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A DOE Based Approach for the 
Design of RBF Artificial Neural 
Networks Applied to Prediction of 
Surface Roughness in AISI 52100 
Hardened Steel Turning 
The use of artificial neural networks for prediction in hard turning has received 
considerable attention in literature. An often quoted drawback of ANNs is the lack of a 
systematic way for the design of high performance networks. This study presents a DOE 
based approach for the design of ANNs of Radial Basis Function (RBF) architecture 
applied to surface roughness prediction in turning of AISI 52100 hardened steel. 
Experimental factors are the number of radial units on the hidden layer, the algorithm 
employed to calculate the spread factor of radial units and the algorithm employed to 
calculate radial function centers. DOE is employed to select levels of factors that benefit 
network prediction skills. Experiments with data sets of distinct sizes were conducted 
and network configurations leading to high performance were identified. ANN models 
obtained proved capable to predict roughness in accurate, precise and affordable way. 
Results pointed significant factors for network design and revealed that interaction 
effects between design parameters have significant influence on network performance 
for the task proposed. The work concludes that the DOE methodology constitutes a 
better approach to the design of RBF networks for roughness prediction than the most 
common trial and error approach. 
Keywords: surface roughness, design of experiments, radial basis function neural 
networks, hard turning, AISI 52100 hardened steel 
 
 
 
 

 
 

Introduction1

Hard turning has become an important process in modern metal 
industry. It is defined as an operation in which materials in hardened 
state (50–70 HRC) are machined with single point cutting tools, and 
which was made possible due to the relatively recent development 
of new cutting tool materials, such as cubic boron nitride and 
ceramics (Singh and Rao, 2007). Its main goal is to remove work 
piece material in a single cut rather than in a lengthy grinding 
operation. Although presenting potential advantages over traditional 
machining processes in some applications, hard turning presents 
unique characteristics, such as segmented chip formation and micro-
structural alterations at the machined surfaces, which are 
fundamentally different from conventional turning (Karpat and 
Özel, 2007). A better knowledge of this process could ultimately 
lead to the combination or elimination of one of the operations 
required, thus reducing product cycle time and increasing 
productivity, according to Singh and Rao (2007).  

Many works on hard turning aim to develop models for surface 
quality. This is an essential consumer requirement in machining 
processes because of its impact on product performance (Ambrogio 
et al., 2008). Basheer et al. (2008) affirm that characteristics of 
surfaces machined have significant influence on the ability of the 
material to withstand stresses, temperature, friction and corrosion. A 
widely used surface quality indicator is surface roughness (Özel and 
Karpat, 2005). The formation of surface roughness is a complex 
process, affected by many factors as tool variables, work piece 
variables and cutting parameters (Singh and Rao, 2007).  

Various authors have obtained good results employing artificial 
neural networks (ANNs) for surface roughness prediction. As 
pointed out by Coit, Jackson and Smith (1998), neurocomputing  
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suits modeling of complex manufacturing operations due to its 
universal function approximation capability, resistance to the noise 
or missing data, accommodation of multiple non-linear variables for 
unknown interactions and good generalization capability. Some 
works, however, report drawbacks in using ANNs for prediction 
(Ambrogio et al., 2008; Bagci and Isik, 2006). An often reported 
problem with ANNs is the optimization of network parameters. 
Zhong, Khoo and Han (2006) affirm that there is no exact solution 
for the definition of the number of layers and neural nodes required 
for particular applications. This study proposes the application of 
the Design of Experiments (DOE) methodology for the design of 
neural networks of RBF (Radial Basis Function) architecture 
applied to the prediction of surface roughness (Ra) in the turning 
process of AISI 52100 hardened steel. The factors considered were 
the network parameters: number of radial units on the hidden layer, 
the algorithm employed to calculate the spread factor of radial units 
and the algorithm employed to calculate center location of the radial 
functions. The goals of the experimental planning are to identify 
levels of factors that benefits network prediction skills, to assess the 
relative importance of each design parameter on network 
performance and to investigate possible interactions between levels 
of design factors. Experiments with distinct sizes of training sets 
were conducted. This made it possible to evaluate the relative 
importance of each design factor on network performance and the 
accuracy attainable by RBFs as the amount of examples available 
for training and selection varies. Pairs of input-output data obtained 
from turning operations were used to generate examples for network 
training and for confirmation runs. Cutting speed (V), feed (f), and 
depth of cut (d) were employed as network inputs. The results 
pinpoint network configurations that presented the best results in 
prediction, for each size of training set. 
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Nomenclature 

ANN = Artificial Neural Networks 
CCD = Central Composite Design 
CNC = Computer Numerical Controlled 
d = Depth of Cut, mm 
DOE = Design of Experiments 
f = Feed, mm/revolution 
ISO1 = Isotropic Algorithm, scale factor equal to 1 
ISO10 = Isotropic Algorithm, scale factor equal to 10 
KM = K-Means Algorithm 
KN5 = K-Nearest Algorithm, K factor equal to 5 
KN10 = K-Nearest Algorithm, K factor equal to 10 
MAE(%) = Mean Absolute Error, percentage 
MLP = Multi Layer Perceptron 
Ra = Average Surface Roughness, µm 
RBF = Radial Basis Function 
SOFM = Self Organized Feature Maps 
SS = Sub-Sampling algorithm 
V = Cutting Speed, m/min 
VBmax = Maximum Flank Wear, mm 
yexpt = Measured roughness experimental value, µm 
ypred = ANN roughness prediction value, µm 
X1 = Algorithm for calculation of the radial spread factor 
X2 = Number of radial units present on the hidden layer 

of the network 
X3 = Algorithm for calculation of the center location of 

radial functions 

Surface Roughness 

Surface roughness refers to deviations from nominal surface 
from third to sixth order (Benardos and Vosniakos, 2003). 
Deviations from distinct order are superimposed to form the 
roughness profile (Benardos and Vosniakos, 2002). Theoretical 
models for the maximum roughness in a turning process exist in 
literature (Whitehouse, 1994; Krar, 1990). Those models, however, 
do not take into account any imperfections in the process, such as 
tool vibration or chip adhesion, according to Sharma et al. (2008). In 
some cases, practical results diverge from theoretical predictions 
(Zhong, Khoo and Han, 2006; Fredj and Amamou, 2006). 

For Karpat and Özel (2007), the complex relationship among the 
parameters involved makes it difficult to generate explicit analytical 
models for hard turning processes. The authors sustain that surface 
roughness is mainly a result of process parameters such as tool 
geometry and cutting conditions. Singh and Rao (2007) sustain that 
the formation of surface roughness is a complex process, affected 
by many factors as tool variables, workpiece variables and cutting 
parameters. Cus and Zuperl (2006) suggested empirical models 
(linear and exponential) for surface roughness as a function of 
cutting speed (V), feed (f) and depth of cut (d). 

Roughness measurement criterion adopted in this study is 
Roughness Average (Ra). This is defined as arithmetic average 
value of the departure of the profile from the centre line throughout 
the sampling length. For discrete measurement, average surface 
roughness can be defined as in Eq. (1) (ISO, 2005): 
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where Ra is the roughness average, n stands for the number of 
samples in a given length and yi stands for the absolute values of the 
peak and valley (measured) in relation to the centre line average. Ra 
is the most popular parameter related to roughness measurement in 
literature (Oktem, Erzurumlu and Erzincanli, 2006). 

RBF – Radial Basis Function Networks 

Radial basis functions represent a class of functions whose value 
increases or decreases as a function of distance to a central point. 
They are employed for tasks of interpolation of sets of points in 
multidimensional spaces. Such a problem is characterized by 
mapping a vectorial space x of multiple dimensions in a uni-
dimensional vectorial space t. The data set consists of N input 
vectors xn, and its corresponding values of tn. The goal is to find a 
function h(x), as in Eq. (2) (Bishop, 1995): 

 
h(x)=t,   n = 1,…, N.   (2) 

 
The use of radial basis functions has proved to be appropriate 

for the task of interpolation, with the use of sets of N basis 
functions, one for each point, being the functions of the form given 
in Eq. (3) (Bishop, 1995): 
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where φ is some kind of non-linear function. The argument of 
function φ is basically a Euclidean norm (a distance) between two 
vectors. A kind of radial basis function widely employed is the 
Gaussian function given in Eq. (4) (Bishop, 1995): 
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where x corresponds to one of the input vectors xn, having elements 
xi, µj is a vector that specifies the hyper-center for function φj, 
having elements μij, and σ represents a parameter that defines the 
spread of the function. RBF networks were proposed by the work of 
Broomhead and Lowe (1988), and comprise a class of multi-layer 
neural networks in which the activation function of each neuron in 
the intermediate layer is a radial basis function. The concept of an 
RBF network is illustrated in Fig. 1. 

 

 
Figure 1. Schematic diagram of a RBF network. 

 
The figure shows a typical RBF composed of three layers: an 

input layer composed of three radial units, a hidden layer where 
non-linear processing (represented by function φ) is carried out, and 
an output layer, containing a single unit. Each input unit is 
connected to all radial units on the hidden layer and each radial units 
on the hidden layer is connected by weighted synapses (represented 
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by w) to the output layer. The synaptic weights are modified during 
training phase in order to teach the networks the non-linear 
relationship that exists between inputs and output. 

The radial function in use is usually a Gaussian function, of 
the kind shown in Eq. (4), in which vector x corresponds to the 
input vector of the radial unit and µj represents the center of the 
radial function. The output layer usually contains neurons that 
calculate the scalar product of its inputs. In a RBF network having 
k radial units in the intermediate layer and one output, this is given 
by Eq. (5) (Bishop, 1995): 
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where x and µ are defined as in Eq. (4), φ represents the activation 
function of the radial units, as, for instance, the Gaussian function 
represented by Eq. (4), wi represents the weight values by which the 
output of a radial unit is multiplied in the output layer and w0 is a 
constant factor. 

RBF networks are able to perform a series of tasks, among 
which approximation of functions. They can act as universal 
approximators, being one hidden layer enough to approximate any 
continuous function (Haykin, 2008). 

The traditional approach to train RBF networks involves two 
phases. In the first, the parameters of the radial basis function (the 
centers and the spread factor) are determined. In the second phase, 
weights of neurons in the output layer shall be adjusted, by means of 
linear optimization method, thus implying in simple processing 
(Haykin, 2008). The two methods usually employed for calculation 
of the centers are sub-sampling and the K-Means algorithm (Bishop, 
1995), both corresponding to methods of unsupervised learning. In 
the sub-sampling method, input patterns randomly chosen are 
copied as the center of radial units. In the K-Means algorithm, an 
effort is made to select an optimal set of input patterns to be set as 
the centroids of the training set. After calculation of the centers, the 
spread factor for the activation function shall be determined. The 
most commonly employed algorithms for this operation are the 
Isotropic and the K-Nearest algorithm. In the Isotropic method, the 
value for the spread factor is chosen heuristically starting from a 
scale factor in order to reflect the number of centers and the volume 
of the hyperspace occupied by them. In the K-Nearest algorithm, the 
value for the spread factor is calculated individually as the average 
distance to the K closest radial units. Values of parameter K should 
be defined by the designer. After this phase, the next step 
corresponds to the optimization of the output layer, what can be 
performed by employing a standard technique for linear 
optimization, as the pseudo-inverse method (Haykin, 2008). 

RBF’s applied to surface roughness prediction 

Neural network models have been widely applied to prediction 
tasks in hard turning processes. Networks of MLP (multi-layer 
perceptron) architecture are employed in most of them. Works 
comparing the performance of ANN models to that presented by 
DOE based models are not rare, with mixed results. In Erzurumlu 
and Oktem (2007), a response surface model RSM and an ANN are 
developed for prediction of surface roughness in mold surfaces. 
According to the authors, the neural network model presented 
slightly better performance, though at a much higher computational 
cost. In Çaydas and Hasçalik (2008), an ANN and a regression 
model were developed to predict surface roughness in abrasive 
waterjet machining process. In this case, the regression model was 
slightly superior. Palanisamy, Rajendran and Shanmugasundaram 

(2008) compared the performance of regression and ANN models 
for predicting tool wear in ending milling operation, with ANNs 
presenting better results. Karnik, Gaitonde and Davim (2007) 
applied neural networks and RSM models to predict the burr size for 
a drilling process. The authors concluded that ANN performance 
was clearly superior to that obtained by the polynomial model. 
Bagci and Işik (2006) developed an ANN and a response surface 
model to predict surface roughness on the turned part surface in 
turning unidirectional glass fiber reinforced composites. Both 
models were deemed as satisfactory. The use of neural networks in 
conjunction with other methods is yet another strategy adopted by 
some authors (Karpat and Özel, 2007). Only a few studies make use 
of RBF networks for prediction in machining processes. Shie (2008) 
combined a trained RBF network and a sequential quadratic 
programming method in order to find an optimal parameter setting 
for an injection molding process. In Dubey (2009), they are 
employed in conjunction with desirability function and genetic 
algorithms in a hybrid approach for multi-performance optimization 
in electro-chemical honing process. Sonar, Dixit and Ohja (2006) 
made use of RBFs for prediction of surface roughness in the turning 
process of mild steel with carbide tools. In that work, RBFs were 
outperformed by MLPs. Nevertheless, the authors emphasized that 
RBF definition was simple and its training fast. Cus and Zuperl 
(2006) performed a comparison between the performance of MLP 
and RBF networks applied to predict surface roughness in turning 
operations. Although MLP have outperformed the RBF, that work 
evidences that RBF is stable and converges much faster than MLPs. 
El-Mounayri, Kishawy and Briceno (2005) employed RBF networks 
to prediction of cutting forces in CNC ball end milling operations. 
Results of that work reveal that RBF’s achieved a high level of 
accuracy in the proposed task. Once more, authors stressed the easy 
definition and fast convergence of the network. 

Network Topology Definition 

Distinct approaches can be found in literature for the definition 
of the network topologies employed for roughness prediction. In a 
review of several publications dealing with surface roughness 
modeling in machining processes by means of artificial neural 
networks, Pontes et al. (2010) pointed to the fact that trial and error 
still remain as the most frequent technique for ANN topology 
definition, as in Erzurumlu and Oktem (2007).  

In some studies, heuristics are used to define the parameters 
(Kohli and Dixit, 2005). In other cases, a ‘one-factor-at-a-time’ 
technique is used in the search for a suitable configuration (Fredj 
and Amamou 2006; Kohli and Dixit, 2005). 

The use of DOE techniques for optimization is scarcely found. 
One rare example is the work of Quiza, Figueira and Davim (2008), 
where an experimental design is employed to configure a neural 
network of MLP architecture intended to predict tool flank wear in 
hard machining of D2 AISI steel. The following factors are 
employed in the experimental design: learning rate, moment 
constant, training epochs and number of neurons in hidden layer. In 
Balestrassi et al. (2009) the Taguchi methodology was employed for 
the optimization of MLP networks applied to time series prediction. 
The authors sustain that traditional methods of studying one-factor-
at-a-time may lead to unreliable and misleading results while error 
can lead to sub-optimal solutions. 

In the comparison with previous works, the present paper could 
be innovative in the following points: 

• The use of full factorial technique for the design of RBF 
networks in surface roughness prediction, considering a 
large database; 

• The study of the relative importance of the design factors 
on network performance; 
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• The assessment of the attainable accuracy in surface 
roughness prediction for turning of AISI 52100 steel for 
distinct amounts of examples available for training the 
networks; 

• The investigation of existence and significance of 
interactions among design factors on network 
performance. 

Experimental Procedures 

The experimental procedure consisted in the following steps: 
• Cutting operations intended to build a database to train 

and select the ANNs; 
• Generation of training and testing data sets; 
• Simulation experiments, planned according to DOE 

techniques, intended to identify best network topologies; 
• Confirmatory experiments intended to validate the 

network topologies identified during planned experiments. 
The workpieces employed were made with dimensions of φ49 x 

50 mm. All of them were quenched and tempered. A total of 60 
workpieces of AISI 52100 steel bars of the same lot were employed 
during the experiments (chemical composition shown on Table 1). 
They were machined using a Romi S40 machine tool. After this heat 
treatment, their hardness was between 53 and 55 HRC, up to a depth 
of 3 mm below the surface. Hardness profile was measured at six 
points in each workpiece and no significant differences in hardness 
profile were detected. 

 
Table 1. Chemical composition of the AISI 52100 steel (weight percentage). 

C Si Mn Cr Mo Ni S P 
1.03 0.23 0.35 1.40 0.04 0.11 0.001 0.01 

 
The machine tool used was a CNC lathe with power of 5.5 KW 

in the spindle motor, with conventional roller bearings. The mixed 
ceramic (AL2O3 + TiC) inserts used were coated with a very thin 
layer of titanium nitride (TiN) presenting a chamfer on the edges. 
The tools employed in the study were produced by Sandvik 
Coromant, class GC6050, CNGA 120408 S01525. The tool holder 
presented negative geometry with ISO code DCLNL 1616H12 and 
entering angle χr = 95°.  

In this study, cutting speed (V), feed (f), and depth of cut (d) 
were employed as controlling variables. Those cutting conditions 
varied as follows: 200 m/min ≤ V ≤ 240 m/min, 0.05 mm/r ≤ f ≤ 
0.10 mm/r and 0.15 mm ≤ d ≤ 0.30 mm. The adopted values 
correspond to the operational limits enlisted by the toolmaker on its 
catalogue (Sandvik Coromant, 2009). The cutting experiments used 
to train and test the ANN followed a RSM design as detailed in 
Paiva et al. (2005). This original CCD design is formed by three 
distinct groups of experimental points: (i) a full factorial design with 
23 runs, (ii) six axial points and (iii) four center points, resulting in 
18 runs. Using three replicates for each run and augmenting the 
experimental design with 6 face centered runs, the entire design was 
built with 60 runs, as can be seen in Fig. 2. Then, 60 workpieces of 
AISI 52100 hardened steel were turned with 60 different 
configurations. In each of 60 workpieces, twelve surface roughness 
measurements were done, resulting in a data set for training and 
testing sets for the ANN with 720 cases. 

A Taylor Hobson rugosimeter, model Surtronic 3+ was 
employed for roughness measurements, as well as a Mitutoyo 
micrometer. The twelve roughness measures were collected from 
each workpiece as follows: four measurements at each extremity 
(chuck and live centre) and four at the middle point. The horizontal 
displacement between each sample was 25 mm. The four 
measurements at the extremities and at the middle point were 

collected with angular displacements of 90º. All measures were 
taken after the end of tool life. The criteria adopted for determining 
the end of tool life was tool flank wear VBmax equal or greater than 
0.3 mm. 

 

 
Figure 2. Central Composite Design (CCD) augmented with hybrid points. 

Experimental Design for selection of ANN parameters 

The problem to be addressed by the designed experiment was to 
identify the best topology for roughness prediction. The 
experimental factors considered were the design parameters of the 
RBF networks: the algorithm for calculation of the radial spread 
factor (X1), with four levels; the number of radial units present on 
the hidden layer of the network (X2), also with four levels, and the 
algorithm for calculation of the center location of radial functions 
(X3), with two levels. The criterion employed for network selection 
was the minimization of Mean Absolute Error (expressed in 
percentage) in prediction. To achieve the established goals for the 
study, distinct experiments were conducted for different sizes of 
data sets. Twelve data sets of different sizes were formed, 
containing 18, 24, 36, 45, 72, 90, 180, 240, 360, 450, 500 and 600 
examples. The first data set contained the first 18 examples (V, f, d, 
Ra); the second training set contained the first 24 examples (V, f, d, 
Ra), and so on, up to the last training set, containing 600 examples. 
Two thirds of the examples contained in each data set were used as 
training set for networks and one third was employed as a selection 
set. The remaining 120 examples did not take part in any network 
training activity and were spared to be used as test cases during 
confirmation runs. 

Two experimental cycles were conducted. The first one was an 
exploratory experimental cycle involving full factorials of mixed 
levels (Coleman and Montgomery, 1993). Regarding the algorithm 
for calculation of the radial spread factor, two distinct algorithms 
were tested: the Isotropic and the K-Nearest algorithms (Haykin, 
2008). For the Isotropic algorithm two levels of its scaling factor 
were investigated, based on results of preliminary experiments. For 
the K-Nearest algorithm, the influence of its defining factor K was 
investigated. Once more, two different values of the factor were 
selected for testing, based on results of preliminary experiments.  

Regarding the number of radial units, the levels of the factor 
were defined as proportions between that number of radial units and 
the number of training examples, as suggested by Haykin (2008). 
The proportions established as levels of the factor were 25%, 50%, 
75% and 100% of the number of examples available for training in 
each experiment. 

Two distinct algorithms for calculation of the center location of 
radial functions were tested: the Sub-Sampling algorithm and K-
Means algorithm (Moody and Darken, 1989). Each algorithm was 
established as a level of the experimental factor. 
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The second cycle involved 12 full factorial experiments 
(Coleman and Montgomery, 1993), one for each size of training set. 
Levels that led to minimum error in predictions during the first cycle 
were kept for the second one. Best network configurations obtained 
during the second cycle were pinpointed and subjected to 
confirmation runs. The selected levels for each factor in the 
experiments of the second cycle are shown in Table 2. Actual 
treatments were not the same in all experiments, for they were 
selected based on the best results obtained from the previous 
exploratory experimental cycle, which varied depending on the size 
of the training set. The results obtained in this cycle were 
statistically analyzed and employed to select the best network 
topologies and to form the conclusions of this study. 

 
Table 2. ANN factors and levels used in the training and test phase. 

Training 
Examples 

Algorithm of 
Spread Factor 

(X1) 

Number of 
Radial  Units 

(X2) 

Algorithm of 
Center Location 

(X3) 
18 ISO10 6 SS 

 KN10 9 KM 
24 ISO10 8 SS 

 KN10 12 KM 
36 ISO10 12 SS 

 KN10 18 KM 
45 ISO10 15 SS 

 KN10 23 KM 
72 ISO10 24 SS 

 KN10 36 KM 
90 ISO10 30 SS 
 KN5 45 KM 

180 ISO1 30 SS 
 ISO10 60 KM 

240 ISO10 38 SS 
 KN10 75 KM 

360 ISO10 60 SS 
 KN5 120 KM 

450 ISO10 75 SS 
 KN10 150 KM 

500 ISO1 100 SS 
 ISO10 200 KM 

600 ISO10 125 SS 
 KN10 250 KM 

 
In Table 2, ISO1 stands for Isotropic Algorithm with scale factor 

equal to 1; ISO10 stands for Isotropic Algorithm with scale factor 
equal to 10; KN5 stands for K-Nearest Algorithm with K factor 
equal to 5; KN10 stands for K-Nearest Algorithm with K factor 
equal to 10; SS stands for Sub-Sampling, and KM stands for K-
Means algorithm. Each cutting condition (V, f, d) was assigned to a 
network input. The choice is usual in literature (Bagci and Işik, 
2006). Networks of single output were employed, being the output 
defined as the network prediction for surface roughness (Ra). 

Execution of experiments and confirmation runs 

Execution of each experimental arrangement consisted in 
configuring the network as specified by the factorial design and 
training the ANN. The Neural Networks suite of the statistical 
software package Statistica® release 7.1 was employed. Sixty 
replications were performed for each network configuration, 
meaning that a network configuration under test was independently 
initialized and trained for sixty times, in order to mitigate risks 
associated to the random initialization of synaptical weights 
(Haykin, 2008). Examples were presented in a random sequence to 
the network during training. 

Regarding pre and post processing, data was normalized to the 
interval (0, 1) to be applied to network inputs and re-scaled to the 

original dominium at the output. Results were stored under the 
format of files produced by the software package, containing the 
prediction of the networks for test cases. The results were 
compiled to identify factor levels favoring network performance in 
prediction, to investigate relative importance of each factor and 
the existence of interactions. 

The best network configurations for each data set were kept and 
subjected to confirmation runs. Those consisted in applying the 
networks to predict surface roughness for the 120 examples spared 
from training, in order to assess network generalization capability. 
The output variable chosen as performance measure in confirmation 
runs was the mean absolute error, in percentage, given by Eq. (6). 

 

100(%) ×
−

=
y

yy
expt

predexptMAE
   (6) 

 
In Eq. (6), yexpt stands for the measured experimental value and 

ypred stands for the ANN predicted value of the response. 

Results and Discussion 

The ANOVA results allowed the determination of factors and 
interactions significant to the performance of the network in the 
prediction task. Individual effect analysis and interaction effect 
analysis were conducted, for each of the 12 experiments conducted. 
Standardized residuals were analyzed by means of Anderson-
Darling test, at the level of significance of 0.05. Figures 3 and 4 
show the individual and interaction effects obtained from the 
experiment involving a data set composed of 72 examples. The 
results shown in Fig. 3 and Fig. 4 correspond to network predictions 
for cases of the selection set, which is composed, as mentioned, of 
1/3 of the total number of training cases. So in the example depicted 
(72 examples), the graphs are a measure of the effects of network 
design on the prediction accuracy obtained in 24 cases included in 
selection set. 

In Fig. 3 the individual effects of each experimental factor on 
the network error in prediction (on the vertical axis) are plotted 
against factor level (on the horizontal axis). 

 

 
Figure 3. Individual effects for the experiment involving 72 training examples. 

 
It is clear that the algorithm employed for calculation of the 

radial spread factor has a strong influence, indicated by the strong 
difference in network errors observed varying the level of that 
factor. As the desired output for the network is the smallest 
prediction error, it is clear that level -1 (Isotropic algorithm with a 
scaling factor set to 10) is the setting that leads to the best accuracy. 
In regard to the number of radial units, level 1 (corresponding to 
50% of the number of training examples, i.e., 36 units in the 
experiment with 72 examples) is the best setting. The figure shows 
also that influence of the algorithm employed to calculate center 
location has negligible influence on network accuracy.  
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Figure 4 refers to the interaction effects between experimental 
factors on network error in prediction (on the vertical axis). The 
figure shows a pronounced influence of the interaction between the 
algorithm for calculation of the radial spread factor and the number 
of radial units. 

 

 
Figure 4. Interaction effects for the experiment involving 72 training examples. 

 
Results of ANOVA for individual significance of the effects for 

the experiment involving 72 examples are shown in Table 3. 
 

Table 3. ANOVA results for 72 training examples. 

Source Coefficient T P-
Value

Alg. Spread Factor .103 93.19 0.000 

No. of Radial Units -0.032 -
29.34 0.000 

Alg. Center Location -0.005 -4.74 0.000 
Alg. Spread Factor X No. of 

Radial Units 0.022 19.93 0.000 

Alg. Spread Factor X Alg. 
Center Location -0.004 -3.28 0.002 

No. of Radial Units X Alg. 
Center Location -0.002 -1.63 0.108 

Alg. Spread Factor X No. of 
Radial Units X Alg. Center 

Location 
0.001 0.60 0.550 

 
The results reveal the effects that a significant influence has on 

network performance. A factor is considered as significant if its p-
value is inferior to the level of significance adopted, which is 0.05 in 
this case. Individual effects of the three experimental factors are 
significant. Two interaction effects are significant as well: the 
interaction between the algorithm for calculation of the spread and 
the number of radial units, and the interaction between the algorithm 
for algorithm for calculation of the spread and the algorithm for 
calculation of center locations. The remaining effects are not 
significant for this size of data set. 

Analysis of the absolute values of the effects made it possible to 
determine the configurations that yielded the best result in the 
prediction task among the configurations tested, for each size of the 
data set. Isotropic algorithm employed with a scale factor of 10 
presented the best results in all experiments conducted. The best 
settings for all factors are shown in Table 4. 

 
 

 

 

Table 4. Best ANN configurations for each data set size. 

Training 
examples 

Algorithm for calculation 
of the spread factor 

Number 
of radial 

units 

Algorithm for 
calculation of 
radial centers 

18 Isotropic, Scale factor = 10 9 Sub-Sampling 
24 Isotropic, Scale factor = 10 12 Sub-Sampling 
36 Isotropic, Scale factor = 10 12 Sub-Sampling 
45 Isotropic, Scale factor = 10 23 Sub-Sampling 
72 Isotropic, Scale factor = 10 36 K-Means 
90 Isotropic, Scale factor = 10 45 K-Means 
180 Isotropic, Scale factor = 10 60 Sub-Sampling 
240 Isotropic, Scale factor = 10 75 K-Means 
360 Isotropic, Scale factor = 10 120 K-Means 
450 Isotropic, Scale factor = 10 150 Sub-Sampling 
500 Isotropic, Scale factor = 10 200 Sub-Sampling
600 Isotropic, Scale factor = 10 250 Sub-Sampling

 
Regarding the number of radial units on the network hidden 

layer, the best results were achieved using proportions of 75% 
between the number of units and the number of training examples 
available, in the experiments involving 18, 24, 45, 72 and 90 
examples. In the remaining experiments, the number of radial units 
that led the network to the best performance equaled the proportion 
of 50% between number of units and number of examples. 

In regard to relative importance of factor on network 
performance, it was observed that factor X1 (the algorithm for 
calculation of the spread factor) was pointed by ANOVA as the 
most significant in 10 experiments. The exceptions were the 
experiments involving the smallest number of examples (18 and 24). 
The effect of algorithm employed to calculate the spread became 
dominant in experiments involving 36 examples and more. The 
significance of this factor becomes overwhelming as the number of 
examples available for training increases. 

Factor X2 (the number of radial units), was pointed as 
significant in all experiments, although its relative weight in 
network performance is inferior to that of algorithm for calculation 
of the spread factor in experiments with 36 examples or more. This 
factor was the most significant one in the experiment involving 24 
examples. 

Factor X3 (the algorithm for calculation of the center location of 
radial functions) was the less influential of the factors under 
investigation. The effect of that factor was pointed by the ANOVA 
as insignificant or only marginally significant in the experiments 
conducted. Figure 5 shows an example of the Pareto chart for the 
standardized effects obtained with 72 examples. 

In the Pareto diagram, the dashed line indicates the threshold for 
factor significance, for an adopted level of significance of 5%. The 
chart reveals the relative impact of each factor on network accuracy. 
The diagram clearly displays the prevalence of algorithm for 
calculation of the spread factor on network performance, followed 
by the effect of the number of radial units and by the effect of the 
interaction between the two factors. 

In respect to the existence of interactions, all twelve experiments 
presented at least one interaction pointed as significant to the 
performance of the network, according to ANOVA results. In some 
experiments interaction effects of 3rd order were pointed as 
significant. The existing interaction between factors algorithm for 
calculation of the radial spread factor and number of radial units was 
pointed as significant in eleven out of twelve experiments. The 
effect of this interaction is particularly pronounced. It rivals, and in 
some cases overcomes, the individual effect of varying the number 
of radial units on the hidden layer. 
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Figure 5. Pareto chart of the standardized effects for 72 training examples 
(α = 0.05). 

 
The interaction between the algorithm for calculation of the 

radial spread factor and the algorithm for calculation of center 
location was pointed as significant in seven experiments, although 
with much smaller impact. The remaining interaction effects were 
pointed by the analysis as insignificant or minimally significant. 

ANN model accuracy 

During confirmation runs, the best network for each size of 
training set were employed to predict surface roughness for the 120 
examples spared from network training and selection. The results 
agreed to those obtained during the planned experiments. Results 
are summarized in Table 5. It shows the values for mean absolute 
error, standard deviation of the error and maximum error, for the 
network configurations described in Table 4. 

 
Table 5. Accuracy of the Best ANN Prediction Models in confirmation runs. 

Training 
examples 

Error in 
prediction 
(MAE %) 

Standard 
Deviation of 
the error (%) 

Maximum 
error (%) 

18 7.88 5.34 18.97 
24 1.07 0.46 2.82 
36 0.39 0.16 0.96 
45 0.23 0.03 0.31 
72 0.04 0.02 0.17 
90 0.02 0.00 0.03 

180 0.01 0.00 0.01 
240 0.01 0.00 0.01 
360 0.00 0.00 0.00 
450 0.00 0.00 0.00 
500 0.00 0.00 0.00 
600 0.00 0.00 0.00 

 
Error in prediction falls steadily and becomes negligible as the 

number of examples available for training increases, as predicted in 
literature. It is important, however, to emphasize that a mean 
absolute error of 0.388% was obtained using only 36 examples. This 
suggests the feasibility of identifying RBF network configurations 
able to predict accurately using a relatively small number of training 
cases, with the aid of the DOE methodology. Results show also that 
dispersion in prediction falls as training sets become larger.  

An example of the resulting ANN models for surface roughness 
prediction is shown in Fig. 6. The best identified network 
configuration for prediction using 72 examples was applied to 
predict surface roughness for a fixed depth of cut of 0.25 mm and 
for several values of cutting speed and feed between the limits 
employed in experimentation. 

 

 
Figure 6. Response surface of the best ANN model for 72 examples. Hold 
value: d = 0.25 mm. 

 
In Fig. 6, independent variables V (cutting speed), in m/min, and 

f (feed), in mm/r, are displayed on the horizontal axes. The plotted 
response surface corresponds to a fixed value of 0.25 mm for 
variable d (depth of cut). Values of predicted roughness average 
(Ra), in μm, are shown on the vertical axis. 

Conclusions 

The use of DOE methodology proved to be an efficient tool for 
the design of neural networks of RBF architecture for surface 
roughness prediction in the turning of AISI 52100 hardened steel. 
The methodology made it possible to identify network 
configurations presenting high degree of accuracy and reduced 
variability in the proposed task. Results obtained show that RBF 
ANNs trained with only 36 examples can present mean absolute 
errors equal to 0.388%. This fact suggests that RBF networks 
designed with the use of DOE methodology can be an effective, 
efficient and affordable alternative for surface roughness prediction 
in hard turning. 

The algorithm for calculation of the radial spread factor was the 
most influential among the three factors under investigation. The 
influence of that factor becomes dominant as the number of 
examples available for training increases. The second most 
influential factor was the number of radial units on the network 
hidden layer. The less influential factor was found to be the 
algorithm for calculation of center locations. The influence of this 
factor was negligible in almost all experiments. The conclusion is 
that the option for any of the algorithms tested implied in no 
pronounced difference in network performances. Such finding can 
further simplify the design of the ANN to be used for roughness 
prediction in AISI 52100 hard turning. Interaction effects between 
levels of factors involved were pointed as significant to the 
performance of RBF networks. In each of the experiments 
conducted at least one interaction effect was pointed as significant. 
In some cases, interaction effects were more significant to network 
performance than individual factor effects. This means that not only 
the straightforward configuration parameters should be considered 
when designing networks for surface roughness prediction, but also 
the amount and the nature of the interaction among them. 

It must be emphasized that conclusions obtained in this work 
cannot be extrapolated to other neural network architectures, other 
kind of machining operations, other materials or tools. The approach 
can, nonetheless, be recommended to different network 
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architectures. A study on tool surface roughness can also be 
elaborated using the same method employed here, replacing the 
machining process under study. Further investigation is required in 
order to evaluate the nature and the impact of the interactions among 
design factors on the network performance, and also on reduction of 
computational costs associated with extensive experimentation 
required by network optimization. 
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