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We study the phase diagram for a dilute Bardeen-Cooper-Schrieffer superfluid Fermi-Fermi mixture �of
distinct mass� at zero temperature using energy densities for the superfluid fermions in one �1D�, two �2D�, and
three �3D� dimensions. We also derive the dynamical time-dependent nonlinear Euler-Lagrange equation sat-
isfied by the mixture in one dimension using this energy density. We obtain the linear stability conditions for
the mixture in terms of fermion densities of the components and the interspecies Fermi-Fermi interaction. In
equilibrium there are two possibilities. The first is that of a uniform mixture of the two components, the second
is that of two pure phases of two components without any overlap between them. In addition, a mixed and a
pure phase, impossible in 1D and 2D, can be created in 3D. We also obtain the conditions under which the
uniform mixture is stable from an energetic consideration. The same conditions are obtained from a modula-
tional instability analysis of the dynamical equations in 1D. Finally, the 1D dynamical equations for the system
are solved numerically and by variational approximation �VA� to study the bright solitons of the system for
attractive interspecies Fermi-Fermi interaction in 1D. The VA is found to yield good agreement to the numeri-
cal result for the density profile and chemical potential of the bright solitons. The bright solitons are demon-
strated to be dynamically stable. The experimental realization of these Fermi-Fermi bright solitons seems
possible with present setups.
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I. INTRODUCTION

After the experimental realization of a trapped Bose-
Einstein condensate �BEC� �1� there has been a great effort
to trap and cool the Fermi atoms to degeneracy by sympa-
thetic cooling in the presence of a second Bose or Fermi
component. The second component is needed to facilitate
evaporative cooling not possible due to lack of interaction in
a single-component Fermi gas �2,3�. Apart from the observa-
tion of the degenerate Bose-Fermi mixtures 6,7Li �4,5�,
23Na-6Li �6�, and 87Rb-40K �7,8�, there have been studies of
the following spin-polarized degenerate Fermi-Fermi mix-
tures 40K-40K �2� and 6Li-6Li �3� in different hyperfine
states.

Specially challenging has been the experimental realiza-
tion of the vortex lattice in a Bardeen-Cooper-Schrieffer
�BCS� superfluid Fermi gas �9–12� in Bose-Fermi mixture
employing a weak attractive interaction among the intraspe-
cies fermions by using a Feshbach resonance �13,14�. This
attractive interaction allows the formation of BCS pairs lead-
ing to a BCS superfluid �12,15�. In the last few years by
further increasing this attraction several experimental groups
have observed the crossover �16� from the paired BCS state
to the BEC of molecular dimers with ultracold two-
hyperfine-component Fermi vapors of 40K �17� and 6Li at-
oms �18,19�. Another possibility is to use two distinct Fermi
atoms for this purpose as suggested in Ref. �20� in a study of
collapse in a Fermi-Fermi mixture. �6Li-40K is a possible
candidate for future exploration.� The Feshbach-resonance
management of the Fermi interaction could be utilized to
study a superfluid Fermi-Fermi mixture in a controlled fash-
ion �13�.

In Bose-Fermi mixtures, there have been several studies
on phase separation �21–25�, solitonlike structures �26�, and
collapse �27�, recently. The phase diagram of the Bose-Fermi
mixture in three dimensions �3D� has been studied by Viverit
et al. �23�, whereas the same in one dimension �1D� has been
studied by Das �24�. Bright solitons have been observed in
BECs of Li �28� and Rb �29� atoms and studied subsequently
�30�. It has been demonstrated using microscopic �31� and
mean-field hydrodynamic �26� models that the formation of
stable fermionic bright solitons is possible in a degenerate
Bose-Fermi mixture in the presence of a sufficiently attrac-
tive interspecies interaction which can overcome the Pauli-
blocking repulsion among fermions. The formation of a soli-
ton in these cases is related to the fact that the system can
lower its energy by forming a high density region �bright
soliton� when the interspecies attraction is large enough to
overcome the Pauli-blocking interaction in the degenerate
Fermi gas �and any possible repulsion in the BEC� �32�.
There have also been studies of mixing-demixing transition
in degenerate Bose-Fermi �33� and Fermi-Fermi �34� mix-
tures, and soliton formation in Fermi-Fermi mixtures �35�.

In this paper we investigate the phase diagram of a BCS
superfluid Fermi-Fermi mixture of fermion components of
distinct mass at zero temperature using energy densities for
the superfluid Fermi components in one, two �2D�, and three
dimensions. We derive the conditions of stability of the mix-
ture in terms of the densities of the components and the
strength of interspecies interaction. The two possible phases
of the mixture are a uniformly mixed configuration and a
totally separated pure-phase configuration. Unlike in a Bose-
Fermi mixture �23,24�, no complicated mixed phases are al-
lowed in a superfluid Fermi-Fermi mixture in 1D and 2D.
However, a mixed and a pure phase is allowed in 3D. In 1D,
two pure and separated phases of the fermion components
appear for low fermion densities, whereas the opposite is
found in 3D. In 1D, a uniform mixture appears for large*adhikari@ift.unesp.br; URL: www.ift.unesp.br/users/adhikari
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fermion densities with the opposite taking place in 3D. In
2D, the condition for uniform mixture and phase separation
is independent of density of the components. In 1D, we find
the uniform mixture to be unstable for small fermion densi-
ties, whereas in 3D, the uniform mixture is unstable for large
fermion densities.

The 1D configuration is of special interest due to soliton
formation by modulational instability of a uniform mixture.
To study this phenomenon we derive a set of dynamical
equations of the system as the Euler-Lagrange equation of an
appropriate Lagrangian. The condition of stability of the uni-
form mixture and the formation of soliton for attractive in-
terspecies Fermi-Fermi interaction were studied from an en-
ergetic consideration as well as with a linear stability
analysis of the constant-amplitude solution of the above dy-
namical equations. We solved the 1D dynamical equations
numerically and variationally to study some features of the
bright solitons. The numerical results for the density of the
fermion components as well as their chemical potentials are
found to be in good agreement with the variational findings.
These bright solitons are found to be stable numerically
when they are subjected to a perturbation.

The dependence of Fermi energy densities in 1D and 2D
on atomic densities has counterparts in Bose systems and the
analysis presented here is also applicable to these Bose sys-
tems. The 2D Fermi energy density has a quadratic depen-
dence on atomic density as in a dilute BEC obeying the
Gross-Pitaevskii equation, thus allowing the present results
to be applicable to such a BEC �1�. The 1D Fermi energy
density, on the other hand, has a cubic dependence on atomic
density as in a Tonks-Girardeau �36� �TG� Bose gas observed
recently �37�, thus making the present results applicable to
this system.

The paper is organized as follows. In Sec. II we consider
the stability condition of a uniform BCS superfluid Fermi-
Fermi mixture from an energetic consideration. In Sec. III
we consider a two-phase BCS superfluid Fermi-Fermi mix-
ture in 1D, 2D, and 3D and study the possibility of the for-
mation of two phases from a consideration of pressure, en-
ergy, and chemical potential of the system. We can have two
pure phases or a uniformly mixed phase in all dimensions. In
addition, in 3D, we can have a pure and a mixed phase. In
Sec. IV we consider the Euler-Lagrange nonlinear dynamical
equations for the system in 1D and study the modulational
instability of the constant-amplitude solution representing
the uniform mixture. The condition of modulational instabil-
ity for attractive Fermi-Fermi interaction is found to be con-
sistent with the condition of stability of the uniform mixture
obtained from an energetic consideration in Sec. II. We fur-
ther solve these dynamical equations numerically and varia-
tionally to analyze the properties of the Fermi-Fermi soli-
tons. Finally, in Sec. V we present a summary of our study.

II. UNIFORM SUPERFLUID FERMI-FERMI
MIXTURE

A. Energy density of a component

We consider a single-component dilute BCS superfluid of
spin-half Fermi atoms of mass m and density n3 with a weak

attraction between fermions with opposite spin orientations.
In 3D, the energy density of this system is given by �38–41�

E3D = �3/5�n3�F, �1�

where �F= ��kF�2 / �2m� is the Fermi energy, �kF is the Fermi
momentum �this expression was first obtained by Lee and
Yang �39� in the weak-coupling BCS limit�. Modifications to
this expression for a description of the BCS-BEC crossover,
for stronger attraction between fermions, have also been con-
sidered �41�. The total density of the fermions in a 3D box is
obtained by filling the quantum states up to the Fermi energy
and is given by n3=2�2��−3�0

kF4�k2dk��3�2�−1�2m�F /
�2�3/2. �The factor of 2 in the expression for n3 accounts for
BCS pairing in each level.� Hence the energy density in Eq.
�1� becomes

E3D =
3�3�2�2/3�2

10m
n3

5/3 =
3

5
A3n3

5/3, �2�

with A3=�2�3�2�2/3 / �2m�.
Similarly, the energy density of a dilute 1D superfluid of

atom density n1 is given by �42,43�

E1D = �1/3�n1�F. �3�

This was obtained using the Gaudin-Yang �GY� model �43�
of fermions weakly interacting via zero-range ��-function�
potential, and was later extended to the description of the
BCS-to-unitarity crossover �42�. �For repulsive interaction
the GY model gives �44� a Tomonaga-Luttinger liquid �45�,
while for attractive interaction it leads to a Luther-Emery
liquid �46�. For weak attraction the ground state of the sys-
tem is a BCS superfluid �12,47�. With the increase of attrac-
tion, the strong-coupling regime of tightly bound dimers is
attained, which behaves like a hard core Bose gas, or like a
1D noninteracting Fermi gas, known as the TG gas �36,48�.�
The general solution for the ground-state energy in the GY
model has been obtained by solving the Bethe ansatz �49�
equations for all strengths of � interaction connecting the
weak-attraction regime of BCS condensate to the strong-
attraction regime of tightly bound dimers described by the
Lieb-Liniger model �50� of repulsive bosons. This solution
can be presented as an expansion series in limits of weak or
strong interactions. The limiting value of this solution in the
weak interaction BCS limit is given by Eq. �3� �42,44�.

The fermion density of the BCS superfluid in a 1D box is
n1=2�2��−1�−kF

+kFdk��2/����2m�F, hence, in this case, �F

=�2�2n1
2 / �8m�, and energy density �3� becomes �51�

E1D =
�2�2

24m
n1

3 =
1

3
A1n1

3, �4�

with A1=�2�2 / �8m�. The energy density of a TG gas �36� is
given by ETG=�2�2n1

3 /6m �48� and is very similar to that
given by Eq. �4�. The difference in numerical factors be-
tween the two expressions is due to pairing in the present
Fermi superfluid allowing two fermions �spin-up and spin-
down� in the same quantum level. Hence, the 1D results of
the present study are also applicable to a TG gas.
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Finally, a counterpart of relations �1� and �4� for the 2D
superfluid is �52� E2D= �1/2�n2�F, the 2D density being n2

=2�2��−2�0
kF2�kdk��m /��2��F, with �F=��2n2 /m. Thus,

the energy density of the 2D superfluid can be written as �52�

E2D =
��2

2m
n2

2 =
1

2
A2n2

2, �5�

with A2=��2 /m.
Here we specify the criteria of applicability of Eqs. �2�,

�4�, and �5� for different dimensionalities. These results are
valid for a dilute BCS superfluid. In 3D, at low densities,
kF�aF��1 with aF the Fermi-Fermi scattering length, gaps
are small and have little effect on the total energy of the
system �40�. The total energy density of the ground state can
then be expanded in powers of the small parameter kF�aF�. At
low densities Eq. �2� includes the lowest order term in this
expansion �39�. The condition kF�aF��1 of validity of Eq.
�2� can be related to the gas parameter n3�aF�3 in 3D:
n3�aF�3�1/ �3�2�, as the density n3=kF

3 / �3�2�. In 1D, for a �
interaction of strength g1 the dimensionless coupling con-
stant �=mg1 / ��2n1� and the condition of validity of Eq. �4�
is ����1 �42�. In two dimensions an attractive interaction
leads to a bound state of energy �0 and the condition of
diluteness for the validity of Eq. �5� can be expressed as
�0 /�F�1.

B. Stability condition of the uniform mixture

We consider a uniform mixture of two types of fermions,
containing Ni , i=1,2, atoms �of mass m1=m and m2=m /��,
in a box of size S �in 1D the size is a length, in 2D an area,
and in 3D a volume� with distinct mass at zero temperature.
The energy density of the uniform mixture is given by

E1D =
1

3
A1n1�1�

3 + g12n1n2 +
1

3
�A1n1�2�

3 , �6�

E2D =
1

2
A2n2�1�

2 + g12n1n2 +
1

2
�A2n2�2�

2 , �7�

E3D =
3

5
A3n3�1�

5/3 + g12n1n2 +
3

5
�A3n3�2�

5/3 , �8�

respectively, for 1D, 2D, and 3D systems, where nd�i�=Ni /S
denotes the density of each component in dD, d=1,2 ,3. The
nonlinear terms involving g12=4��2a12/m12 in the above
equations represent the interaction between two types of at-
oms arising solely from the atomic scattering length a12,
where m12 is the reduced mass of atoms. The terms involving
Aj in the above equations, although they are similar to the
gn2 /2 interaction term for bosons �with g=4��2a /m repre-
senting the self-interaction of a dilute boson gas with a the
Bose-Bose scattering length and m the mass of an atom�,
have a different origin as we have seen. These terms origi-
nating from the energy of the fermions occupying the lowest
quantum levels at zero temperature obeying Pauli principle
generate an effective repulsion between the fermions and is
usually called Pauli-blocking interaction.

The chemical potentials �i��E /�ni for species i=1,2 in
1D, 2D, and 3D, are given, respectively, by

�1 = A1n1�1�
2 + g12n1�2�, �2 = g12n1�1� + �A1n1�2�

2 , �9�

�1 = A2n2�1� + g12n2�2�, �2 = g12n2�1� + �A2n2�2�, �10�

�1 = A3n3�1�
2/3 + g12n3�2�, �2 = g12n3�1� + �A3n3�2�

2/3 . �11�

The uniformly mixed phase is energetically stable if its en-
ergy is a minimum with respect to small variations of the
densities, while the total number of fermions and bosons are
held fixed. The conditions of stability �are the conditions of a
minimum of E�n�1� ,n�2�� as a function of two variables n�1�
and n�2�� are given by

�2E
�n�1�

2 �
��1

�n�1�
	 0,

�2E
�n�2�

2 �
��2

�n�2�
	 0, �12�

�2E
�n�1�

2

�2E
�n�2�

2 − 	 �2E
�n�1� � n�2�


2

�
��1

�n�1�

��2

�n�2�
−

��1

�n�2�

��2

�n�1�
	 0,

�13�

where we have dropped the dimension suffix. The solution of
these inequalities gives the region in the parameters’ space
where the uniformly mixed phase is energetically stable. Us-
ing Eqs. �12� and �13� the condition of stability of the uni-
form mixture in 1D, 2D, and 3D are given, respectively, by
�23,48�

4A1
2�n�1�n�2� 	 g12

2 , �14�

A2
2� 	 g12

2 , �15�

4A3
2� 	 9g12

2 n�1�
1/3n�2�

1/3. �16�

These conditions are determined by g12
2 and not the sign of

g12.
In 1D, we find from Eq. �14� with a finite g12

2 , that at small
fermionic densities �small n�1� and n�2�� the uniform mixture
is unstable: the ground state of the system displays demixing
if g12
0 and becomes a localized Fermi-Fermi bright soliton
if g12�0 �48�. The mixture is stable at large fermionic den-
sities. In 2D, Eq. �15� reveals that the condition for stability
is independent of density. In 3D, Eq. �16� predicts that for a
finite g12

2 , the mixture is unstable at large fermionic densities,
leading to collapse for g12�0 and to demixing for g12
0,
and stable at small fermionic densities. It is realized that as
we move from 1D to 3D through 2D, the condition of sta-
bility of the uniform mixture changes from large fermion
densities to small fermion densities. This result is quite simi-
lar to that in a Bose-Fermi mixture �23,24�, where the con-
dition of stability of the uniform mixture is independent of
the bosonic density and has a similar dependence on fermion
density, e.g., during the passage from 1D to 3D through 2D,
the condition of stability changes from large fermion density
to small fermion density.

From inequality �12� the stability condition of a single
component uniform gas can be represented as ��1 /�n1
0,
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which, using Eqs. �9�–�11�, is realized for Ad
0 denoting a
repulsive system. In the presence of a second component,
inequality �13� can be written as �23�

��1

�n�1�
− 	 ��2

�n�1�

2�n�2�

��2
	 0, �17�

as ��2 /�n�1�=��1 /�n�2�. The first term ��1 /�n�1� in inequal-
ity �17� represents the effective repulsion among fermions of
type 1. The second term, representing an induced interaction
due to the presence of component 2, reduces the repulsion
and tries to destabilize the uniform mixture. The uniform
mixture becomes unstable when the second term in inequal-
ity �17� becomes larger than the first term. This happens for
both attractive and repulsive interspecies interaction g12
=��2 /�n�1�.

The inequality �13� can be written as

c1
2c2

2 	 4g12
2 n�1�n�2�, �18�

where ci=�2n�i����i /�n�i�� represent sound velocities in the
two superfluid components, i=1,2. The sound velocity c12 of
the 1D Fermi-Fermi mixture can be obtained following a
procedure suggested by Alexandrov and Kabanov �48,53� for
a two-component BEC:

c12 =
1
�2

�c1
2 + c2

2 ± ��c1
2 − c2

2�2 + 16g12
2 n�1�n�2�. �19�

The homogeneous mixture becomes unstable when the sound
velocity c12 becomes imaginary, e.g., when inequality �18� is
violated.

III. TWO-PHASE SUPERFLUID FERMI-FERMI MIXTURE

In the preceding section we considered a uniform mixture
of two components in equilibrium. Here we explore the more
interesting case of two types of fermions with different pos-
sible densities in different regions of a box of size S. The
components may mix uniformly or form separate phases de-
pending on the initial conditions—mass, density, interspecies
interaction, etc.

The conservation of the number of particles, N1 and N2, of
the two species can be expressed as �23,24�

Ni = Sni = S�
j=1

2

ni,j f j, �
j=1

2

f j = 1, �20�

where i=1,2 represent the species and j=1,2 represent the
phases �different region with distinct density of gas�, ni
=Ni /S represent the overall density of the two species, ni,j is
the density of species i in phase j, and Sj =Sf j represent the
size of each phase with f j the fraction of size in phase j. For
a two-component system one can have only two distinct
phases, j=1,2, as the inclusion of more phases leads to in-
consistency �23�. Here we have dropped the dimension label
d and also removed the parentheses from the component la-
bel i.

The total energy of the system is given by

E = �
j=1

2

Ej � S�
j=1

2

f jE j , �21�

where E j denotes the energy density of phase j and Ej its
total energy. The pressure Pj of phase j is given by Pj
=−�Ej /�Sj. The chemical potential of component i in phase j
is defined by �i,j =�E j /�ni,j.

For equilibrium, the pressure in one phase must be equal
to that in the other. If two phases are occupied by atoms of
the same type, the chemical potential for that type of atoms
in two phases should also be equal so that the equilibrium
can be energetically maintained. If the atom density of one
type of atom in a phase is zero then the chemical potential of
that type of atom in this phase should be larger than that in
the other, so that the atoms do not flow to the phase with no
atoms of this type �23�.

In the following we consider a system composed of two
phases comprising of fractions f1= f and f2= �1− f� of size S.
There are three following possibilities to be analyzed in 1D,
2D, and 3D, although some of them may not materialize in a
particular case:

�i� Two pure and separated phases with one type of atom
occupying a distinct phase.

�ii� A mixed and a pure phase where the density of one
type of atom is zero in one phase.

�iii� Two mixed phases where both phases are occupied by
both types of atoms.

In the following we deal with the three possibilities in 1D,
2D, and 3D. First, we consider the 2D case as the algebra is
significantly simpler in this case.

A. Two-dimensional mixture

From Eqs. �7� we find that the expressions for total energy
and pressure in this case are

Ej = SjE j � Sj	1

2
A2�n1,j

2 + �n2,j
2 � + g12n1,jn2,j
 , �22�

Pj � −
�Ej

�Sj
=

1

2
A2n1,j

2 + g12n1,jn2,j +
1

2
A2�n2,j

2 . �23�

In deriving Eq. �23� we recall that ni,j �1/Sj. From Eq. �22�
the chemical potentials are given by

�1,j = A2n1,j + g12n2,j , �24�

�2,j = A2�n2,j + g12n1,j . �25�

1. Two pure phases

In the case of two pure and separated phases one should
have, for example, n1,2=n2,1=0 corresponding to the type
one atoms occupying phase 1 only �n1,1�0� and type 2 at-
oms occupying phase 2 only �n2,2�0�.

Equality of pressure P1= P2 in the two phases yields

n1,1
2 = �n2,2

2 . �26�

As the number of atoms is zero in one of the phases, one has
the inequalities �2,2��2,1 and �1,1��1,2 on the chemical
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potential, which, using Eqs. �24� and �25�, become

A2�n2,2 � g12n1,1, �27�

A2n1,1 � g12n2,2. �28�

Eliminating n1,1 and n2,2 among Eqs. �26�–�28� we get

A2
2� � g12

2 , �29�

consistent with inequality �15�. We have the uniform mixture
for inequality �15�; for the opposite inequality �29� we have
the separated phases in equilibrium. These inequalities are
independent of the atomic densities.

In the present case the overall densities of the two species
are given by

n1 = f1n1,1 = fn1,1, n2 = f2n2,2 = �1 − f�n2,2. �30�

Let us now consolidate these findings using energetic con-
siderations comparing the total energy of a phase-separated
configuration with that of a uniform mixture. The energy of
the mixture is given by

Emix = S	1

2
A2n1

2 + g12n1n2 +
1

2
A2�n2

2
 , �31�

Emix = S	1

2
A2f2n1,1

2 + g12n1,1n2,2f�1 − f� +
1

2
A2�n2,2

2 �1 − f�2
 ,

�32�

where we have used Eqs. �30�. The energy of the phase-
separated system with the same number of atoms is

Esep = S	1

2
A2fn1,1

2 +
1

2
A2��1 − f�n2,2

2 
 . �33�

Using Eq. �26�, one has for the difference

Emix − Esep = Sf�1 − f�n2,2
2 ���g12 − A2

��� . �34�

When Emix
Esep the system naturally moves to the sepa-
rated phase and this happens for g12

2 
A2
2�, consistent with

inequality �29�, leading to a stable separated phase. In the
opposite limit, when Emix�Esep, the energetic consideration
favors the uniform mixture and this happens for g12

2 �A2
2�,

consistent with inequality �15�.

2. A mixed and a pure phase

Here we consider one mixed phase �phase 1� and one pure
phase �phase 2� consistent with n1,2=0, which means that the
type 1 atoms occupy only phase 1, whereas type 2 atoms
occupy both phases 1 and 2. Using Eq. �23� the equality of
pressure in two phases leads to

1

2
A2n1,1

2 + g12n1,1n2,1 +
1

2
A2�n2,1

2 =
1

2
A2�n2,2

2 . �35�

From Eq. �25� the equality of the chemical potential of type
2 atoms in two phases ��2,2=�2,1� leads to

n1,1 = A2��n2,2 − n2,1�/g12. �36�

From Eq. �24� the inequality of the chemical potential of
type 1 atoms in two phases ��1,1��1,2� leads to

A2n1,1 � g12�n2,2 − n2,1� , �37�

which using Eq. �36� yields

A2
2� � g12

2 . �38�

Substituting Eq. �36� into Eq. �35� and after some
straightforward algebra we obtain

�A2
2� − g12

2 ��n2,1 − n2,2�2 = 0, �39�

which allows two possibilities. For A2
2��g12

2 , the only solu-
tion is the trivial, nevertheless unacceptable, one n2,1=n2,2,
which means that the type 2 atoms form a uniform configu-
ration and not a mixed phase. However, if A2

2�=g12
2 , one can

have a mixed phase with n2,1�n2,2. Nevertheless, this con-
dition enters in contradiction with inequality �38�, showing
that one cannot have one mixed and one pure phase in this
case.

Next we consider the possibility of two mixed phases.
The equality of pressure and chemical potential of each spe-
cies in two phases leads to the following conditions:

1

2
A2�n1,1

2 − n1,2
2 � +

1

2
A2��n2,1

2 − n2,2
2 � = g12�n1,2n2,2 − n1,1n2,1� ,

�40�

A2n1,1 + g12n2,1 = A2n1,2 + g12n2,2, �41�

A2�n2,1 + g12n1,1 = A2�n2,2 + g12n1,2. �42�

This set of equations have only the trivial solutions n1,1
=n1,2 and n2,1=n2,2 corresponding to uniform mixture. Hence
two mixed phases cannot be in equilibrium.

B. One-dimensional mixture

From Eq. �6�, we find that the expressions for total energy
and pressure in this case are

Ej = SjE j � Sj	1

3
A1�n1,j

3 + �n2,j
3 � + g12n1,jn2,j
 , �43�

Pj � −
�Ej

�Sj
=

2

3
A1n1,j

3 + g12n1,jn2,j +
2

3
A1�n2,j

3 . �44�

From Eq. �22� the chemical potentials are given by

�1,j = A1n1,j
2 + g12n2,j , �45�

�2,j = A1�n2,j
2 + g12n1,j . �46�

1. Two pure phases

In the case of two pure and separated phases one should
have, for example, n2,1=0 for phase 1 and n1,2=0 for phase
2. The condition of equal pressure then yields

n1,1
3 = �n2,2

3 . �47�

For equal-mass fermions �=1, and one obviously has the
trivial solution n1,1=n2,2 or the densities of the two species
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are equal. Of course, for ��1 the densities of the two spe-
cies could be different. Chemical potential condition �2,2
��2,1 yields

A1�n2,2
2 � g1,2n1,1. �48�

Chemical potential condition �1,1��1,2 yields

A1n1,1
2 � g1,2n2,2. �49�

Eliminating n1,1 between Eqs. �47� and �48� or between Eqs.
�47� and �49� we get

n2,2 � B1, B1 = g12/�A1�2/3� . �50�

From Eqs. �47� and �50� we obtain the following restriction
on n1,1:

n1,1 � C1, C1 = g12/�A1�1/3� . �51�

In this case a phase diagram showing the total densities of
types 1 and 2 fermions for which the system can completely
separate, can be obtained from Eq. �30� if we allow f to vary
from 0 to 1 and use conditions �50� and �51�. This is illus-
trated in Fig. 1. The light gray area represents pure phases
and the dark gray area represents the stable uniform mixture.
The uniform mixture is unstable in the clear area below the
curve given by inequality �14�. For attractive interaction, one
has the formation of bright solitons by modulational instabil-
ity �discussed in Sec. IV�. For repulsive interaction one can
have a partially demixed configuration in the clear region in
Fig. 1.

Now let us see if the system spontaneously moves into the
phase-separated configuration from an energetic consider-
ation. The energy of the mixed system is

Emix = S	1

3
A1n1

3 + n1n2g12 +
1

3
�A1n2

3
 , �52�

Emix = S	1

3
A1n1,1

3 f3 + n1,1n2,2f�1 − f�g1,2 +
1

3
A1n2,2

3 �1 − f�3�
 .

�53�

Equation �53� is obtained with the use of Eq. �30�. The en-
ergy of the separated phase system with the same number of
atoms is

Esep =
1

3
A1S�n1,1

3 f + n2,2
3 ��1 − f�� . �54�

Using Eq. �47�, and after some straightforward algebra, the
difference 
��Emix−Esep� is given by


 = n2,2
2 S�1/3�g12 − A1n2,2�2/3�f�1 − f� . �55�

Considering the restriction �50� in the separated phase, Eq.
�55� yields the following inequality:


 = n2,2
2 f�1 − f�S�1/3�1 − n2,2/B1�g12 	 0. �56�

For density ranges where equilibrium is possible f �0 and
f �1, Esep is always less than Emix. Hence, energetically the
two species of fermions can separate.

2. A mixed and a pure phase

Now let us consider a mixed phase �phase 1� and a pure
phase �phase 2� and consider the case n1,2=0. The equality of
pressure now leads to

2

3
A1n1,1

3 +
2

3
A1�n2,1

3 + g12n1,1n2,1 =
2

3
A1�n2,2

3 . �57�

The equality of chemical potential of species 2 in two phases
��2,1=�2,2� yields

n1,1 = A1��n2,2
2 − n2,1

2 �/g12. �58�

Eliminating n1,1 between Eqs. �57� and �58� �after some
straightforward algebra� we get

2��1 − x2�3 = x3 − 3x + 2, �59�

where x=n2,1 /n2,2, �= �n2,2 /B1�3. After canceling the trivial
factor �1−x�2 from both sides of Eq. �59�, we get

2��1 + x�3�1 − x� = x + 2. �60�

From Eq. �60� we find that the solution x=0 is obtained for
�=1 corresponding to n2,1=n1,2=0, n2,2=B1, and n1,1=C1.
The densities of the first component are n1,2=0 and n1,1
=C1. This is the special case considered in Sec. III B 1 �see
Eqs. �50� and �51��. The solution n2,2=B1 ��=1� is a solu-
tion of two pure phases corresponding to x=0. The domain
of solution of mixed phase corresponds to n2,2
B1 ��
1�
corresponding to x
0 �recall that the fraction x cannot be
negative�. Hence for the present mixed phase to exist Eq.
�60� should have the solution x→ +0 for �→ +1. However,
we find from Eq. �60� as � is made slightly greater than 1,
the solution x=0 turns negative �unphysical�. �Please note
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FIG. 1. �Color online� Phase diagram for Fermi-Fermi mixture
in one dimension. The plotted density n1 is in units of C1

�g12/ �A1�1/3� and n2 in units of B1�g12/ �A1�1/3�. The light gray
area represents two pure and separated phases while the dark gray
area represents the domain of stable uniform mixture. Below the
curved line in the clear area the uniform mixture is unstable against
small fluctuations.
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that for �=1 Eq. �60� has two real roots: x=0, 0.7399¯;
the latter �spurious� root is not of present physical interest.�
Hence, we conclude that a mixed and a pure phase cannot be
realized in the present mixture.

Finally, one can consider the possibility of two mixed
phases. The equality of pressure and chemical potential of
each species in two phases leads to

2

3
A1�n1,1

3 − n1,2
3 � +

2

3
A1��n2,1

3 − n2,2
3 � = g12�n1,2n2,2 − n1,1n2,1� ,

�61�

A1n1,1
2 + g12n2,1 = A1n1,2

2 + g12n2,2, �62�

A�n2,1
2 + g12n1,1 = A�n2,2

2 + g12n1,2. �63�

This set of equations have only the trivial solutions n1,1
=n1,2 and n2,1=n2,2 corresponding to uniform mixture and
that is also possible when the condition of uniform mixture is
satisfied. Hence, two mixed phases cannot be in equilibrium.

C. Three-dimensional mixture

From Eq. �8�, we find that the expressions for total energy
and pressure in this case are

Ej = SjE j � Sj	3

5
A3n1,j

5/3 + g12n1,jn2,j +
3

5
A3�n2,j

5/3
 , �64�

Pj � −
�Ej

�Sj
=

2

5
A3n1,j

5/3 + g12n1,jn2,j +
2

5
A3�n2,j

5/3. �65�

From Eq. �22� the chemical potentials are given by

�1,j = A3n1,j
2/3 + g12n2,j , �66�

�2,j = A3�n2,j
2/3 + g12n1,j . �67�

1. Two pure phases

Again for two pure and separated phases we take n1,2
=n2,1=0. The condition of equal pressure in two phases then
leads to

n1,1
5/3 = �n2,2

5/3. �68�

The chemical potential condition �2,2��2,1 yields

n1,1 	 �A3n2,2
2/3/g12. �69�

The chemical potential condition �1,1��1,2 yields

n2,2 	 A3n1,1
2/3/g12. �70�

Eliminating n1,1 between Eqs. �68� and �69� or between Eqs.
�68� and �70� we obtain

n2,2 	 B3, B3 = ��2/5A3/g12�3. �71�

Similarly, eliminating n2,2 between Eqs. �68� and �69� we get

n1,1 	 C3, C3 = ��3/5A3/g12�3. �72�

In this case a phase diagram showing the total densities of
type 1 and 2 fermions for which the system can completely

separate, can be obtained from Eq. �30� if we allow f to vary
from 0 to 1 and use conditions �71� and �72�. This is illus-
trated in Fig. 2.

To see the separation of the two types of fermions from an
energetic consideration, we calculate the energies of the
mixed and separated configurations. The energy of the mixed
phase is �23�

Emix = S	3

5
A3n1

5/3 + g12n1n2 +
3

5
A3�n2

5/3
 , �73�

Emix = S	3

5
A3f5/3n1,1

5/3 + g12n1,1n2,2f�1 − f�

+
3

5
A3�n2,2

5/3�1 − f�5/3
 . �74�

The energy of the separated phase is

Esep = S	3

5
A3n11

5/3f +
3

5
A3�n2,2

5/3�1 − f�
 . �75�

Using Eq. �68� the difference 
= �Emix−Esep� can be written
as


 = S
3A3�n2,2
5/3f�f2/3 − 1�/5 + g12n22

2 �3/5f�1 − f�

+ 3A3�n2,2
5/3�1 − f���1 − f�2/3 − 1�/5� . �76�

Using inequality �70�, Eq. �76� yields
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FIG. 2. �Color online� Phase diagram for Fermi-Fermi mixture
in three dimensions �3D�. The plotted density n1 is in units of C3

���2/5A3 /g12�3 and n2 in units of B3���3/5A3 /g12�3. The light gray
area represents two pure and separated phases while the dark gray
area represents the domain of uniform mixture. The clear area rep-
resents the region where a mixed and a pure phase can exist. Above
the curved line the uniform mixture is unstable against small
fluctuations.
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A3

6�3

g12
5 	−

3

5
f�1 − f2/3� + f�1 − f�

−
3

5
�1 − f��1 − �1 − f�2/3�
 . �77�

For 1
 f 
0, the quantity given by Eq. �77� is always posi-
tive. Hence the separated phase has less energy than the
mixed phase and the system will spontaneously move into
the phase separated configuration. In this case also two
mixed phases cannot be in equilibrium as in 1D.

2. A mixed and a pure phase

Again we consider a mixed �species 2� and a pure �species
1� phase and consider the case n1,2=0. The equality of pres-
sure now leads to

2

5
A3n1,1

5/3 + g12n1,1n2,1 +
2

5
A3�n2,1

5/3 =
2

5
A3�n2,2

5/3. �78�

The equality of chemical potential of species 2 in two phases
��2,1=�2,2� yields

n1,1 = A3��n2,2
2/3 − n2,1

2/3�/g12. �79�

Eliminating n1,1 between Eqs. �78� and �79� and after some
straightforward algebra we get

2��1 + x�5/3 − �1 − x�1/3�3x3 + 6x2 + 4x + 2� = 0, �80�

where x= �n2,1 /n2,2�1/3 and �= �n2,2 /B3�−5/9. From Eq. �80�
we find that the solution x=0 is obtained for �=1 corre-
sponding to n2,1=0, n2,2=B3, n1,1=C3, n1,2=0. This is the
limiting case of two pure and separated phase studied in Sec.
III C 1. �In addition for �=1, Eq. �80� has the spurious or
unphysical root x=0.902 78¯, which we do not consider
here.� For two purely separated phases we have seen that
n2,2	B3 whence ���n2,2 /B3�−5/9�1. The domain for a
mixed and a separated phase then should have �
1. To find
this domain we solve Eq. �80� for x
0 using different �.
Such solutions appear in the range 1.217¯ 	�	1. Using
this solution for x we obtain n2,2 and n2,1 from the definitions
of � and x, respectively. Finally, n1,1 is obtained from Eq.
�79�. The results so-obtained for n2,2, n2,1, and n1,1 for dif-
ferent � are used in

n1 = fn1,1 and n2 = fn2,1 + �1 − f�n2,2, �81�

to calculate the domain of n1 and n2, by varying f in the
range 1
 f 
0, which allows a pure and a mixed phase.

We show the 3D phase diagram for total densities of type
1 and 2 fermions in Fig. 2. In this figure the light gray area
represents the domain of two separated phases and the clear
area that of a mixed and a separated phase as calculated
above. The remaining dark gray area represents the domain
of uniform mixture. The uniform mixture is unstable above
the curve given by Eq. �16�. Qualitatively, Fig. 2 is quite
similar to Fig. 3 of Viverit et al. �23� for a Bose-Fermi mix-
ture.

If we compare Figs. 1 and 2 we find that in 1D the pure
phases appear at small densities, and uniform mixture at
large densities. The uniform mixture is stable at larger den-

sities. The opposite happens in 3D. If we compare the find-
ings of Viverit et al. �23� for a study of the phase diagram of
a Bose-Fermi mixture in 3D and compare with the study of
Das �24� in 1D we find that such an inversion also takes
place there. Moreover in 1D there cannot be a mixed and a
pure phase for a Fermi-Fermi mixture, which is possible in
3D.

IV. DYNAMICAL EQUATIONS IN QUASI-1D
SUPERFLUID FERMI-FERMI MIXTURE

A. Model

Of the three-dimensional possibilities—1D, 2D, and 3D—
the 1D case deserves special attention. In 1D, if the interspe-
cies Fermi-Fermi interaction is attractive, in the domain of
instability of the uniform mixture one can have the formation
of bright soliton by modulational instability. To perform a
careful study of the nature of these bright solitons �and their
dynamical stability� we derive the Euler-Lagrange equations
in 1D from its Lagrangian density.

We consider a mixture of N1 superfluid atomic fermions
of mass m1�=m� and N2 superfluid atomic fermions of mass
m2�=m /�� at zero temperature trapped by a tight cylindri-
cally symmetric harmonic potential of frequency �� in the
transverse �radial cylindric� direction. We assume factoriza-
tion of the transverse degrees of freedom. This is justified in
1D confinement where, regardless of the longitudinal behav-
ior or statistics, the transverse spatial profile is that of the
single-particle ground state �24,54,55�. The transverse width
of the atom distribution is given by the characteristic har-
monic length of the single-particle ground state: a�j

=�� / �mj���, with j=1,2. The atoms have an effective 1D
behavior at zero temperature if their chemical potentials are
much smaller than the transverse energy ��� �24,54,55�.
The interspecies Fermi-Fermi interaction is characterized by
a contact potential with scattering length a12, which can be
repulsive or attractive.

We use a mean-field Lagrangian to study the static and
collective properties of the 1D superfluid Fermi-Fermi mix-
ture as in the Ginzburg-Landau theory �12�. The Lagrangian
density L of the mixture reads

L = L1 + L2 + L12. �82�

The term Li is the fermionic Lagrangian for component i,
defined as

Li =
i�

2
	�i

���i

�t
− �i

��i
�

�t

 −

�2

2meff
�i� � ��i

�z
�2

−
A1

�i�

3
��i�6,

�83�

where A1
�i�=�2�2 / �8mi�, �i�z , t� is the field of the ith compo-

nent of the BCS Fermi superfluid along the longitudinal axis,
such that ni�z , t�= ��i�z , t��2 is the 1D local probability density
of the ith component. Here meff

�i� is the effective mass of su-
perfluid flow in the Ginzburg-Landau theory. There is experi-
mental evidence �12� that this effective mass is 2 times the
fermion mass �meff

�i� =2mi� and we shall use this effective
mass in the following study.
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Finally, the Lagrangian density L12 of the interaction be-
tween the two Fermi components is taken to be of the fol-
lowing standard zero-range form �33,54�:

L12 = − g12��1�2��2�2, �84�

where g12=2���a12 is the 1D Fermi-Fermi interaction
strength.

The Euler-Lagrange equations of the Lagrangian L are
the two following coupled partial differential equations:

i��t�1 = 	−
�2

4m1
�z

2 + A1
�1�n1

2 + g12n2
�1, �85�

i��t�2 = 	−
�2

4m2
�z

2 + A1
�2�n2

2 + g12n1
�2, �86�

with the normalization �−�
� ��i�2dz=Ni.

It is convenient to work in terms of dimensionless vari-
ables defined in terms of a frequency � and length l

��� / �2m1�� by � j = �̂ j /�l, t=2t̂ /�, z= ẑl, and g12= ĝ12�
2 /

�4m1l�. With these new variables Eqs. �85� and �86� can be
written as

i�t�1 = �− �z
2 + An1

2 + g12n2��1, �87�

i�t�2 = �− ��z
2 + �An2

2 + g12n1��2, �88�

where A��2 /2 and where we have dropped the carets over
the variables, and where �=m1 /m2, ni= ��i�2 , i=1,2 with
the normalization �−�

� nidz=Ni. Equations �87� and �88� with
diagonal quintic nonlinearity are the equations satisfied by
two coupled TG Bose gas �36� and hence the analysis of Sec.
IV also applies to a TG gas.

For stationary states the solution of Eqs. �87� and �88�
have the form �i=�i exp�−i�it� where �i are the respective
chemical potentials. Consequently, these equations reduce to

�1�1 = �− �z
2 + An1

2 + g12n2��1, �89�

�2�2 = �− ��z
2 + �An2

2 + g12n1��2. �90�

A repulsive interspecies Fermi-Fermi interaction is produced
by a positive g12, while an attractive Fermi-Fermi interaction
corresponds to a negative g12.

B. Modulational instability

To study analytically the modulational instability �35,56�
of Eqs. �87� and �88� we consider the special case of attrac-
tive Fermi-Fermi interaction while these equations reduce to

i�t�1 = �− �z
2 + A��1�4 − g12��2�2��1, �91�

i�t�2 = �− ��z
2 + A���2�4 − g12��1�2��2, �92�

where we have taken the interspecies interaction to be attrac-
tive by inserting an explicit negative sign in g12.

We analyze the modulational instability of a constant-
amplitude solution corresponding to a uniform mixture in
coupled Eqs. �91� and �92� by considering the solutions

�10 = �10 exp�i�1� � �10e
it�g12�20

2 −A�10
4 �, �93�

�20 = �20 exp�i�2� � �20e
it�g12�10

2 −�A�20
4 �, �94�

of Eqs. �91� and �92�, respectively, where �i0 is the ampli-
tude and �i a phase for component i. The constant-amplitude
solutions, describing a uniform mixture, develop an ampli-
tude-dependent phase on time evolution. We consider a small
perturbation �i exp�i�i� to these solutions via

�i = ��i0 + �i�exp�i�i� , �95�

where �i=�i�z , t�. Substituting these perturbed solutions in
Eqs. �91� and �92�, and for small perturbations retaining only
the linear terms in �i we get

i�t�1 + �z
2�1 − 2A�10

4 ��1 + �1
�� + g12�10�20��2 + �2

�� = 0,

�96�

i�t�2 + ��z
2�2 − 2�A�20

4 ��2 + �2
�� + g12�10�20��2 + �2

�� = 0.

�97�

We consider the complex plane-wave perturbation

�i�z,t� = Ai1 cos�Kt − �z� + iAi2 sin�Kt − �z� �98�

with i=1,2, where Ai1 and Ai2 are the amplitudes for the
real and imaginary parts, respectively, and K and � are fre-
quency and wave numbers.

Substituting Eq. �98� in Eqs. �96� and �97� and separating
the real and imaginary parts we get

− A11K = A12�
2, �99�

− A12K = A11�
2 − 2g12�10�20A21 + 4A�10

4 A11, �100�

for i=1, and

− A21K = A22�
2� , �101�

− A22K = A21�
2� − 2g12�10�20A11 + 4A��20

4 A21,

�102�

for i=2. Eliminating A12 between Eqs. �99� and �100� we get

A11�K2 − �2��2 + 4A�10
4 �� = − 2A21g12�10�20�

2,

�103�

and eliminating A22 between Eqs. �101� and �102� we have

A21�K2 − �2���2� + 4A��20
4 �� = − 2A11g12�10�20�

2� .

�104�

Finally, eliminating A11 and A21 from Eqs. �103� and �104�
and recalling that the density of the uniform mixture n1 and
n2 of the two species are given by ni=�i0

2 , we obtain the
following dispersion relation:
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2K = ± �
��2 + �2� + 4An1
2 + 4A�2n2

2�

± ���2 − �2�2 + 4An1
2 − 4A�2n2

2�2 + 16g12
2 �n1n2�1/2�1/2.

�105�

For stability of the plane-wave perturbation, K must be real.
For any � this happens for

�4An1
2 + 4A�2n2

2�2 
 �4An1
2 − 4A�2n2

2�2 + 16g12
2 n1n2� ,

�106�

or for

4A2�n1n2 	 g12
2 . �107�

However, for 4A2�n1n2�g12
2 , K can become imaginary and

the plane-wave perturbation can grow exponentially with
time. This is the domain of modulational instability of a
constant-amplitude solution �uniform mixture� signaling the
possibility of a coupled Fermi-Fermi bright soliton to appear.
�Compare with inequality �14� of Sec. II B describing stabil-
ity of a uniform mixture. The transformation of the quantities
in inequality �14� to the dimensionless variables of inequality
�107� can be performed with the definitions given after Eq.
�86�.�

C. Variational results

Here we develop a variational localized solution to Eqs.
�89� and �90� noting that these equations can be derived from
the Lagrangian �57�

L = �
−�

�

��1�1
2 + �2�2

2 − ��1��
2 − ��2��

2 − �1
6A/3

− ��2
6A/3 − g12�1

2�2
2�dz − �1N1 − �2N2 �108�

by demanding �L /��1=�L /��2=�L /��1=�L /��2=0.
To develop the variational approximation we use the fol-

lowing Gaussian ansatz �58�:

�1�z� = �−1/4�N1�1

w1
exp	−

z2

2w1
2
 , �109�

�2�z� = �−1/4�N2�2

w2
exp	−

z2

2w2
2
 , �110�

where the variational parameters are � j, the solitons’ norm,
and wj width, in addition to � j. The substitution of this varia-
tional ansatz in Lagrangian �108� yields

L = �1N1��1 − 1� + �2N2��2 − 1� −
N1�1

2w1
2 −

N2�2

2w2
2

−
A�1

3N1
3

3��3w1
2

−
A��2

3N2
3

3�3�w2
2

−
g12N1N2�1�2

���w1
2 + w2

2�
. �111�

The first variational equations emerging from Eq. �111�,
�L /��1=�L /��2=0, yield �1=�2=1. Therefore, the condi-
tions �1=�2=1 will be substituted in the subsequent varia-
tional equations. The variational equations �L /�wj =0 lead to

1 +
2N1

2A

3��3
+

g12N2w1
4

���w1
2 + w2

2�3/2
= 0, �112�

1 +
2N2

2A�

3�3�
+

g12N1w2
4

���w1
2 + w2

2�3/2
= 0. �113�

The remaining variational equations are �L /�� j =0, which
yield � as a function of wj’s, and g’s,

�1 =
1

2w1
2 +

�3N1
2A

3�w1
2 +

g12N2

���w1
2 + w2

2�
, �114�

�2 =
1

2w2
2 +

�3N2
2�A

3�w2
2 +

g12N1

���w1
2 + w2

2�
. �115�

Equations �112�–�115� are the variational results which we
shall use in our study of bright Fermi-Fermi solitons.

D. Numerical results

For stationary solutions we solve time-independent equa-
tions �89� and �90� by using an imaginary time propagation
method based on the finite-difference Crank-Nicholson dis-
cretization scheme of time-dependent equations �87� and
�88�. The nonequilibrium dynamics from an initial stationary
state is studied by solving the time-dependent equations �87�
and �88� with real time propagation by using as initial input
the solution obtained by the imaginary time propagation
method. The reason for this mixed treatment is that the
imaginary time propagation method deals with real variables
only and provides very accurate solution of the stationary
problem at low computational cost �59�. In the finite-
difference discretization we use space step of 0.025 and time
step of 0.0005.

First we report results for stationary profiles of the local-
ized Fermi-Fermi solitons formed in the presence of attrac-
tive interspecies interaction �negative g12�. The fermions
form BCS state�s� which satisfy a coupled nonlinear
Schrödinger equation with repulsive �self-defocusing� quin-
tic nonlinearity. Hence, fermions cannot form a bright soliton
by itself. However, they can form a bright soliton in the
presence of an attractive interspecies interaction �32� induced
by varying an external background magnetic field near a Fes-
hbach resonance �13�.

In Fig. 3 we present the soliton profiles of the two com-
ponents calculated by a direct numerical solution of Eqs.
�89� and �90� and compare them with variational results
�112� and �113�. In general the numerical solutions have a
profile distinct from a Gaussian shape of the variational ap-
proximation. The numerical density profile reminds us of the
square barrier. Nevertheless, the variational approximation
presents a faithful average description. From Figs. 3�a� and
3�b� we find that for a fixed N1 and N2, as �g12� is increased,
the solitons become more compact and are better represented
by the variational approximation. From Figs. 3�b� and 3�c�
we see that as the number of fermions is increased the nu-
merical density profiles are more square-barrier type than a
Gaussian type. From Figs. 3�c� and 3�d� we find that for a
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fixed g12, as the number of atoms is reduced, the solitons
become more compact.

Next we illustrate how well are the variational approxi-
mations �114� and �115� for the chemical potential compared
to the numerical results. In Fig. 4 we plot the numerically
obtained chemical potential for N1=200, N2=220, and �=1
for different g12 and compare with the variational result. We
see that the overall agreement is good for all g12, although it
is better for small �g12�.

After illustrating the soliton profiles in different states it is
now pertinent to verify if these solitons are dynamically

stable under perturbation. To this end we consider the typical
stationary soliton of Fig. 3�a� �obtained by the imaginary
time propagation method� and subject it to the perturbation
by setting � j�z , t�=1.05�� j�z , t� and observe the resultant
dynamics �obtained by the real time propagation method�.
The resultant dynamics is illustrated in Fig. 5. The solitons
under this perturbation execute some oscillation, generate
some noise, nevertheless propagate for as long as the numeri-
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FIG. 3. �Color online� Probability densities of the two fermion
components from the numerical solution �labeled “num”� of Eqs.
�89� and �90� �here normalized to unity: �−�

� ni�z�dz=1� compared
with variational results �labeled “var”� given by Eqs. �112� and
�113� for �=1 and �a� N1=10, N2=15, and g12=−15, �b� N1=10,
N2=15, and g12=−25, �c� N1=100, N2=150, and g12=−50, and �d�
N1=200, N2=300, and g12=−50.
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FIG. 5. �Color online� Dynamics of the probability density pro-
files of �a� the first and �b� the second Fermi solitons of Fig. 3�a�
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cal simulation was continued without being destroyed. This
demonstrates the stability of the solitons under perturbation.
For very strong perturbation, as expected, the solitons are
destroyed. If time covered by numerical simulation is too
short, a unstable solution might appear to be stable. Thus, in
numerical simulation it is important to cover times large
compared to characteristic time scale of the problem, as in
Fig. 5. Also, a false stability might appear for a small interval
of time for specific space and time steps used in discretiza-
tion. We checked the stability for different time steps over
large intervals of time.

V. SUMMARY

In this paper we have obtained the phase diagram of a
BCS superfluid Fermi-Fermi mixture of distinct mass fermi-
ons at zero temperature in 1D, 2D, and 3D. The linear sta-
bility conditions relating the strength of interspecies Fermi-
Fermi interaction with the two Fermi densities are obtained
from an energetic consideration. Two possible equilibrium
scenarios emerge: a uniform mixture and two pure separated
phases. In 1D, two pure and separated phases appear for
small fermion densities; for large densities appears the uni-
form mixture from an energetic consideration as shown in
Fig. 1. In 3D, the opposite happens. In addition, in 3D, a
mixed and a pure phase can appear. In 2D, the conditions for
uniform mixture and separated phases do not put any restric-
tion on the fermion densities but only on the interspecies
Fermi-Fermi interaction.

In 3D, the uniform mixture is unstable against small fluc-
tuations for large Fermi densities for a fixed g12

2 . For a posi-
tive g12 it should show partial demixing and for a negative
g12 it may undergo collapse. In 1D, the uniform mixture is
unstable against small fluctuations for small Fermi densities
for a fixed g12

2 . For a positive g12 it should show partial
demixing and for a negative g12 it should form bright soli-
tons. Hence this mixture is of special interest for a negative
g12. This is the domain of soliton formation by modulational
instability of the uniform mixture. To study the modulational
instability and soliton formation in the mixture we derive a
set of coupled nonlinear equations derived as the Euler-
Lagrange equation employing the Lagrangian density of the
mixture. The condition of modulational instability so ob-
tained is consistent with that of stability of uniform mixture
obtained from an energetic consideration. In addition, we
solve the 1D dynamical equations numerically and variation-
ally to study the density and chemical potential of the soli-
tons. The variational result is found to be in good agreement
with the numerical solution. We also established numerically
the dynamical stability of the Fermi-Fermi solitons by sub-
jecting them to a perturbation by multiplying the wave-
function profiles by 1.05. The system is then found to propa-
gate over a very long period of time without being destroyed,
which demonstrated the stability of the solitons.
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