypermultiplets that it contains.

The prescription to compute the superconformal index of an interacting SCFT defined

by a DN -series fixture was given in [23]. For a DN Z2-twisted sector fixture with punctures

(Λ̃1, Λ̃2,Λ3), where Λ̃ denotes a twisted puncture and Λ an untwisted puncture, the index

is given by15

I(a,b, c) = A(τ)K(a(Λ̃1))K(b(Λ̃2))K(c(Λ3))

×
∑
λ′

P λ
′

Sp(N−1)(a(Λ̃1)|τ)P λ
′

Sp(N−1)(b(Λ̃2)|τ)P λ=λ′

SO(2N)(c(Λ3)|τ)

P λ=λ′
SO(2N)(1, τ, τ

2, . . . , τN−1|τ)
.

(2.8)

15In the following, we need only consider the “Hall-Littlewood” limit of the index, where we restrict to

the one-parameter slice in the space of superconformal fugacities given by (p = 0, q = 0, t1/2 ≡ τ) [22].
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The various elements of this formula are summarized below. Detailed explanations can be

found in [23]:

• A(τ) is the overall (fugacity-independent) normalization, given by

A(τ) =
(1− τ2N )

(1− τ2)
N
2

N−1∏
j=1

(1− τ4j).

• P λ are the Hall-Littlewood polynomials of type SO(2N) and Sp(N), given by

P λSO(2N)(x1, . . . , xN ) = Wλ(τ)−1
∑
σ∈SN

∑
s1,...,sN=±1∏

si=+1

xs1λ1σ(1) · · ·x
sNλN
σ(N)

∏
i<j

1− τ2x−sii x
±sj
j

1− x−sii x
±sj
j

,

P λSp(N)(x1, . . . , xN ) = Wλ(τ)−1
∑
σ∈SN

∑
s1,...,sN=±1

xs1λ1σ(1) · · ·x
sNλN
σ(N)

∏
i<j

1− τ2x−sii x
±sj
j

1− x−sii x
±sj
j

×
N∏
i=1

1− τ2x−2si
i

1− x−2si
i

,

where

Wλ(τ) =

∑
w∈W
wλ=λ

τ2`(w)


1
2

with `(w) denoting the length of the Weyl group element w.

• The prescription for writing the K-factors can be found in [23]. Their precise form

will not be important here.

• The sum runs over all partitions λ′ = (λ′1, . . . , λ
′
N−1) corresponding to the highest

weight of a finite-dimensional irreducible representation of Sp(N−1) (in the standard

orthonormal basis); “λ = λ′” means that we only sum over representations of SO(2N)

of the form λ = (λ′1, . . . , λ
′
N−1, 0).

• The fugacities aI dual to the Cartan subalgebra of the flavor symmetry group of the

puncture ΛI (Λ̃I) are assigned by setting the character of the fundamental represen-

tation of SO(2N) (Sp(N − 1)) equal to the sum of SU(2) characters corresponding

to the decomposition determined by the puncture, with SU(2) fugacity equal to τ .

The multiplicity of each SU(2) representation is then replaced by the character of the

fundamental representation of the flavor symmetry determined by that multiplicity.

From this equation, one can simply read off the fugacities.16

16If the puncture is not “very even”, different choices of fugacities are related by a Weyl transformation,

under which the Hall-Littlewood polynomials are invariant. For “very even” punctures there are two

inequivalent choices, which are permuted by the Z2 outer-automorphism, corresponding to the red and

blue coloring. For examples, see [23].
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For example, the D4 twisted puncture corresponds to the SU(2) embedding

under which the 6 of Sp(3) decomposes as 2 + 4(1). So setting

χ6
Sp(3)(x1, x2, x3) = 1 · χ2

SU(2)(τ) + χ4
Sp(2)(a1, a2) · 1

3∑
i=1

(xi + x−1
i ) = τ + τ−1 +

2∑
i=1

(ai + a−1
i )

we can take fugacities x1 = τ, x2 = a1, x3 = a2.

To determine the global symmetry, as well as any decoupled sector, of an interacting

SCFT fixture from its superconformal index, we need only compute (2.8) to order τ2:

as explained in [24], the contribution at order τ is due to free hypermultiplets while the

contribution at order τ2 is due to moment map operators of flavor symmetries.

Computing the index to order τ2 while keeping only the term λ′ = 0 in the sum over

representations gives the contribution

1 + (χadj
G1

+ χadj
G2

+ χadj
G3

)τ2,

encoding the manifest global symmetry. The global symmetry of the SCFT is enhanced if

there are additional terms contributing at order τ2 coming from the sum over λ′ > 0.

As an example, consider the fixture

.

Letting (a1, a2), (b1, b2) be Sp(2) fugacities and c an SU(2) fugacity, from (2.8) we find

I = 1 + χ2
SU(2)(c)τ+[2χ3

SU(2)(c)+χ10
Sp(2)(a1, a2)+χ10

Sp(2)(b1, b2)+χ4
Sp(2)(a1, a2)χ4

Sp(2)(b1, b2)

+ χ2
SU(2)(c)(χ

4
Sp(2)(a1, a2)+χ4

Sp(2)(b1, b2))]τ2+. . .

= 1 + χ2
SU(2)(c)τ+[2χ3

SU(2)(c)+χ36
Sp(4)(a1, a2, b1, b2)+χ2

SU(2)(c)χ
8
Sp(4)(a1, a2, b1, b2)]τ2+. . .

The order τ term signals the contribution of a free hypermultiplet in the 1
2(1, 1, 2) of

Sp(2)× Sp(2)× SU(2), the index of which is given by

Ifree = PE[τχ2
SU(2)(c)] = 1 + χ2

SU(2)(c)τ + χ3
SU(2)(c)τ

2 + . . . ,

where PE denotes the plethystic exponential [23]. Removing the contribution of the free

hypermultiplet, the index of the interacting SCFT is given by

ISCFT = I/Ifree

= 1 + [χ3
SU(2)(c) + χ36

Sp(4)(a1, a2, b1, b2) + χ2
SU(2)(c)χ

8
Sp(4)(a1, a2, b1, b2)]τ2 + . . .

= 1 + χ55
Sp(5)(a1, a2, b1, b2, c)τ

2 + . . .

and hence this SCFT has an enhanced Sp(5) global symmetry.
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We can also use the second order expansion of (2.8) as a check on our identifications

for the gauge theory fixtures. For example, the fixture

is an SU(2)×SU(2) gauge theory with 4 hypermultiplets in the (2, 1), 4 hypermultiplets in

the (1, 2), and 8 free hypermultiplets transforming in the 1
2(2, 8v) of the manifest SU(2)8×

SO(8)12 global symmetry. Thus the manifest global symmetry of this fixture should be

enhanced to SO(8)2×Sp(8). Choosing (b; c1, c2, c3, c4) as fugacities for the manifest global

symmetry, indeed we find the expansion of the index is given by

I=1+χ2
SU(2)(b)χ

8v

SO(8)(c1, c2, c3, c4)τ+(2χ28
SO(8)(c1, c2, c3, c4) + χ136

Sp(8)(b, c1, c2, c3, c4))τ2+. . .

where

χ136
Sp(8)(b, c1, c2, c3, c4) = χ3

SU(2)(b) + χ28
SO(8)(c1, c2, c3, c4) + χ3

SU(2)(b)χ
35v

SO(8)(c1, c2, c3, c4).

We have used this technique to check the global symmetries and the number of free hyper-

multiplets in our tables of fixtures for the Z2-twisted D4 theory.

2.6.2 The Sp(4)6 × SU(2)8

Here we use the superconformal index to argue that the D4 interacting fixture

gives rise to the Sp(4)6 × SU(2)8 SCFT. For this fixture, we cannot use any S-dualities

to study its properties as none of the flavor symmetries carried by the punctures can

be gauged.
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The Sp(4)6 × SU(2)8 SCFT first appeared in [14] as the twisted-sector fixture

in the A3 theory. It also appears, accompanied by six free hypermultiplets, as

(2.9)

in our list of twisted-sector mixed fixtures in the D4 theory. In those cases, we are able to

use various S-dualities to study it.

Letting a and b be SU(2) fugacities and c2
1, c

2
2 U(1) fugacities, the expansion of the

index of this fixture is given by

I=1+(χ3
SU(2)(a)+χ3

SU(2)(b)+(1+c2
1+c−2

1 )+χ3
SU(2)(a)χ3

SU(2)(b)(1+c2
1+c−2

1 )

+ (1+c2
2+c−2

2 ))τ2+. . .

=1+(χ3
SU(2)(a)+χ3

SU(2)(b)+χ3
SU(2)(c1)+χ3

SU(2)(a)χ3
SU(2)(b)χ

3
SU(2)(c1)+χ3

SU(2)(c2))τ2+. . .

=1+(χ36
Sp(4)(a, b, c1)+χ3

SU(2)(c2))τ2+. . . , (2.10)

indicating that the manifest SU(2)2
24×U(1)2 global symmetry is enhanced to Sp(4)×SU(2).

This, along with the other numerical invariants of this fixture agree with our previous results

for the Sp(4)6 × SU(2)8 SCFT.

Since A3
∼= D3, we can use (2.8) to compute the index of the twisted A3 fixture by

appropriately identifying fugacities and replacing P λSO(6)(P
λ′

Sp(2)) → PµSU(4)(P
µ′

SO(5)) where

µ (µ′) is the highest weight of the SU(4) (SO(5)) representation corresponding to λ (λ′).

Letting a be an SU(2) fugacity and (b1, b2), (c1, c2) SO(5) fugacities, the expansion of the

index of the twisted A3 fixture is

I = 1 + (χ3
SU(2)(a) + χ10

Sp(2)

(√
b1b2,

√
b1
b2

)
+ χ10

Sp(2)

(
√
c1c2,

√
c1

c2

)

+ χ4
Sp(2)

(√
b1b2,

√
b1
b2

)
)χ4

Sp(2)

(
√
c1c2,

√
c1

c2

)
τ2 + . . .

= 1 +

(
χ3

SU(2)(a) + χ36
Sp(4)

(√
b1b2,

√
b1
b2
,
√
c1c2,

√
c1

c2

))
τ2 + . . . ,
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in agreement with (2.10). We have checked further that the unrefined indices (obtained

by setting all flavor fugacities to “1”) of these two fixtures agree to tenth order in τ . The

unrefined index of each fixture is given by

I = 1 + 39τ2 + 878τ4 + 13396τ6 + 152412τ8 + 1370975τ10 + . . . .

We can also compare with the mixed fixture (2.9). After removing the contribution to the

index of a free hypermultiplet in the 6 of Sp(3), the index of this fixture is given by

I = 1 + (χ3
SU(2)(a2) + χ21

Sp(3)(b1, b2, b3) + χ2
SU(2)(a2)χ6

Sp(3)(b1, b2, b3) + χ3
SU(2)(c))τ

2 + . . .

= 1 + (χ36
Sp(4)(a2, b1, b2, b3) + χ3

SU(2)(c))τ
2 + . . . .

Again, the numerical invariants of this fixture imply the SCFT is the Sp(4)6×SU(2)8 theory.

We have computed the unrefined index of this fixture to fourth order in τ ; removing the

contribution of the free hypermultiplet, we find agreement with the fixtures above.
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3 The Z2-twisted D4 theory

3.1 Punctures and cylinders

3.1.1 Regular punctures

The untwisted sector of regular punctures was discussed in [4]. The Z2-twisted regular

punctures are shown in the table below.

Flavour
C-partition

Hitchin
B-partition

Pole
structure Constraints

Flavour
group (δnh, δnv)

[7] {1, 3, 5; 7
2} − Sp(3)8 (112, 207

2 )

(ns) ([5, 12],Z2) {1, 3, 5; 5
2} − Sp(2)7 (102, 193

2 )

[5, 12] {1, 3, 5; 5
2} c

(6)
5 = (a(3))2 SU(2)6 ×U(1) (94, 181

2 )

[32, 1] {1, 3, 4; 5
2} − SU(2)24 (88, 171

2 )

[3, 22] {1, 3, 4; 5
2}

c
(4)
3 = (a(2))2

c
(6)
4 = 2a(2)c̃5/2

SU(2)8 (72, 141
2 )

(ns) ([3, 14],Z2) {1, 3, 3; 3
2} − SU(2)5 (69, 135

2 )

[3, 14] {1, 3, 3; 3
2} c

(4)
3 = (a(2))2 none (64, 127

2 )

[17] {1, 1, 1; 1
2} − none (24, 49

2 )

3.1.2 Irregular punctures

A fairly lengthy list of irregular untwisted punctures, arising from the OPE of untwisted

punctures, was discussed in [4]. Additional ones arise from considering the OPE of two

Z2-twisted punctures. Moreover, twisted-sector irregular twisted punctures arise from the

OPE of an untwisted puncture and a Z2-twisted puncture. These two sets of new irregular

punctures are listed in the tables below.

Untwisted.

Irregular puncture (δnh, δnv) Flavour Symmetry(
, Sp(2)

)
(112, 118) Sp(2)0(

, SU(2)× SU(2)
)

(128, 133) SU(2)0 × SU(2)0
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Irregular puncture (δnh, δnv) Flavour Symmetry(
, SU(2)× SU(2)

)
(136, 140) SU(2)0 × SU(2)0(

, SU(2)

)
(176, 179) SU(2)0

As was the case in [4], there are three inequivalent embeddings of Sp(2) ↪→ Spin(8),

exchanged by triality, under which one of the 8-dimensional representations decomposes

as 5 + 3(1) while the other two decompose as 2(4). To indicate which we mean, we assign

a green/red/blue colour to . The same remark applies to the three index-1

embeddings of SU(2)× SU(2) in the SU(2)3 of which are exchanged by triality.

Twisted.

Irregular puncture (δnh, δnv) Flavour Symmetry(
, Sp(2)× SU(2)

) (
112, 223

2

)
Sp(2)4 × SU(2)0(

, Sp(2)
) (

112, 229
2

)
Sp(2)4(

, SU(2)× SU(2)
) (

112, 237
2

)
SU(2)0 × SU(2)0(

, SU(2)
) (

112, 243
2

)
SU(2)0(

, Sp(2)
) (

122, 243
2

)
Sp(2)5(

, SU(2)× SU(2)
) (

122, 251
2

)
SU(2)1 × SU(2)1(

, SU(2)
) (

122, 257
2

)
SU(2)1(

, SU(2)
) (

130, 269
2

)
SU(2)2(

, ∅
) (

152, 315
2

)
none(

, SU(2)

) (
155, 315

2

)
SU(2)3(

, ∅

) (
155, 315

2

)
none
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3.1.3 Cylinders

In addition to the untwisted cylinders of [4], we have(
, Sp(2)

) Sp(2)←−−−−−−−−−→(
, Sp(2)

) SU(2)←−−−−−−−−−→
(

, Spin(7)
)

(
, Sp(2)

) SU(2)←−−−−−−−−−→
(

, Spin(7)
)(

, SU(2)× SU(2)
)

SU(2)×SU(2)←−−−−−−−−−−→(
, SU(2)× SU(2)

)
SU(2)×SU(2)←−−−−−−−−−−→

(
, SU(2)

)
SU(2)←−−−−−−−−−→

and the twisted sector adds the cylinders

Sp(3)←−−−−−−−−−→(
, Sp(2)× SU(2)

) Sp(2)×SU(2)←−−−−−−−−−−→(
, Sp(2)

) Sp(2)←−−−−−−−−−→(
, SU(2)× SU(2)

) SU(2)×SU(2)←−−−−−−−−−−→(
, SU(2)

) SU(2)←−−−−−−−−−→(
, Sp(2)

)
Sp(2)←−−−−−−−−−→(

, SU(2)× SU(2)
)

SU(2)×SU(2)←−−−−−−−−−−→(
, SU(2)

)
SU(2)←−−−−−−−−−→(

, SU(2)
)

SU(2)←−−−−−−−−−→(
, ∅
)

∅←−−−−−−→(
, SU(2)

)
SU(2)←−−−−−−−−−→

(
, ∅

)
∅←−−−−−−→
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3.2 Fixtures

3.2.1 Free-field fixtures

# Fixture Number of hypers Representation

1 � ✁✂✄☎✆✝✞ 0 empty

2 � ✁ ✂✄☎✆✝ ✞ ✂✄☎✆✝✟ 0 empty

3 � ✁ ✂✄☎✆✝✞ 5 1
2(2, 5)

4 � ✁ ✂✄☎✆✝ ✞ ✂✄☎✆✝✟ 0 empty

5 � ✁ ✂✄☎✆✝✞ 0 empty

6 � ✁ ✂✄☎✆✝✞ 6 1
2(2, 6)

– 38 –



J
H
E
P
0
4
(
2
0
1
5
)
1
7
3

# Fixture Number of hypers Representation

7 � ✁ ✂✄☎✆✝✞✟✠ 14 1
2(4, 7)

8 24 1
2(6, 8v)

9 � ✁ ✂✄ 0 empty

10
� ✁✂✄☎✆✝✞ 3 1

2(3, 2)

11 � ✁ ✂✄ 0 empty

12 � ✁✂✄☎✆✝✞ 2 1(2)

13 � ✁✂✄☎✆✝✞ 1 1
2(1, 2)
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# Fixture Number of hypers Representation

14 � ✁✂✄☎✆✝✞ 10 1
2(5, 4)

15 � ✁✂✄☎✆✝✞ 0 empty

16 � ✁✂✄☎✆✝✞ 8 1
2(1, 2, 2; 4)

17 � ✁✂✄☎✆ ✝ ✁✂✄☎✆✞✟ 2 1
2(2, 1) + 1

2(1, 2)

18 � ✁✂✄☎✆ ✝ ✁✂✄☎✆✞✟ 0 empty

19
� ✁✂✄☎✆✝✞ 7 1

2(2, 5) + 1
2(1, 4)

20 � ✁✂✄☎✆✝✞ 5 1
2(2, 1, 5)
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# Fixture Number of hypers Representation

21 � ✁✂✄☎✆ ✝ ✁✂✄☎✆✞✟ 0 empty

22 � ✁✂✄☎✆ ✝ ✁✞✄☎✆✟✠ 8 1
2(2, 2; 4, 1)

23 14 1
2(3, 4, 1) + 1

2(1, 5, 2) + 1
2(3, 1, 2)

24 16 1
2(1, 14′) + 1

2(3, 6)

3.2.2 Interacting fixtures

# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

1 � ✁ ✂✄☎✆✝✞✟✠ (0, 0, 2, 0, 0) (26, 14) Spin(7)8 × SU(2)25

2 (0, 0, 2, 0, 1) (45, 25) Spin(11)12 × SU(2)5
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# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

3 (0, 1, 2, 0, 1) (51, 30) Spin(10)12 × SU(2)6 × SU(2)5

4 (0, 0, 2, 0, 2) (59, 36) Spin(9)12 × Sp(2)7 × SU(2)5

5 (0, 0, 2, 0, 1) (45, 25) Sp(5)8 × SU(2)5

6 (0, 0, 3, 0, 1) (53, 32) Sp(4)8 × SU(2)28 × SU(2)5

7 (0, 0, 3, 0, 2) (69, 43) Spin(8)12 × Sp(3)8 × SU(2)5

8
� ✁ ✂✄☎✆✝✞ (0, 0, 1, 0, 0) (15,7) Sp(3)5 × SU(2)8

9 (0, 1, 1, 0, 0) (24, 12) Sp(4)6 × SU(2)8
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# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

10 (0, 0, 1, 0, 1) (31, 18) SU(4)12 × SU(2)7 ×U(1)

11 (0, 0, 2, 0, 1) (40, 25) SU(4)12 × Sp(2)8

12 (0, 0, 2, 0, 1) (40, 25) SU(2)224 × Sp(2)8

13 (0, 0, 3, 0, 1) (48, 32) SU(2)224 × SU(2)38

14 (0, 0, 3, 0, 2) (64, 43) Spin(8)12 × (SU(2)24)2

15 (0, 2, 1, 0, 0) (30, 17) Sp(2)26 × SU(2)6 ×U(1)

16 (0, 1, 1, 0, 1) (37, 23) Sp(2)12 × SU(2)7 × SU(2)6
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# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

17 (0, 1, 2, 0, 1) (46, 30) Sp(2)12 × Sp(2)8 × SU(2)6

18 (0, 1, 2, 0, 1) (46, 30) Sp(2)8 × SU(2)24 × SU(2)6 ×U(1)

19 (0, 1, 3, 0, 1) (54, 37) SU(2)24 × SU(2)38 × SU(2)6 ×U(1)

20 (0, 1, 3, 0, 2) (70, 48) Spin(8)12 × SU(2)24 × SU(2)6 ×U(1)

21 (0, 1, 1, 0, 1) (38, 23) Sp(2)12 × Sp(2)7 ×U(1)

22 (0, 0, 1, 0, 2) (45, 29) Sp(2)7 × SU(2)7 × SU(2)212

23 (0, 0, 2, 0, 2) (54, 36) Sp(2)8 × Sp(2)7 × (SU(2)12)2
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# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

24 (0, 0, 2, 0, 2) (54, 36) Sp(2)8 × Sp(2)7 × SU(2)24

25 (0, 0, 3, 0, 2) (62, 43) Sp(2)7 × SU(2)24 × SU(2)38

26 (0, 0, 3, 0, 3) (78, 54) Spin(8)12 × Sp(2)7 × SU(2)24

27 (0, 0, 1, 0, 0) (24, 7) (E7)8

28 (0, 1, 2, 0, 1) (48, 30) Sp(3)8 × SU(2)24 ×U(1)2

29 (0, 0, 2, 0, 2) (55, 36) Sp(3)8 × SU(2)24 × SU(2)7

30 (0, 0, 3, 0, 2) (64, 43) Sp(3)8 × Sp(2)8 × SU(2)24
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# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

31 (0, 0, 3, 0, 2) (64, 43) Sp(3)8 × Sp(2)8 × SU(2)24

32 (0, 0, 4, 0, 2) (72, 50) Sp(3)8 × SU(2)24 × SU(2)38

33 (0, 0, 4, 0, 3) (88, 61) Spin(8)12 × Sp(3)8 × SU(2)24

34 (0, 3, 1, 0, 0) (36, 22) SU(2)66 ×U(1)

35 (0, 2, 1, 0, 1) (43, 28) SU(2)212 × SU(2)26 × SU(2)7

36 (0, 2, 2, 0, 1) (52, 35) Sp(2)8 × SU(2)212 × SU(2)26

37 (0, 2, 2, 0, 1) (52, 35) Sp(2)8 × SU(2)26 ×U(1)2
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# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

38 (0, 2, 3, 0, 1) (60, 42) SU(2)38 × SU(2)26 ×U(1)2

39 (0, 2, 3, 0, 2) (76, 53) Spin(8)12 × SU(2)26 ×U(1)2

40 (0, 2, 1, 0, 1) (44, 28) Sp(2)7 × SU(2)212 × SU(2)6 ×U(1)

41 (0, 1, 1, 0, 2) (51, 34) Sp(2)7 × SU(2)24 × SU(2)7 × SU(2)6

42 (0, 1, 2, 0, 2) (60, 41) Sp(2)8 × Sp(2)7 × SU(2)24 × SU(2)6

43 (0, 1, 2, 0, 2) (60, 41) Sp(2)8 × Sp(2)7 × SU(2)6 ×U(1)

44 (0, 1, 3, 0, 2) (68, 48) Sp(2)7 × SU(2)38 × SU(2)6 ×U(1)
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# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

45 (0, 1, 3, 0, 3) (84, 59) Spin(8)12 × Sp(2)7 × SU(2)6 ×U(1)

46 (0, 1, 1, 0, 0) (30, 12) SU(2)6 × SU(8)8

47 (0, 2, 2, 0, 1) (54, 35) Sp(3)8 × SU(2)6 ×U(1)3

48 (0, 1, 2, 0, 2) (61, 41) Sp(3)8 × SU(2)7 × SU(2)6 ×U(1)

49 (0, 1, 3, 0, 2) (70, 48) Sp(3)8 × Sp(2)8 × SU(2)6 ×U(1)

50 (0, 1, 3, 0, 2) (70, 48) Sp(3)8 × Sp(2)8 × SU(2)6 ×U(1)

51 (0, 1, 4, 0, 2) (78, 55) Sp(3)8 × SU(2)38 × SU(2)6 ×U(1)
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# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

52 (0, 1, 4, 0, 3) (94, 66) Spin(8)12 × Sp(3)8 × SU(2)6 ×U(1)

53 (0, 1, 1, 0, 2) (52, 34) Sp(2)27 × SU(2)24 ×U(1)

54 (0, 0, 1, 0, 3) (59, 40) Sp(2)27 × SU(2)7 ×U(1)

55 (0, 0, 2, 0, 3) (68, 47) Sp(2)8 × Sp(2)27 ×U(1)

56 (0, 0, 2, 0, 3) (68, 47) Sp(2)8 × Sp(2)27

57 (0, 0, 3, 0, 3) (76, 54) Sp(2)27 × SU(2)38

58 (0, 0, 3, 0, 4) (92, 65) Spin(8)12 × Sp(2)27
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# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

59 (0, 0, 1, 0, 1) (38, 18) Sp(4)8 × Sp(2)7

60 (0, 1, 2, 0, 2) (62, 41) Sp(3)8 × Sp(2)7 ×U(1)2

61 (0, 0, 2, 0, 3) (69, 47) Sp(3)8 × Sp(2)7 × SU(2)7

62 (0, 0, 3, 0, 3) (78, 54) Sp(3)8 × Sp(2)8 × Sp(2)7

63 (0, 0, 3, 0, 3) (78, 54) Sp(3)8 × Sp(2)8 × Sp(2)7

64 (0, 0, 4, 0, 3) (86, 61) Sp(3)8 × Sp(2)7 × SU(2)38

65 (0, 0, 4, 0, 4) (102, 72) Spin(8)12 × Sp(3)8 × Sp(2)7
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# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

66 (0, 0, 1, 0, 1) (40, 18) Sp(6)8

67 (0, 0, 2, 0, 1) (48, 25) Sp(6)8 × SU(2)8

68 (0, 0, 2, 0, 1) (48, 25) Sp(3)28 × SU(2)8

69 (0, 1, 3, 0, 2) (72, 48) Sp(3)28 ×U(1)2

70 (0, 0, 3, 0, 3) (79, 54) Sp(3)28 × SU(2)7

71 (0, 0, 4, 0, 3) (88, 61) Sp(3)28 × Sp(2)8

72 (0, 0, 4, 0, 3) (88, 61) Sp(3)28 × Sp(2)8
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# Fixture (d2, d3, d4, d5, d6) (nh, nv) Gglobal

73 (0, 0, 5, 0, 3) (96, 68) Sp(3)28 × SU(2)38

74 (0, 0, 5, 0, 4) (112, 79) Spin(8)12 × Sp(3)28

3.2.3 Mixed fixtures

Three new SCFTs make their appearance in the list of “mixed” fixtures (accompanied by

some number of free hypermultiplets).

• The Sp(4)7×SU(2)5 SCFT has Coulomb branch dimensions (d2, . . . , d6)=(0, 0, 1, 0, 1)

and (nh, nv) = (33, 18).

• The Sp(5)7×SU(2)8 SCFT has Coulomb branch dimensions (d2, . . . , d6)=(0, 0, 1, 0, 1)

and (nh, nv) = (35, 18).

• The Sp(3)7 × Sp(2)8 × SU(2)5 SCFT has Coulomb branch dimensions (d2, . . . , d6) =

(0, 0, 2, 0, 1) and (nh, nv) = (42, 25).

The remaining SCFTs in our list of mixed fixtures include the venerable (E6)6 theory, the

Sp(5)7 theory (which appeared in the untwisted D4 theory [4]), two theories (Sp(3)5 ×
SU(2)8 and Spin(7)8 × SU(2)2

5) which appear above (see also [14]) and three more which

appeared in the twisted A3 theory [14].

# Fixture Theory

1 1
2(1, 3, 4) + Sp(3)5 × SU(2)8

2 1
2(1, 3; 2, 1, 1) + SU(2)2

5 × Spin(7)8
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# Fixture Theory

3 (1, 1, 4) + SU(2)5 × Sp(3)6 ×U(1)

4 (1, 1; 2, 1, 1) + SU(2)5 × SU(4)8 × Sp(2)6

5 1
2(1, 1, 4) + Sp(4)7 × SU(2)5

6 1
2(1, 1; 2, 1, 1) + Sp(3)7 × Sp(2)8 × SU(2)5

7 (1, 6) + SU(2)5 × Sp(3)6 ×U(1)

8 1
2(1, 6, 1) + Sp(4)7 × SU(2)5

9 1
2(1, 6, 1) + Sp(3)7 × Sp(2)8 × SU(2)5
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# Fixture Theory

10 1
2(3, 6, 1) + Sp(3)5 × SU(2)8

11 (1, 1, 2) + 1
2(1, 4, 1) + (E6)6

12 (1, 6) + (E6)6

13 (1, 6, 1) + Sp(4)6 × SU(2)8

14 1
2(1, 6) + Sp(5)7

15 1
2(1, 6, 1) + Sp(5)7 × SU(2)8

16 1
2(1, 1, 2) + Sp(5)7

– 54 –



J
H
E
P
0
4
(
2
0
1
5
)
1
7
3

3.2.4 Gauge theory fixtures

For each gauge theory fixture, we list the gauge group, G, and the representation content

of the hypermultiplets, (RF1 , RF2 , RF3 ;RG). Here, RG is the representation of the gauge

group and RFi is the representation of the semisimple part of the flavour symmetry of

the ith puncture (where we work counterclockwise from the upper-left, and omit Fi if it is

abelian or empty).

# Fixture (d2, . . . , d6) G # Hypers Representation

1 � ✁ ✂✄☎✆✝✞✟✠ (1, 0, 1, 0, 0) Sp(2) 21 1
2
(1, 8; 4) + 1

2
(2, 1; 5)

2 � ✁ ✂✄☎✆✝✞✟✠ (2, 0, 0, 0, 0) SU(2)× SU(2) 16

1
2
(R1; 2, 1)

+ 1
2
(R2; 1, 2)

whereRi = 8 or 1 + 7

3 (2, 0, 0, 0, 0) SU(2)× SU(2) 24

1
2
(2, 8v; 1, 1)

+ 1
2
(1, 8; 2, 1)

+ 1
2
(1, 8; 1, 2)

4 (1, 0, 0, 0, 0) SU(2) 16

1
2
(1, 5; 2)

+ 1
2
(1, 4; 1)

+ 1
2
(3, 4; 1)

+ 1
2
(3, 1; 2)

5 (1, 0, 1, 0, 0) Sp(2) 24

1
2
(2; 1, 2, 1; 4)

+ 1
2
(2; 1, 1, 2; 4)

+ 1
2
(1; 2, 1, 1; 5)

+ 1
2
(3; 2, 1, 1; 1)

6 (1, 0, 1, 0, 1) Sp(3) 40

1
2
(1, 8; 6)

+ 1
2
(3, 1; 6)

+ 1
2
(1, 1; 14′)
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# Fixture (d2, . . . , d6) G # Hypers Representation

7 (1, 1, 0, 0, 0) SU(3) 22

(2, 1; 3)

+ (1, 4; 3)

+ (1, 4; 1)

8 (1, 1, 1, 0, 0) SU(4) 30

1
2
(2; 1, 1, 1; 6)

+ 1
2
(1; 2, 1, 1; 6)

+ (1; 2, 1, 1; 1)

+ (1; 1, 2, 1; 4)

+ (1; 1, 1, 2; 4)

9 (1, 1, 1, 0, 1) Sp(3) 46

1
2
(1, 8; 6)

+ (1, 1; 6)

+ (E6)6

10 (1, 0, 0, 0, 1) G2 30

1
2
(4, 1; 7)

+ 1
2
(1, 4; 7)

+ 1
2
(1, 4; 1)

11 (1, 0, 1, 0, 1) Spin(7) 38

1
2
(4; 1, 1, 1; 7)

+ 1
2
(1; 2, 1, 1; 7)

+ 1
2
(1; 1, 2, 1; 8)

+ 1
2
(1; 1, 1, 2; 8)

+ 1
2
(1; 2, 1, 1; 1)

12 (1, 0, 1, 0, 2) Spin(7) 54
1
2
(4, 1; 7)

+ (E8)12

13 (1, 1, 0, 0, 0) SU(3) 24
(6; 3)

+ (6; 1)
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# Fixture (d2, . . . , d6) G # Hypers Representation

14 (1, 0, 0, 0, 1) G2 31

1
2
(1, 2; 7)

+ 1
2
(6, 1; 7)

+ 1
2
(6, 1; 1)

15 (1, 0, 1, 0, 1) Spin(7) 40

1
2
(6, 1; 7)

+ 1
2
(1, 4; 8)

+ 1
2
(6, 1; 1)

16 (1, 0, 1, 0, 1) Spin(7) 40
1
2
(6, 1; 8)

+ 1
2
(1, 4; 8)

17 (1, 0, 2, 0, 1) Spin(8) 48

1
2
(6; 1, 1, 1; 8v)

+ 1
2
(1; 2, 1, 1; 8v)

+ 1
2
(1; 1, 2, 1; 8s)

+ 1
2
(1; 1, 1, 2; 8c)

18 (1, 0, 2, 0, 2) Spin(8) 64
1
2
(6, 1; 8)

+ (E8)12

19
� ✁✂✄☎✆✝✞

(1, 0, 0, 0, 0) SU(2) 10
1
2
(2, 4; 2)

+ 1
2
(1, 4; 1)

20
� ✁✂✄☎✆✝✞

(1, 0, 0, 0, 0) SU(2) 8

1
2
(1, 2, 4; 2)

or

1
2
(1, 1, 5; 2) + 1

2
(1, 3, 1; 2)
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# Fixture (d2, . . . , d6) G # Hypers Representation

21 (1, 0, 1, 0, 0) Sp(2) 29

1
2
(2, 1, 1; 5)

+ 1
2
(1, 1, 8; 4)

+ 1
2
(1, 2, 8v; 1)

22 (2, 0, 1, 0, 0) Sp(2)× SU(2) 32

1
2
(2, 2, 1; 4, 1)

+ 1
2
(1, 1, 8v; 4, 1)

+ 1
2
(1, 1, 8v; 1, 2)

23 (1, 0, 0, 0, 0) SU(2) 15

1
2
(2, 1, 2; 2)

+ 1
2
(1, 3, 1; 2)

+ 1
2
(1, 1, 1; 2)

+ 1
2
(2, 3, 1; 1)

+ 1
2
(1, 3, 2; 1)

+ 1
2
(2, 1, 1; 1)

24 (1, 0, 1, 0, 0) Sp(2) 24

1
2
(1, 2, 4; 4)

+ 1
2
(2, 1, 1; 5)

+ 1
2
(2, 3, 1; 1)

25 (1, 0, 1, 0, 0) Sp(2) 24
1
2
(2, 2, 1; 4)

+ 1
2
(1, 2, 4; 4)

26 (1, 0, 2, 0, 0) Sp(2) 32
1
2
(1, 1; 1, 2, 2; 4)

+ (E7)8

27 (1, 0, 2, 0, 1) Sp(3) 48
1
2
(1, 1, 8; 6)

+ (E7)8
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# Fixture (d2, . . . , d6) G # Hypers Representation

28 (1, 1, 0, 0, 0) SU(3) 21

(2, 1, 1; 3)

+ (1, 2, 1; 3)

+ (1, 1, 2; 3)

+ (2, 1, 1; 1)

+ 1
2
(1, 1, 2; 1)

29 (1, 1, 1, 0, 0) SU(4) 30

1
2
(1, 2, 1; 6)

+ 1
2
(2, 1, 1; 6)

+ (2, 1, 1; 1)

+ (1, 1, 4; 4)

30 (1, 1, 1, 0, 0) SU(4) 30

1
2
(1, 2, 1; 6)

+ (2, 1, 1; 4)

+ (1, 1, 4; 4)

31 (1, 1, 2, 0, 0) SU(4) 38

(2, 1; 1, 1, 1; 4)

+ 1
2
(1, 2; 1, 1, 1; 6)

+ (E7)8

32 (1, 1, 2, 0, 1) Sp(3) 54
1
2
(1, 1, 8; 6)

+ SU(2)6 × SU(8)8

33 (1, 1, 0, 0, 0) SU(3) 22

(2, 1; 3)

+ (1, 4; 3)

+ (2, 1; 1)

+ 1
2
(1, 4; 1)

34 (1, 0, 0, 0, 1) G2 29

1
2
(1, 1, 2; 7)

+ 1
2
(1, 4, 1; 7)

+ 1
2
(2, 1, 1; 7)

+ 1
2
(2, 1, 1; 1)
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# Fixture (d2, . . . , d6) G # Hypers Representation

35 (1, 0, 1, 0, 1) Spin(7) 38

1
2
(2, 1, 1; 7)

+ 1
2
(1, 4, 1; 7)

+ 1
2
(1, 1, 4; 8)

+ 1
2
(2, 1, 1; 1)

36 (1, 0, 1, 0, 1) Spin(7) 38

1
2
(2, 1, 1; 8)

+ 1
2
(1, 1, 4; 8)

+ 1
2
(1, 4, 1; 7)

37 (1, 0, 2, 0, 1) Spin(7) 46

1
2
(2, 1; 1, 1, 1; 8)

+ 1
2
(1, 4; 1, 1, 1; 7)

+ (E7)8

38 (1, 0, 2, 0, 2) Spin(7) 62
1
2
(1, 4, 1; 7)

+ Spin(16)12 × SU(2)8

39 (1, 1, 1, 0, 0) SU(4) 32
(2, 1; 4)

+ (1, 6; 4)

40 (1, 0, 1, 0, 1) Spin(7) 39

1
2
(2, 1, 1; 8)

+ 1
2
(1, 6, 1; 8)

+ 1
2
(1, 1, 2; 7)

41 (1, 0, 2, 0, 1) Spin(8) 48

1
2
(2, 1, 1; 8v)

+ 1
2
(1, 6, 1; 8v)

+ 1
2
(1, 1, 4; 8s/c)
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# Fixture (d2, . . . , d6) G # Hypers Representation

42 (1, 0, 2, 0, 1) Spin(8) 48

1
2
(2, 1, 1; 8c/s)

+ 1
2
(1, 6, 1; 8v)

+ 1
2
(1, 1, 4; 8s/c)

43 (1, 0, 3, 0, 1) Spin(8) 56

1
2
(2, 1; 1, 1, 1; 8s/c)

+ 1
2
(1, 6; 1, 1, 1; 8v)

+ (E7)8

44 (1, 0, 3, 0, 2) Spin(8) 72
1
2
(1, 6, 1; 8v)

+ Spin(16)12 × SU(2)8

To understand the ambiguity in the matter content listed for gauge theory fixture (2),

consider resolving it to the 5-punctured sphere

Spin(7), Spin(7))(

which is attached to the rest of the surface by a weakly-coupled Spin(7). In the limit

corresponding to the gauge theory fixture, both SU(2)s are strongly-coupled (τ = i). But

there are three distinct limits where both SU(2)s are weakly coupled:

Spin(7), Spin(7))(
SU(2)̲ × SU(2)

, SU(2)̲ × SU(2))(SU(2)( , SU(2))
1
2(2, 1, 8) + 1

2(1, 2, 8)emptyempty
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where the matter content is 1
2(2, 1, 8) + 1

2(1, 2, 8),

Spin(7), Spin(7))(
SU(2)̲ × SU(2)

, SU(2)̲ × SU(2))(SU(2)

1
2(2, 1, 7) + 1

2(1, 2, 7)

( , SU(2))

1
2(2, 1, 1) 1

2(1, 2, 1)

where the matter content is 1
2(2, 1, 7) + 1

2(2, 1, 1) + 1
2(1, 2, 7) + 1

2(1, 2, 1) and

Spin(7), Spin(7))(

SU(2)

1
2(2, 1, 7) + 1

2(1, 2, 8)

( , SU(2))

1
2(2, 1, 1)

, SU(2))(
empty

SU(2)

where the matter content is 1
2(2, 1, 7) + 1

2(2, 1, 1) + 1
2(1, 2, 8) (or, equivalently, 1

2(2, 1, 8) +
1
2(1, 2, 7) + 1

2(1, 2, 1)). The gauge theory fixture can be viewed as the strong-coupling limit

of any of these three descriptions.

4 Applications

4.1 Spin(2N) and Sp(N − 1) gauge theory

For general N , SO(2N) gauge theory with 2(N − 1) fundamental hypermultiplets, and

Sp(N − 1) gauge theory with 2N fundamentals, are superconformal. Their construction

is well-understood from the orientifold perspective [25–29]. In particular, the (2,0) theory

of type DN is the theory on 2N coincident M5-branes at an orientifold singularity and,

in that realization of these theories [9], the key building block is the fixture consisting of
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a twisted-sector minimal puncture, a twisted-sector full puncture and an untwisted-sector

full puncture,

�✁
✂✄

☎�✁
✂✆✄✝✞✟

☎

✞
✂✠✡☛☞ ✌ ✁✍✎ ✡☞✏

�✡☛☞ ✌ ✁✍☎

which is a free-field fixture transforming as a bifundamental half-hypermultiplet of

Sp(N − 1)× SO(2N).

Taking two of these fixtures and connecting them with a
[12N ]

SO(2N)←−−−−−−−→
[12N ]

cylin-

der yields the aformentioned SO(2N) gauge theory. Connecting them, instead, with a
[12(N−1)]

Sp(N−1)←−−−−−−−−→
[12(N−1)]

cylinder yields the Sp(N − 1) gauge theory.

Here, we read off the S-dual strong-coupling descriptions. In the SO(2N) case,

�✁✂✄ ☎ ✆✝✞

�✁✂✄ ☎ ✆✝✞

✟�✁✄ ☎ ✠✡ ✆
☛
✞✡ ☞✌✂✁✝✍ �✁✄ ☎ ✠✡ ✆

☛
✞

�✆
✎✏✑✒✓✔

✞

�✆
✎✏✑✒✓✔

✞

☞✌✂✁✝

✕✖✗✘✙ ☞✌✂✁✝✚ ✛ ☞✜✟✁✂✄ ☎ ✆✝✍✎✑
☞✢✣✤

we have an SU(2) gauging of the SU(2)8×Sp
(
2(N−1)

)
2N

SCFT. In the Sp
(
2(N−1)

)
case,

�✁✂✄ ☎ ✆✝✞

�✁✂✄ ☎ ✆✝✞

✟�✁✄ ☎ ✠✡ ✆
☛
✞✡ ☞✌✂✁✝✍ �✁✄ ☎ ✠✡ ✆

☛
✞

�✆
✎✏

✞

�✆
✎✏

✞

☞✌✂✁✝

✑✒✓✔✕ ☞✌✂✁✝✖ ✗ ☞✘✙✚✟✛✄✍✜✢✏✣✤✥ ☞✦✧★

we have an SU(2) gauging of the SU(2)8 × Spin(4N)4(N−1) SCFT.
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For completeness, let us note that the other Sp(N) gauge theory which is supercon-

formal for arbitrary N > 1, namely the one with one hypermultiplet in the traceless anti-

symmetric tensor and four hypermultiplets in the fundamental representation, was already

realized17 (with the addition of a single free hypermultiplet) in the untwisted sector of the

A2N−1 theory [3]:

�✁✂✄

�✁✂✄ �✁✂✄

�✁☎ ✁ ✆ ✝☎ ✝✄

�✝✂✞✄✟�✝✂✞✄☎ ✠✡☛✁☞✌
✠✡☛✁☞

✍✟ ✌ ✎ ✏ ✝☛✝☞ ✏ ✍✟ ✌✝✑

For this theory, by contrast, all the degeneration limits are (isomorphic) weakly-coupled

Lagrangian field theories. The flavour symmetry group for this family of field theories is

F = SU(2)2N2−N−1×Spin(8)2N . As is the case for SU(2), Nf = 4, the S-duality, which acts

as an S3 symmetry onM0,4, acts as outer automorphisms of the Spin(8) flavour symmetry.

Moreover, the Seiberg-Witten curve takes the absurdly simple form

0 = λ2N +

N∑
k=1

u2k η
kλ2(N−k),

where the quadratic differential η is

η(z) =
z13z24(dz)2

(z − z1)(z − z2)(z − z3)(z − z4)
.

4.2 Spin(8), Spin(7) and Sp(3) gauge theory

4.2.1 Spin(8) gauge theory

Spin(8) gauge theory, with matter in the nv(8v) + ns(8s) + nc(8c), is superconformal for

nv + ns + nc = 6. Up to permutations, related to triality, the list of possible values for

nv, ns, nc is quite short and we discussed most of them in [4]. There were, however, two

cases which were not realizable with only untwisted sector punctures.

One is nv = 6, which is a special case of the construction in section 4.1. The other

case is nv = 5, ns = 1 (which, as we shall presently see, lies in the same moduli space as

nv = 5, nc = 1).

17This gauge theory can also be realized as the worldvolume theory on N D3-branes probing an O7-plane

and four D7-branes.
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Consider the 4-punctured sphere

�✁✂✄☎✆✝

✞☎✆✟✝ ✠☎✆✟✝ ✡ ☛☎✆☞✌✍✝

This is a weakly-coupled Spin(8) gauge theory with matter in either the 5(8v) + 1(8s) or

the 5(8v) + 1(8c). The two realizations are exchanged by dragging the puncture

around one of the twisted-sector punctures and returning it to its original location.

The strong coupling limits are SU(2) gauge theories

�✁✂✄☎

�✆✂✝☎✞ ✟ �✁✂✄☎✞ �✠✡☛

☞ �✁✂✄☎✌✍

✎✏✑✒✓

(where we gauge an SU(2) subgroup of Sp(6)8) and

�✁✂✄☎

✆✝ ✂✄☎ �✞✂✟☎✠ ✡ �✁✂✄☎☛ �☞✌✍

✎ �✁✂✄☎✏✑

where the SU(2)5 is gauged.
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4.2.2 Spin(7) gauge theory

Similar to the case of Spin(8) gauge theory, realizations of most cases of conformally-

invariant Spin(7) gauge theory were already discussed in [4]. Here we show realizations of

the missing two cases.

5(7). With the addition of three free hypermultiplets, we have a realization of the theory

with 5 hypermultiplets in the vector representation as

� ✁✂✄☎✆✝✞✟✠
✁✂✄☎✆✝✞

✡✆✝✞ ☛✆✝✞ ☞ ☛✆✌✞

The S-dual theory is an SU(2) gauging of the Sp(5)7 × SU(2)8 SCFT, plus 3 free hyper-

multiplets.

�✁✂✄☎

�✆✂✝☎✞ ✟ �✁✂✄☎✠ �✡☛☞ ✌ ✍✂✎☎

✏ �✁✂✄☎✑✒

✓✔✕✖✗
1(8) + 4(7). The Spin(7) gauge theory, with one spinor and four vectors, can be realized

in a couple of different ways. With the addition of three free hypermultiplets, we have

� ✁✂✄☎✆✝✞✟✠
✁✂✄☎✆✝✞

✡✆☛✞ ☞ ✡✆✝✞✌✆✝✞ ☞ ✌✆✡✞
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There are two S-dual descriptions. Both are SU(2) gauge theories; one with a half-

hypermultiplet in the fundamental, gauging an SU(2) subgroup of the Sp(5) symmetry

of the Sp(5)7 × SU(2)8 SCFT,

�✁✂✄☎

�✆✂✝☎✞ ✟ �✁✂✄☎✠ �✡☛☞ ✌ ✍✂✎☎✏
✑ ✂✄☎

✒ �✁✂✄☎✓✔

the other with three half-hypermultiplets in the fundamental, gauging the SU(2)5 of the

Sp(4)7 × SU(2)5 SCFT

�✁✂✄☎

�✆✂✝☎✞ ✟ �✁✂✄☎✠ �✡☛☞ ✌ ✍✂✎☎✏✑ ✂✄☎

✒ �✁✂✄☎✓✔

Another realization, with the addition of only two free hypermultiplets, is

�✁✂✄☎✆✝

✞☎✆✝ ✟☎✠✝ ✡ ✞☎✆✝ ✡ ✞☎✟✝

☛ �✁✂✄☎✆✝☞✌
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where the S-dual theories are

�✁✂✄☎

�✆✂✝☎✞ ✟ �✁✂✄☎✠ �✡☛☞ ✌ ✍
✎✂✄☎ ✌ ✄✂✏☎

✑ �✁✂✄☎✒✓

✔✕✖✗✘

and

�✁✂✄☎

�✆✂✝☎✞ ✟ �✁✂✄☎✠ �✡☛☞ ✌ ✄✂✍☎✎✏ ✂✄☎

✑ �✁✂✄☎✒✓

4.2.3 Sp(3) gauge theory

In this section, we will consider various cases of Sp(3) gauge theory, with vanishing β-

function. We have already discussed the theory with 8(6) and the theory with 1(14) + 4(6)

(special cases of the discussion of section 4.1).

The 14′, the traceless 3-index antisymmetric tensor representation, is pseudoreal and

has index ` = 5. So we can replace five fundamental (half-)hypermultiplets with a 14′

(half-)hypermultiplet.

11
2

(6) + 1
2
(14′). With one half-hypermultiplet in the 14′, we have

�✁✂✄☎

✆
✝✂
✞☎ ✟

✠
✝✂
✡☛☞☎☛✂✞☎

✌✠

✌✝

✌✆ ✌✍

(4.1)
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At strong coupling, we have an Sp(2) gauging of the (E8)12 SCFT

�✁✂✄☎

✂✆✝☎✞✟

✠ �✁✂✄☎✡☛

☞✌✍✎✏

The third boundary point involves a gauge-theory fixture

�

✁✂✄☎✆ ✝ ✞✞✟ ✄✠✆ ✝ ✞✟✄✡☛☞✆✌✍✎✏✑

✒ � ✓✔

3(6) + 1(14′). With two half- or one full-hypermultiplet in the 14′, we have

�✁✂✄☎

✆
✝✂
✞☎ ✟

✠
✝✂
✡☛☞☎✆

✝✂
✞☎ ✟

✠
✝✂
✡☛☞☎

✌✠
✌✝

✌✆ ✌✍

(4.2)
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whose S-dual is an SU(2) gauging of the SU(4)12×SU(2)7×U(1) SCFT, with an additional

half-hypermultiplet in the fundamental:

�✁✂✄☎

�✁✂✆☎✝✞ ✟ �✁✂✄☎✠ ✟ ✡✂☛☎ �☞✌✍✝✞ ✂✄☎

✎ �✁✂✄☎✏✑

Because, to our knowledge, the Seiberg-Witten solution to this theory has not been studied

in the literature, let us present some of the details, here. Setting the locations of the

punctures on C = CP1 as in (4.2), the Seiberg-Witten curve is the locus in T ∗C given by

the equation

0 = λ8 +

3∑
k=1

λ8−2kφ2k(z) + (φ̃(z))
2

(4.3)

where λ = ydz is the Seiberg-Witten differential. In the case at hand,

φ2(z) =
u2z14z23(dz)2

(z − z1)(z − z2)(z − z3)(z − z4)

φ4(z) =
z14z23

[
1
4u

2
2(z − z1)(z − z2)z14z23 + u4(z − z3)(z − z4)z2

12

]
(dz)4

(z − z1)3(z − z2)3(z − z3)2(z − z4)2

φ6(z) =
u6z

2
14z

2
23z

2
12(dz)6

(z − z1)4(z − z2)4(z − z3)2(z − z4)2

φ̃(z) = 0 .

Setting (z1, z2, z3, z4)→ (0,∞, x, 1), (4.3) simplifies to

0 = y2

[
y6 + y4 u2

z(z − 1)(z − x)

+y2 1

z(z − 1)(z − x)

(
1
4u

2
2

(z − 1)(z − x)
+
u4

z2

)
+

u6

z4(z − 1)2(z − x)2

]
. (4.4)

The S-duality group of this theory is Γ(2), and we have f(τ) = x.

Repeating the analysis for (4.1), we find the Seiberg-Witten curve for Sp(3) with
11
2 (6) + 1

2(14′) to be

0 = y2

[
y6 + y4 u2

z(z − 1)(z − x)

+y2 1

z(z − 1)(z − x)3

(
1

4
u2

2

(x− 1)

(z − 1)
+ u4

)
+

u6(x− 1)

z(z − 1)2(z − x)5

]
. (4.5)
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In this case, the moduli space is the branched double-cover of M0,4, parametrized by

w2 = x. The gauge coupling is

f(τ) =
2w

1 + w
.

In particular, the S-duality group is the Γ0(2), generated by

T : τ 7→ τ + 1, ST 2S : τ 7→ τ

1− 2τ
.

Here, T acts as the deck transformation, w 7→ −w, and ST 2S acts trivially on the w-plane.

The theory at f(τ) = 0 is the Lagrangian field theory; at f(τ) = 1,∞ (which project to

x = 1) we have the Sp(2) gauging of the (E8)12 SCFT. The gauge theory fixture, at x =∞,

is the theory at the Z2-invariant interior point of the moduli space, f(τ) = 2.

Other cases. The remaining cases of Sp(3) with vanishing β-function have matter in the

• 2(14)

• 3
2(6) + 1(14) + 1

2(14′)

• 1
2(6) + 3

2(14′)

Unfortunately, we don’t know how to realize these theories as compactifications from 6

dimensions. Presumably, the methods of [30] can be applied, to recover these cases as well.

4.3 Higher genus

In almost all of the discussion in this paper, we have taken C to be genus-zero. We should

close with at least one example of higher-genus, so that we can see the effect of twists

around handles of C.

Consider a genus-one curve, with one minimal puncture, in the D4 theory.

H1(T 2 − p,Z2) = (Z2)2. Under the action of the modular group, H1(T 2 − p,Z2) breaks

up into two orbits: the zero orbit (the “untwisted theory”) and the nonzero orbit (“the

twisted theory”).

– 71 –



J
H
E
P
0
4
(
2
0
1
5
)
1
7
3

The untwisted theory is a Spin(8) gauging of the (E8)12 SCFT. There are three

inequivalent index-2 embeddings of Spin(8) in E8. They can be characterized by how the

248 decomposes (up to outer automorphisms of Spin(8)). Either

248 = 3(1) + 5(28) + 35v + 35s + 35c (4.6a)

or

248 = 1 + 2(8v) + 3(28) + 35v + 2(56v) (4.6b)

or

248 = 8v + 8s + 8c + 2(28) + 56v + 56s + 56c . (4.6c)

The untwisted theory corresponds to (4.6a). The twisted theory, depending on the

S-duality frame chosen, corresponds either to a Spin(8) gauging of the (E8)12 SCFT using

the embedding (4.6b), or to an Sp(3) gauging of the Sp(6)8 SCFT.

For the untwisted theory, the gauge theory moduli space is the fundamental domain

for PSL(2,Z) in the UHP, and τ is the modular parameter of the torus. For the twisted

theory, the moduli space of the gauge theory is the moduli space of pairs (C, γ), where γ

is a nonzero element of H1(C,Z2). This is the fundamental domain of Γ0(2), as discussed

in section 2.3.
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A Tables of properties of twisted sectors

A.1 D5 twisted sector

Nahm
C-partition

Hitchin
B-partition Pole structure Constraints Flavour group (δnh, δnv)

[9] {1, 3, 5, 7; 9
2
} − Sp(4)10 (240, 449

2
)

(ns) ([7, 12],Z2) {1, 3, 5, 7; 7
2
} − Sp(3)9 (227, 431

2
)

[7, 12] {1, 3, 5, 7; 7
2
} c

(8)
7 = (a

(4)

7/2)2 Sp(2)8 ×U(1) (216, 415
2

)

(ns) ([5, 3, 1],Z2) {1, 3, 5, 6; 7
2
} − SU(2)32 × SU(2)7 (207, 401

2
)
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Nahm
C-partition

Hitchin
B-partition Pole structure Constraints Flavour group (δnh, δnv)

[5, 3, 1] {1, 3, 5, 6; 7
2
} c

(6)
5 = (a

(3)

5/2)2 SU(2)216 (200, 389
2

)

[5, 22] {1, 3, 5, 6; 7
2
}

c
(6)
5 = (a

(3)

5/2)2

c
(8)
6 = 2a

(3)

5/2c̃
(5)

7/2

SU(2)10 × SU(2)6 (184, 359
2

)

(ns) ([5, 14],Z2) {1, 3, 5, 5; 5
2
} − Sp(2)7 (182, 353

2
)

[5, 14] {1, 3, 5, 5; 5
2
} c

(6)
5 = (a

(3)

5/2)2 SU(2)6 (174, 341
2

)

[33] {1, 3, 4, 5; 7
2
} − SU(2)10 (178, 349

2
)

[32, 13] {1, 3, 4, 5; 5
2
} − U(1) (168, 331

2
)

[3, 22, 12] {1, 3, 4, 5; 5
2
}

c
(4)
3 = (a

(2)

3/2)2

c
(6)
4 = 2a

(2)

3/2a
(4)

5/2

c
(8)
5 = (a

(4)

5/2)2

U(1) (144, 285
2

)

(ns) ([3, 16],Z2) {1, 3, 3, 3; 3
2
} − SU(2)5 (117, 231

2
)

[3, 16] {1, 3, 3, 3; 3
2
} c

(4)
3 = (a

(2)

3/2)2 none (112, 223
2

)

[19] {1, 1, 1, 1; 1
2
} − none (40, 81

2
)
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A.2 D6 twisted sector

Nahm
C-partition

Hitchin
B-partition

Pole
structure Constraints Flavour group (δnh, δnv)

[11] {1, 3, 5, 7, 9; 11
2
} − Sp(5)12 (440, 831

2
)

(ns) ([9, 12],Z2) {1, 3, 5, 7, 9; 9
2
} − Sp(4)11 (424, 809

2
)

[9, 12] {1, 3, 5, 7, 9; 9
2
} c

(10)
9 = (a

(5)

9/2)2 Sp(3)10 ×U(1) (410, 789
2

)

(ns) ([7, 3, 1],Z2) {1, 3, 5, 7, 8; 9
2
} − Sp(2)9 × SU(2)40 (398, 771

2
)

[7, 3, 1] {1, 3, 5, 7, 8; 9
2
} c

(8)
7 = (a

(4)

7/2)2 SU(2)220 × SU(2)8 (388, 755
2

)

[52, 1] {1, 3, 5, 6, 8; 9
2
} − Sp(2)12 (380, 741

2
)

[7, 22] {1, 3, 5, 7, 8; 9
2
}

c
(8)
7 = (a

(4)

7/2)2

c
(10)
8 = 2a

(4)

7/2c̃
(6)

9/2

Sp(2)8 × SU(2)12 (368, 717
2

)

(ns) ([5, 32],Z2) {1, 3, 5, 6, 7; 9
2
} − SU(2)12 × SU(2)7 (359, 703

2
)

[5, 32] {1, 3, 5, 6, 7; 9
2
} c

(6)
5 = (a

(3)

5/2)2 SU(2)12 ×U(1) (352, 691
2

)

(ns) ([7, 14],Z2) {1, 3, 5, 7, 7; 7
2
} − Sp(3)9 (367, 711

2
)

[7, 14] {1, 3, 5, 7, 7; 7
2
} c

(8)
7 = (a

(4)

7/2)2 Sp(2)8 (356, 695
2

)

(ns) ([5, 3, 13],Z2) {1, 3, 5, 6, 7; 7
2
} − SU(2)7 ×U(1) (347, 681

2
)

[5, 3, 13] {1, 3, 5, 6, 7; 7
2
} c

(6)
5 = (a

(3)

5/2)2 SU(2)32 (340, 669
2

)

[5, 22, 12] {1, 3, 5, 6, 7; 7
2
}

c
(6)
5 = (a

(3)

5/2)2

c
(8)
6 = 2a

(3)

5/2a
(5)

7/2

c
(10)
7 = (a

(5)

7/2)2

SU(2)6 ×U(1) (314, 619
2

)

(ns) ([33, 12],Z2) {1, 3, 4, 5, 7; 7
2
} − SU(2)11 (319, 629

2
)

[33, 12] {1, 3, 4, 5, 7; 7
2
} c

(10)
7 = (a

(5)

7/2)2 U(1) (308, 609
2

)

[3, 24] {1, 3, 4, 5, 6; 7
2
}

c
(4)
3 = (a

(2)

3/2)2

c
(6)
4 = 2a

(2)

3/2a
(4)

5/2

c
(8)
5 = (a

(4)

5/2)2

+2a
(2)

3/2c̃
(6)

7/2

c
(10)
6 = 2a

(4)

5/2c̃
(6)

7/2

SU(2)12 (256, 507
2

)

(ns) ([5, 16],Z2) {1, 3, 5, 5, 5; 5
2
} − Sp(2)7 (282, 553

2
)
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Nahm
C-partition

Hitchin
B-partition

Pole
structure Constraints Flavour group (δnh, δnv)

[5, 16] {1, 3, 5, 5, 5; 5
2
} c

(6)
5 = (a

(3)

5/2)2 SU(2)6 (274, 541
2

)

[32, 15] {1, 3, 4, 5, 5; 5
2
} − U(1) (268, 531

2
)

[3, 22, 14] {1, 3, 4, 5, 5; 5
2
}

c
(4)
3 = (a

(2)

3/2)2

c
(6)
4 = 2a

(2)

3/2a
(4)

5/2

c
(8)
5 = (a

(4)

5/2)2

none (244, 485
2

)

(ns) ([3, 18],Z2) {1, 3, 3, 3, 3; 3
2
} − SU(2)5 (177, 351

2
)

[3, 18] {1, 3, 3, 3, 3; 3
2
} c

(4)
3 = (a

(2)

3/2)2 none (172, 343
2

)

[111] {1, 1, 1, 1, 1; 1
2
} − none (60, 121

2
)
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