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We canonically quantize the Proca field in the Rindler wedge and compute the total response rate of a

uniformly accelerated current interacting with massive vector Rindler particles from the Unruh thermal

bath. We explicitly verify that the result obtained is exactly the same as the emission rate of massive vector

particles in the Minkowski vacuum as analyzed by inertial observers. Eventually, our results are

interpreted in terms of the interaction of static electrons coupled to Z0 bosons present in Hawking

radiation close to the event horizon of a black hole.
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I. INTRODUCTION

According to the Unruh effect [1] (see also Refs. [2,3]),
the vacuum state of a quantum field theory as described by
inertial observers inMinkowski spacetime corresponds to a
thermal state as seen by uniformly accelerated ones con-
fined to the Rindler wedge (Rindler observers). By now, the
essential role played by the Unruh effect in the description
of various physical phenomena is thoroughly accepted [4].
The analysis of the total response rate for classical and
semiclassical sources with constant proper acceleration
from the point of view of Rindler and inertial observers
has been already performed for Klein-Gordon [5,6],
Maxwell [7], and Dirac fields [8].

Here, we canonically quantize the Proca field (i.e., a
massive spin-1 vector field) in the Rindler wedge, and
compute the response rate for a source with constant proper
acceleration coupled to it. We explicitly verify that the total
response rate as computed by Rindler observers immersed
in the Unruh thermal bath is precisely the same as the one
calculated by inertial observers in the Minkowski vacuum.
Because uniformly accelerated sources are static in Rindler
coordinates, they can only interact with zero-energy
Rindler particles of the Unruh thermal bath. (We recall
that this is possible because massive Rindler particles
may have arbitrarily small frequencies as defined by uni-
formly accelerated observers [9].) Under proper conditions,
our results can be interpreted in terms of noninertial elec-
trons by saying that each Z0 emitted from a uniformly
accelerated e� in the Minkowski vacuum as described by
inertial observers corresponds to either the emission to or

absorption from the Unruh thermal bath of a zero-energy Z0

Rindler boson as described by coaccelerated observers.
The paper is organized as follows. In Sec. II, the Proca

field is quantized in the Rindler wedge. In Sec. III, we
briefly revisit the regularization procedure applied to static
sources in the Rindler wedge as originally derived in
Ref. [7]. In Sec. IV, the corresponding emission and ab-
sorption rates of zero-energy Rindler particles are com-
puted. In Sec. V, it is explicitly verified that by combining
the previously computed emission and absorption rates as
calculated by Rindler observers, we exactly obtain the
emission rate of (nonzero-energy) Minkowski particles as
computed by inertial observers. In Sec. VI, we make our
final remarks and comment on the response of a static
charge interacting with Z0 bosons of Hawking radiation
in the vicinity of a black hole. We adopt natural units
ℏ ¼ c ¼ G ¼ 1, unless stated otherwise.

II. CANONICAL QUANTIZATION OF THE PROCA
FIELD IN THE RINDLER WEDGE

In order to quantize the Proca field we start with the
standard Lagrangian density

L ¼ ffiffiffiffiffiffiffi�g
p �

� 1

4
F��F

�� þ 1

2
m2A�A

�

�
; (1)

where g is the determinant of the metric g�� and F�� �
r�A� �r�A�. The field equations are

r�F
�� þm2A� ¼ 0: (2)

By applying r� in Eq. (2), we obtain the Lorenz constraint

r�A
� ¼ 0: (3)

Equation (3) can be used to cast the field Eq. (2) in the form

ðr�r� þm2ÞA� ¼ 0; (4)
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provided that the spacetime is a vacuum solution of
Einstein equations: R�� ¼ 0.

Now, let us proceed to quantize the Proca field in the
(right) Rindler wedge, i.e., the portion of the Minkowski
spacetime defined as z > jtj, which is a globally hyperbolic
spacetime by its own right. Here, ðt;xÞ with x � ðx; y; zÞ
are the usual Cartesian coordinates. We cover the Rindler
wedge using coordinates ð�; x; y; �Þ, where the Rindler
coordinates � and � are implicitly defined through

t ¼ ea�

a
sinha�; z ¼ ea�

a
cosha� (5)

and a ¼ const 2 Rþ. Rindler observers will be uniformly
accelerated ones with constant coordinates x, y, �, and
corresponding proper acceleration ae�a�. By using
Rindler coordinates, the metric components of the space-
time become

g�� ¼ diagðe2a�;�1;�1;�e2a�Þ:
In order to quantize the Proca field in the Rindler wedge,

it is convenient to find a complete set of orthonormal

solutions Að�;$;k?Þ for Eq. (4), satisfying the Lorenz con-
straint (3) associated with the three possible physical polar-
izations � ¼ I, II, III:

ðAð�;$;k?Þ;Að�0;$0;k0
?ÞÞ¼���0�ð$�$0Þ�2ðk?�k0

?Þ; (6)

where k? � ðkx; kyÞ represents the z-orthogonal momen-

tum, and $ 2 ð0;þ1Þ labels the Rindler frequency. (We
recall that $ is distinct from the frequency ! 2 ðm;þ1Þ
of Minkowski modes.) For this purpose, we consider the
generalized Klein-Gordon inner product

ðAðiÞ; AðjÞÞ ¼
Z
�
d�n�W

�ðAðiÞ; AðjÞÞ; (7)

where (i), (j) stand for the set of quantum numbers
ð�;$;k?Þ, the Cauchy surface � will be chosen to be
any � ¼ const hypersurface in the Rindler wedge, n� /
ð1; 0; 0; 0Þ is the future-pointing unit vector field orthogonal
to �, and

W�ðAðiÞ; AðjÞÞ � iðAðiÞ
� �ðjÞ�� � AðjÞ

� �ðiÞ��Þ; (8)

where the overline denotes complex conjugation, and

�ðiÞ�� � 1ffiffiffiffiffiffiffi�g
p @L

@ðr�A
ðiÞ
� Þ ¼ r�AðiÞ� �r�AðiÞ�

¼ �FðiÞ��: (9)

By using Eq. (2), it is easy to show that W�ðAðiÞ; AðjÞÞ is a
conserved current: r�W

�ðAðiÞ; AðjÞÞ ¼ 0.

A complete set of orthonormal solutions [i.e., complying
with Eq. (6)] for Eq. (4), satisfying the constraint (3) can be
cast in the form

AðI;$;k?Þ
� ¼ CðI;$;k?Þð0; 0; ky�;�kx�Þ; (10)

AðII;$;k?Þ
� ¼ CðII;$;k?Þð@��;�i$�; 0; 0Þ; (11)

AðIII;$;k?Þ
� ¼CðIII;$;k?Þ

�
�i$k?

m
�;

k?
m

@��;
ikx	

2

mk?
�;

iky	
2

mk?
�

�
;

(12)

where

CðI;$;k?Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhð�$=aÞp

=ð2�2k?
ffiffiffi
a

p Þ; (13)

CðII;$;k?Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhð�$=aÞ

p
=ð2�2	

ffiffiffi
a

p Þ; (14)

CðIII;$;k?Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhð�$=aÞ

p
=ð2�2	

ffiffiffi
a

p Þ: (15)

Here

�ðx
Þ � Ki$=að	ea�=aÞeiðkxxþkyy�$�Þ;

where 	 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? þm2

q
, k? � jk?j, and Ki$=að	ea�=aÞ is

the Bessel function of imaginary order [10]. It is interesting
to note that a fourth mode does exist:

AðIV;$;k?Þ
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhð�$=aÞp
ð2�2m

ffiffiffi
a

p Þ ð�i$�; @��; ikx�; iky�Þ

with negative norm,

ðAðIV;$;k?Þ; AðIV;$0;k0
?ÞÞ ¼ ��ð$�$0Þ�2ðk? � k0

?Þ;
orthogonal to all Að�;$;k?Þ

� (� ¼ I, II, III). Although it
satisfies Eq. (4), it does not comply with the constraint
(3), and thus must be considered nonphysical. This reflects
the fact that the Proca field has only three independent
physical polarizations.
Next, we expand the Proca field in terms of the physical

modes as

Â�ðx�Þ¼
Z
d2k?

Z 1

0
d$

X
�¼I;II;III

½âð�;$;k?ÞA
ð�;$;k?Þ
� þH:c:�;

(16)

where
R
d2k? � Rþ1

�1 dkx
Rþ1
�1 dky. In order to determine

the commutation relations between the creation âyð�;$;k?Þ
and annihilation âð�;$;k?Þ operators, we introduce equal-

time canonical commutation relations:

½ÂiðxÞ; Âjðx0Þ�� ¼ ½�̂iðxÞ; �̂jðx0Þ�� ¼ 0; (17)

½ÂiðxÞ; �̂jðx0Þ�� ¼ i
�j
iffiffiffiffiffiffiffiffiffiffiffiffi

�gð3Þ
q �ð�� �0Þ�2ðx? � x0

?Þ (18)

on the Cauchy surface� [covered with coordinates ð�;x?Þ
with x? � ðx; yÞ] among the field operators Âi and the

canonically conjugate momenta �̂j � n��̂
�j. Here, i, j

label space coordinates and Eqs. (17) and (18) are cast in a
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noncovariant form because �̂0 ¼ n��̂
�0 vanishes identi-

cally and Â0 is not an independent variable (see, e.g.,
Ref. [11]). Now, on the one hand by using Eq. (16) we
obtain

½ðAðiÞ;ÂÞ;ðÂ;AðjÞÞÞ�¼X
lp

ðAðiÞ;AðlÞÞ½âðlÞ;âyðpÞ�ðAðpÞ;AðjÞÞ (19)

(where the sums above should be read as integral symbols
for continuous quantum numbers). On the other hand, by
using Eqs. (17) and (18) we have

½ðAðiÞ; ÂÞ; ðÂ; AðjÞÞÞ� ¼ ðAðiÞ; AðjÞÞ: (20)

Thus, by combining Eqs. (19) and (20) and using Eq. (6),
we obtain

½âð�;$;k?Þ; â
y
ð�0;$0;k0

?Þ�¼���0�ð$�$0Þ�2ðk?�k0
?Þ: (21)

The Rindler vacuum j0iR is defined by the condition

â ð�;$;k?Þj0iR ¼ 0:

III. THE SOURCE

Now, let us discuss the source j�ðxÞ, to which we will

couple the Proca field Â�ðxÞ as ruled by the interaction

Lagrangian density

L int ¼ ffiffiffiffiffiffiffi�g
p

j�ðxÞÂ�ðxÞ: (22)

A uniformly accelerated source in Minkowski spacetime
with constant proper acceleration a corresponds to a static
source in Rindler coordinates described by the current

j� ¼ q�ð�Þ�ðxÞ�ðyÞ; j� ¼ jx ¼ jy ¼ 0; (23)

where q will play the role of a coupling constant.
According to the Unruh effect, the inertial vacuum corre-
sponds to a thermal state as seen by uniformly accelerated
observers confined to the Rindler wedge [4]. Now, because
the source is static in Rindler coordinates, it can only
interact with zero-energy Rindler particles and, thus, the
corresponding spontaneous emission rate must vanish.
However, no obvious conclusion can be reached concern-
ing the absorption and induced emission rates because of
the divergent number of zero-energy Rindler particles
present in the thermal bath. In order to resolve it, we
must allow our source to absorb and emit (‘‘respond to’’,
for short) nonzero-energy particles. This can be achieved
by introducing a new parameter, E ¼ const, which drives
the source to oscillate in time and functions as a regulator.
Then, in order to keep charge conservation, we introduce
an extra source at � ¼ L to form a dipole with our original
one. The corresponding conserved current associated with
the oscillating dipole, which will temporarily replace our
static source (23), can be cast in the form

j�¼ ffiffiffi
2

p
qcosðE�Þ½�ð�Þ�e�2aL�ð��LÞ��ðxÞ�ðyÞ; (24)

j� ¼ ffiffiffi
2

p
qE sinðE�Þe�2a��ð�Þ�ðL� �Þ�ðxÞ�ðyÞ; (25)

jx ¼ jy ¼ 0: (26)

Eventually, we take the limits L ! þ1 and E ! 0, and
neither the second source at � ¼ L nor the charge oscil-
lation will contribute to the final results. We address to
Ref. [7] for a more comprehensive discussion on this
subject.

IV. EMISSION AND ABSORPTION RATES IN THE
UNIFORMLYACCELERATED FRAME

In this section, we analyze the total response of our
charge with respect to Rindler observers. Using modes
(10)–(12) and current (24)–(26), it is obvious that only
modes with � ¼ II and III can couple to the charge. We
focus first on the emission rate of Rindler particles with
� ¼ II.
At the tree level, the emission amplitude of Rindler

particles with quantum numbers ðII; $;k?Þ out to the
Rindler vacuum is

A em
ðII;$;k?Þ ¼ RhII; $;k?ji

Z
d4xLintj0iR:

The corresponding differential emission rate is given by

dWem
0 ðII; $;k?Þ ¼ jAem

ðII;$;k?Þj2d$d2k?=T;

where T is the (arbitrarily large) proper time interval dur-
ing which the interaction remains turned on. Taking, at this
point, the limit L ! þ1 to eliminate the influence of the
extra source on dWem

0 ðII; $;k?Þ, we obtain

dWem
0 ðII;$;k?Þ¼ q2

4�3a
sinhð�E=aÞ�ð$�EÞ

��������K0
iE=a

�
	

a

�

þOðEÞ
��������

2

d$d2k?; (27)

as E ! 0. (Note that charges at � ¼ L ! þ1 are inertial
and, thus, become ‘‘inert’’ for our present purposes.) Now,
we should remember that according to the Unruh effect the
Minkowski vacuum corresponds to a thermal bath of
Rindler particles at a temperature ��1 ¼ a=ð2�Þ. Then,
the differential emission rate of massive vector Rindler
particles with � ¼ II into the Unruh thermal bath for fixed
k? according to uniformly accelerated observers is

Pem
II;k?d

2k?¼
Z
dWem

0 ðII;$;k?Þ
�
1þ 1

e2�$=a�1

�
; (28)

where the first and second terms inside the parenthesis are
associated with spontaneous and induced emission, respec-
tively, and the integration is performed only in the $
variable. By evaluating the integral above and taking the
limit E ! 0 at the end, we obtain
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Pem
II;k?d

2k? ¼ q2

8�3a
jK1ð	=aÞj2d2k?: (29)

The necessity for the introduction of the regularization
parameter E can be appreciated from Eq. (28) by noticing
that the term that multiplies �ð$� EÞ in the right hand
side of Eq. (27) vanishes as $� E ! 0 while the
Planckian (induced emission) term in Eq. (28) diverges
as $ ! 0. Analogously, we can obtain the differential
absorption rate:

Pabs
II;k?d

2k? ¼
Z

dWabs
0 ðII; $;k?Þ 1

e2�$=a � 1
: (30)

We see that

Pabs
II;k?d

2k? ¼ Pem
II;k?d

2k? (31)

because the spontaneous emission becomes negligible in
comparison with the induced emission as E vanishes.

Next, we must repeat the same calculations for � ¼ III.
It turns out that Pem

III;k?d
2k? ¼ Pabs

III;k?d
2k? ¼ 0. This is so

because

dWem
0 ðIII; $;k?Þ �Oð$2Þ�ð$� EÞd$d2k?

as $�E!0, while 1=ðe2�$=a � 1Þ �Oð$�1Þ as $ ! 0
[and analogously for dWabs

0 ðIII; $;k?Þ]. As a result, only

mode II contributes to the total differential response rate:

Ptot
k?d

2k?¼ðPem
II;k? þPabs

II;k?Þd2k?¼ q2

4�3a
jK1ð	=aÞj2d2k?:

(32)

V. EMISSION RATE IN THE INERTIAL FRAME

Now, let us compute the response rate for a uniformly
accelerated charge as given by Eq. (23) coupled to the
Proca field through Eq. (22) with respect to inertial
observers. These observers cover the Minkowski
spacetime with Cartesian coordinates, in which case the
metric components assume the usual form 
�� ¼
diagð1;�1;�1;�1Þ. Hence, it is convenient to write the
components of current (23) in the Cartesian basis as

jt ¼ qaz�ðxÞ�ðyÞ�ð�Þ; (33)

jz ¼ qat�ðxÞ�ðyÞ�ð�Þ; (34)

jx ¼ jy ¼ 0; (35)

where �ð�Þ ¼ �ðz�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ a�2

p
Þ=ða

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ a�2

p
Þ.

An orthonormal set of solutions for Eq. (4) proportional
to plane waves and satisfying Eq. (3) can be cast in the
form

A�ðk; �Þ ¼ ð16�3!Þ�1=2��ðk; �Þeið�!tþk�xÞ

with polarization vectors

��ðk; 1Þ ¼ ð0; �̂ðk; 1ÞÞ; (36)

��ðk; 2Þ ¼ ð0; �̂ðk; 2ÞÞ; (37)

��ðk; 3Þ ¼ ðjkj=m;!k̂=mÞ (38)

where �̂ðk; 1Þ and �̂ðk; 2Þ are unit three-vectors orthogonal
to each other and to k � ðkx; ky; kzÞ, k̂ � k=jkj, and ! �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jkj2p

. (In this case, the nonphysical mode orthogo-
nal to the physical modes above, satisfying Eq. (4) but not
Eq. (3) has polarization ��ðk; 4Þ ¼ k�=m.) Next, by using
the Klein-Gordon inner product (7) (where in this case the
Cauchy surface � is given by any t ¼ const hypersurface),
we verify that the physical modes satisfy

ðAðiÞ; AðjÞÞ ¼ ���0�3ðk� k0Þ; (39)

where (i), (j) represent the quantum numbers (k, �) (� ¼
1, 2, 3).
The Proca field in the inertial frame is expanded, thus, as

Â �ðx�Þ ¼
Z

d3k
X3
�¼1

½âðk;�ÞA�ðk; �Þ þ H:c:�: (40)

It is straightforward to verify that Â� and the canonically

conjugate momentum �̂� satisfy canonical commutation
relations provided that (see, e.g., Ref. [11])

½âðk;�Þ; âyðk0;�0Þ� ¼ ���0�3ðk� k0Þ: (41)

Now, because inertial observers experience no particles
in the Minkowski vacuum j0iM [defined by âðk;�Þj0iM � 0
for all ðk; �Þ], no absorption processes are allowed accord-
ing to them. As a result, only the emission rate will
contribute to the total response. At the tree level, the
emission amplitude of a Proca particle with three-
momentum k and polarization � as defined by inertial
observers is

MAem
ðk;�Þ ¼ Mhk; �ji

Z
d4xLintj0iM:

The differential emission rate of Minkowski Proca parti-
cles with fixed transverse momentum k? is given by

MPtot
k?d

2k? ¼ d2k?
X3
�¼1

Z þ1

�1
dkzjMAem

ðk;�Þj2=T: (42)

Next, we use the identity

X3
�¼1

��ðk; �Þ��ðk; �Þ ¼ k�k�=m
2 � 
��

satisfied by the polarization vectors to cast Eq. (42) in the
form
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MPtot
k?d

2k? ¼ d2k?
Z þ1

�1
dkz

Z d4xd4x0

16�3!
j�ðxÞj�ðx0Þ

�
�
k�k�

m2
� 
��

�
ei!ðt�t0Þe�ik�ðx�x0Þ:

Now, by using current conservation @�j
� ¼ 0, we can

show that terms in the integral proportional to j�k� do

not contribute. Finally, by using Eqs. (33)–(35), we find

MPtot
k?d

2k? ¼ q2

4�3a
jK1ð	=aÞj2d2k?: (43)

The equality between Eqs. (43) and (32) can be interpreted
in terms of known elementary particles as follows. First, let
us note that the Lagrangian density (22) can be used to
describe the interaction of noninertial electrons emitting Z0

bosons. Then, the equality between Eqs. (32) and (43)
reflects, in this case, the fact that each (nonzero energy)
Z0 emitted from a uniformly accelerated e� in the
Minkowski vacuum as described by inertial observers cor-
responds to either the emission to or absorption from the
Unruh thermal bath of a zero-energy Z0 Rindler boson as
described by coaccelerated observers.

VI. CONCLUDING REMARKS

We have canonically quantized the Proca field in the
Rindler wedge. The results obtained were applied to com-
pute the total response rate of a source with constant proper
acceleration interacting with the Proca field from the point
of view of observers coaccelerated with the source. We

have shown that this corresponds to the combined emission
and absorption rates of zero-energy Proca particles to and
from the Unruh thermal bath, respectively, and that only
Rindler particles with � ¼ II contribute. Then, we have
explicitly verified that the total response rate obtained in
the Rindler wedge is exactly the same as the total emission
rate of Minkowski particles as described by inertial ob-
servers. This result is consistent with the fact that each
particle emitted in the inertial frame must correspond to
either the emission or absorption of a Rindler particle in
the accelerated frame, since both observers must agree
concerning changes in the state of the quantum field.
Finally, because of the close conceptual relationship be-
tween the Unruh thermal bath and Hawking radiation, we
can forecast that the total response of a static source in the
vicinity of a black hole coupled to the Proca field will be
well approximated by

R
Ptot
k?d

2k?, where Ptot
k?d

2k? is

given in Eq. (32) with a being identified with the proper
acceleration of the static source outside the black hole.
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