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“Rir muito e com frequência; ganhar o respeito de pessoas inteligentes e o afeto das crianças;
merecer a consideração de críticos honestos e suportar a traição de falsos amigos; apreciar a

beleza, encontrar o melhor nos outros; deixar o mundo um pouco melhor, seja por uma saudável
criança, um canteiro de jardim ou uma redimida condição social; saber que ao menos uma vida

respirou mais fácil porque você viveu. Isso é ter tido sucesso.” - Ralph Waldo Emerson

"Bem-aventurados são aqueles que promovem o auto-conhecimento, que buscam entender o
sentido de suas próprias vidas.

Felizes são aqueles que entendem que não fazem mal ao próximo, não por causa de alguma
divindade externa, mas sim pelo reconhecimento de que o seu próprio eu é simplesmente

incompatível com tais atos.

Bem-aventurados são aqueles que tiveram a oportunidade, ao seu tempo, de perceber e poder
reconhecer o que significa uma amizade verdadeira.

Felizes são aqueles que possuem em seu círculo social pessoas respeitosas e que compreendem as
diferenças dos outros, podendo assim, também, reconhecer esta bela atitude e respeitar o próximo.

Bem-aventurados são aqueles que não se deixam abalar pelas opressões conceituais sociais
somente porque a maioria das pessoas inconscientemente consente.

Em prol da religião focada nos indivíduos, graças a dEUs." - Patrice Camati
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Abstract
This thesis consists in a review of the String Field Theory framework, focusing in the classical
properties of the open sector and its possible applications for inflation. Therefore, we intend to
follow the Witten’s prescription and build an action for the Open Bosonic String Field Theory.
Then, recognizing that the theory has a tachyonic mode and motivated by the inflationary sce-
nario, we calculate and consider the tachyonic potential in some order of approximation. As an
application, we consider the tachyon field as a possible candidate for the inflaton. In order to
work with this proposal, we first review the inflationary theory and study its modern approach,
considering only its classical implications using the slow-roll approximation. Finally, we analyze
the tachyonic potential as being the inflaton potential and explore its consequences. As a support,
there are four appendices containing some aspects of String Theory, General Relativity, Cosmology
and some relevant calculations that were omitted throughout the thesis.
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Resumo
Esta tese consiste em uma revisão da estrutura da Teoria de Campo na Corda, focando nas pro-
priedades clássicas do setor da corda aberta e suas possíveis aplicações para inflação. Portanto,
seguiremos a prescrição do Witten e construiremos uma ação para a Teoria de Campo na Corda
Aberta Bosônica. Então, percebendo que a teoria tem uma modo taquiônico e motivado pelo
cenário de inflação, calcularemos e consideraremos o potencial taquiônico em alguma ordem de
aproximação. Como aplicação, tomaremos o campo taquiônico como um candidato possível para
o inflaton. A fim de trabalhar com esta proposta, revisaremos primeiramente a teoria inflacionária
e estudaremos sua abordagem moderna, considerando apenas suas implicações a nível clássico
utilizando a aproximação slow-roll. Finalmente, analisaremos o potencial taquiônico como sendo
o potencial do inflaton e exploramos suas consequências. Como suporte, há quatro apêndices
contendo alguns aspectos de Teoria de Cordas, Relatividade Geral, Cosmologia e alguns cálculos
relevantes que foram omitidos ao longo da tese.
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Objectives
The objective of this thesis is to provide that readers coming from cosmology can be able to
understand string inflation through the tachyonic potential proposal from open bosonic string field
theory, since it is expected that all the necessary elements are provided for this understanding. On
the other hand, it is also expected that a string theorist can be able to understand the general
aspects of inflation and a direct application coming from string theory only with the material here
provided.
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1. Introduction

String Theory

In string theory, the basic assumption is that all the elementary particles are vibrations of a very
small elastic string, generating a unification between the different kinds of elementary particles.
The fact that a string has some extension also succeeds in eliminating infinites which come up
when point particles approach each other too closely in Quantum Field Theory (QFT). These
two properties together provide a good indication that String Theory could provide the correct
framework to study a quantum gravity theory.

There are several types of string theory, depending essentially if we are considering bosons,
fermions or both of them and what are the boundary conditions, resulting in open or closed strings.
In this thesis, we will be concerned with the open bosonic sector.

Although we consider string-like objects, string theory is perturbative as QFT, that means, it
is a formalism for calculating scattering amplitudes as a perturbation series over a small coupling
constant. However, when one starts studying the spectrum of the open bosonic sector, the physical
spectrum contains a tachyonic mode, indicating that a non-perturbative theory has to be developed.

String Field Theory

The most successful non-perturbative theory developed so far was first introduced by Witten [3].
In fact, making use of the bc ghosts introduced to fix the symmetries in the string action, which
results in the presence of a BRST symmetry, it was possible to construct a parallel with the already
known Chern-Simons theory in 3−dim, providing a covariant action for the bosonic open string
field theory.

The construction, as we will see, is very elegant and based in very intuitive arguments, providing
an algorithm to consider string interactions. Using this framework, it is possible to calculate
the effective tachyonic potential of the open bosonic sector and analyze the tachyon condensation
dynamics, that is, how the tachyon field decays and its implications.

Cosmology and Inflation

It was known in the 70′s that the Standard Cosmological Model by that time had some problems,
related with the initial-conditions of the universe. As a matter of fact, the large isotropy and
homogeneity of the universe in the Cosmic Background Radiation (CMB) were an indication of an
extremely fine-tunning in the very early universe, which seemed very unnatural.

Then, in the beginning of the 80′s, some works [16, 17, 25] leading by Guth’s paper [15] proposed
a new scenario for the early universe, when a huge accelerated expansion of the universe would
have happened. This was known as inflation. As we will see, it provides resolutions for several
cosmological problems, even though it is more a framework than a theory itself.

9



1. Introduction

Strings and Cosmology
At first sight, string theory and cosmology, inflation in particular, could be thought as too "far
away" to be related. However, recent developments of both fields have brought they together,
especially concerning the very beginning of the universe.

In fact, cosmology and strings could complement each other in several ways. On one side,
cosmology stills lacks an underlying theory to address the initial singularity problem and the origin
of inflation. On the other side, string theory has not yet been confronted with experiments and
this could be a good opportunity for it.

One way to put all the things together is considering the decaying of the tachyonic mode, having
its dynamics (its potential) calculated in the open string field theory framework, as a candidate
for the inflationary scenario. This will be the ultimate objective here, even though we might have
to consider several approximations in order to keep the problem as simple as possible so that it
remains pedagogic.

Summary of the Thesis
In the second chapter we introduce briefly the Chern-Simons theory and explicit the relevant
properties that will be important for the construction of the open string field action. Then, we
follow Witten’s prescription and provide the method to evaluate the action.

The third chapter presents the calculation of the tachyonic potential at the very first approxi-
mation (to be explained there). Some of the calculations are omitted, but they are developed in
the appendices.

Inflation is introduced only in chapter 4 through a historical and qualitative description. We
provide an easy analogy to understand the main problems that motivated the introduction of this
scenario in the early universe cosmology.

Chapter 5 brings inflation to its modern approach, focusing only in the classical properties and
its consequences. We treat some example models to demonstrate the slow-roll approximation and,
finally, build the bridge between the tachyonic potential calculated in chapter 3 and the inflationary
paradigm.

The appendices, besides presenting some useful calculations, are concerned about relevant aspects
to the thesis, coming from String Theory up to General Relativity and Cosmology.

10



2. String Field Theory
The first construction of a gauge invariant string field theory appeared in [1] where the BRST
approach was used. Soon after, in [2] a gauge invariant string field theory was constructed using
a single string field and when tried to extend it to a minimal gauge invariant system, a BRST
structure was seen to emerge. Even though these references will not be used any longer, they give
a hint of the important task BRST symmetry shall play from now on.

This chapter is intend to review the construction of a consistent String Field Theory for bosonic
open strings. The strategy is to interpret the interactions in this framework as defining a non-
commutative and associative algebra which will have its elements identified with the string field
and its derivative with the BRST operator. This algebra is analogous to the Chern-Simons theory,
so we start providing a brief description of it.

Our prior references will be [3, 4, 5, 6] and others that will be cited when necessary.

2.1. Chern-Simons Theory
Let’s start by reviewing the Chern-Simons theory in 2 + 1−dimensions since the open string field
action is inspired on the nonabelian version of it. A good reference for the classical and quantum
aspects of this gauge theory can be found in [31].

The Chern-Simons theory is a gauge theory in 2+1-dimensions1 developed by Witten [32]. It has
very interesting theoretical properties and practical application in condensed matter phenomena.
Its Lagrangian is

LCS = κ

2 εµνρAµ∂νAρ − AµJµ (2.1)

where Aµ is the gauge field in 2 + 1−dim and Jµ is the matter current. Under the gauge transfor-
mation Aµ → Aµ + ∂µΛ it transforms as

δLCS = κ

2 ∂µ(Λεµνρ∂νAρ). (2.2)

Therefore, its action is gauge invariant if we can ignore boundary terms. The equation of motion
is

κ

2 εµνρFνρ = Jµ, (2.3)

where Fνρ = ∂νAρ − ∂ρAν is the field strength. Note that if Jµ = 0, we have Fνρ = 0, which looks
pretty trivial when compared with Maxwell theory, because there even the source-free Lagrangian
provides interesting properties, as the plane-wave solutions. There are several ways to make the
Chern-Simons theory more interesting2 in 2 + 1-dim, as considering the nonabelian version below.

The nonabelian Chern-Simons is given by

LCS = κεµνρtr
(

Aµ∂νAρ + 2
3AµAνAρ

)
, (2.4)

1 Actually, it is possible to construct a Chern-Simons gauge theory for all the odd dimensions. On the other
hand, it is only in 3−dim that it is quadratic in the gauge field.

2 Other ways are: coupling to dynamical matter fields, to a Maxwell term or including gravity, for instance.
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2. String Field Theory

where Aµ = Aa
µT a, Aa

µ are the gauge fields and T a are the generators of a gauge Lie algebra,
satisfying [T a, T b] = fabcT c; fabc are the structure constants of the algebra. A variation of δAµ

induces a variation in the Lagrangian,

δLCS = κεµνρtr(δAµFνρ), (2.5)

where Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. The equation of motion has the same form as the abelian
case, but now the field strength has an additional term.

In order to connect the nonabelian Chern-Simons theory with the open string field action more
directly, we shall rewrite it using differential forms. Then, its action is

S(A) = 1
2

ˆ

M
A ∧ dA + 1

3

ˆ

M
A ∧ A ∧ A, (2.6)

where M is a 3−manifold and A = AaT a is a 1−form. The integral symbol also includes a trace
over the Lie-algebra generators. If we consider the following properties

1. d is nilpotent: d2ω = 0 for all differential forms ω;

2. d is a derivation: d(ω ∧ η) = dω ∧ η + (−1)|ω|ω ∧ dη, where |ω| is the degree of ω;

3. cyclic symmetry:
´

ω ∧ η = (−1)|ω||η| ´ η ∧ ω;

4. Stoke’s theorem:
´

dω = 0;

5. ∧ is associative,

then (2.6) is invariant under the gauge transformation

δA = dε + A ∧ ε − ε ∧ A, (2.7)

with ε being a 0−form.
All the above properties, the gauge transformation and the Chern-Simons action will have analogs

in Witten’s open bosonic string field theory.

2.2. Generalization of Chern-Simons theory
We start by following the Witten’s proposal to formulate the field theory of open string [3]. Its
starting point is quite axiomatic: let’s consider an associative non-commutative algebra B with the
defining properties:

1. a Z2 grading, so that for every element b ∈ B we have a degree3 (−1)kb which is ±1;

2. a multiplication law ' defined as such: for any two elements a, b ∈ B, the degree of the
product a 'b is (−1)ka · (−1)kb ;

3. a linear map Q: for any b ∈ B, Q(b) ∈ B which obeys Q(a ' b) = (Q(a)) ' b + (−1)kaa ' Q(b).
Besides, Q is odd under the grading, which means that the degree of Q(b) is −(−1)kb and
Q is nilpotent, i.e., Q2 =0, giving Q(Q(b)) = 0 for all b ∈ B. We will call this linear map a
"derivation" of the algebra.

3 The standard notation for the degree of an element b ∈ B is (−1)b.
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2.2. Generalization of Chern-Simons theory

4. a linear map
´

: for any b ∈ B,
´

b ∈ C which obeys
´

a ' b = (−1)kakb
´

b ' a, where (−1)kakb

is defined to be (−1) if a and b are both odd and +1 otherwise. We also require that for any
b ∈ B,

´

Q(b) = 0. This map will be called "integration".4

Before we continue, let’s call some attention for the above axioms in order to preview where we
will get soon. The elements of our algebra will be identified with the cohomology of the BRST
operator QB with ghost number 1.

The above axioms are enough to generalize the Chern-Simons gauge theory. Let’s consider a
field A with kA = 1 (in the language of differential forms, this would means a 1-form) with the
following gauge invariance

δA = Q(ε) + A 'ε − ε ' A, (2.8)

where ε is an arbitrary element of B with kε = 0 (a 0-form in the differential forms framework).
Note that B contains a subalgebra B0 of elements with kB0 = 0. We can now define a field strength
to be

F = Q(A) + A 'A (2.9)

which transforms under gauge transformations as

δF = F ' ε − ε ' A. (2.10)

Now, we can imagine the most general action to be written for the field A which preserves the
above gauge invariance. It turns out that this action is given by the Chern-Simons three-form
action,

S =
ˆ (

A 'Q (A) + 2
3A ' A ' A

)
. (2.11)

Note that we do not consider higher Chern-Simons forms because they will have their integrals
vanishing in the bosonic open string field framework (due to the precise ghost number associated
with the correlators). We could have also considered the term

´

F ' F, however it is easy to show
it is a topological invariant since its variation under an arbitrary variation of A is zero. Since this
action pretty much constitutes the essence of this thesis, let’s show that it is gauge invariant under
(2.8):

S =
ˆ

(A 'Q (A) + 2
3A ' A ' A) =

ˆ

(A 'F − 1
3A ' A ' A)

δS =
ˆ

{δA ' F + A ' δF − 1
3[δA ' A ' A + A ' δA ' A + A ' A ' δA]}

=
ˆ

{[Q(ε) + A 'ε − ε ' A] ' F + A ' (F ' ε − ε ' F ) − 1
3[Q(ε) + A 'ε − ε ' A] ' A ' A +

+A ' [Q(ε) + A 'ε − ε ' A] − 1
3A ' A ' [Q(ε) + A 'ε − ε ' A]}

=
ˆ

{Q(ε) ' F +
3︷ ︸︸ ︷

A ' ε ' F −ε ' A ' F + A ' F ' ε −
3︷ ︸︸ ︷

A ' ε ' F −1
3[Q(ε) ' A ' A + A 'Q (ε) ' A +

+A ' A ' Q(ε)] − 1
3[

1︷ ︸︸ ︷
A ' ε ' A ' A +

2︷ ︸︸ ︷
A ' A ' ε ' A +A ' A ' A ' ε] + 1

3[ε ' A ' A ' A + (2.12)

+
1︷ ︸︸ ︷

A ' ε ' A ' A +
2︷ ︸︸ ︷

A ' A ' ε ' A]}.

4 It is worth noting that each element or operation has its counterpart in the Chern-Simons theory above.
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2. String Field Theory

The terms with the same number cancel each other. Now, using axiom 4, we see that
ˆ

Q(ε) ' A ' A = (−1)kAkQ(ε)"A

ˆ

A 'Q (ε) ' A =
ˆ

A 'Q (ε) ' A, since Q(ε) ' Ais even;
ˆ

A ' A ' Q(ε) =
ˆ

Q(ε) ' A ' A, since A 'A is even;
ˆ

A ' F ' ε =
ˆ

F ' ε ' A =
ˆ

ε ' A ' F, since F ' εand Fare even;
ˆ

ε ' A ' A ' A =
ˆ

A ' A ' A ' ε, since A 'A and A ' A ' εare even,

so that (2.12) becomes

δS =
ˆ

{Q(ε) ' F −
4︷ ︸︸ ︷

ε ' A ' F +
4︷ ︸︸ ︷

ε ' A ' F −Q(ε) ' A ' A}

=
ˆ

{Q(ε) ' F − Q(ε) ' A ' A}

=
ˆ

{Q(ε) ' Q(A) +
5︷ ︸︸ ︷

Q(ε) ' A ' A −
5︷ ︸︸ ︷

Q(ε) ' A ' A}

=
ˆ

Q(ε) ' Q(A) =
ˆ

Q[ε ' Q(A)] = 0.

2.3. Open String Field Theory
The first mode of the bosonic open string theory spectrum is a tachyon, which is a scalar field
with an unstable potential. It is possible that this potential could be used to create an inflationary
scenario. However, in order to study this possibility it is necessary to know how the potential
associate with this tachyonic mode looks like. To calculate the potential, we have to go beyond
the first-quantized framework, which is onshell. Hence we need an off-shell formulation of string
theory, which is called string field theory, so that it is possible to obtain the potential. It is worth
to mention that there are other reasons for the study of the off-shell formalism, between them the
attempt to prove the Sen’s conjectures [35] and find the correct vacuum of string theory.

This section will be based on [4, 5, 6].

2.3.1. The classical string field
As it can be reviewed in the appendix A, the Hilbert space H of the open string theory is constructed
acting with the creation operators αµ

−n, b−m, c−l, where m, n, l > 0, and c0 on the vacuum
|Ω〉 ≡ c1|0〉, defined by

αµ
n|Ω〉 = 0 n > 0

bn|Ω〉 = 0 n ≥ 0
cn|Ω〉 = 0 n > 0

pµ|Ω〉 ∝ αµ
0 |Ω〉 = 0. (2.13)

Note that regarding the state-operator mapping, it is expected that the vacuum of the theory should
be mapped to the unit operator. This property is, indeed, satisfied by the state |0〉 = |0; 0〉⊗b−1| ↓〉.
On the other hand, this is not really the ground state of the theory, which is given by |0; 0〉 ⊗ | ↓〉
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2.4. Cubic String Field Theory Action

that is equal to |Ω〉. So, due to the weights of b and c, the unit operator in the vertex operator
formalism is not mapped to the ghost vacuum in the state formalism. As one can check, |Ω〉 is
mapped to c(0). Then, we have

|0〉 ∼ I , |Ω〉 ∼ c(0). (2.14)

A generic state is given by

αµ1
−n1 . . . αµi

−ni
b−m1 . . . b−mj c−l1 . . . c−lk |Ω〉, (2.15)

where n > 0, m > 0, l ≥ 0 and i, j, k are arbitrary positive integers. As a result, any state |Φ〉 ∈ H
can be expanded as

|Φ〉 = [ϕ(x) + Aµ(x)αµ
−1 + Bµν(x)αµ

−1αν
−1 + . . .]c1|0〉 ≡ Φ(z = 0)|0〉. (2.16)

Note that the coefficients multiplying the operators depend on the center-of-mass coordinate x of
the string. As you can imagine, we have infinitely many coefficient functions and they are identified
with the spacetime particle fields, that is why we call |Φ〉 string field. The corresponding vertex
operator, Φ(0), has the same name.

The Hilbert space defined above is redundant. We have treated this problem in the appendix B
considering the BRST quantization procedure. Now that we have established some aspects of the
string field language, we can rewrite the physical conditions in this framework. In order to do this,
let’s consider the action below defined upon the ghost number +1 states5:

S0 = 〈Φ|QB|Φ〉. (2.17)

Using the reality condition for the string field, Φ[Xµ(π − σ)] = Φ∗[Xµ(σ)], the equation of motion
is

QB|Φ〉 = 0, (2.18)
equal to the physical condition (B.15). Besides, it is easy to see that (2.17) is invariant under the
gauge transformation

δ|Φ〉 = QB|χ〉, (2.19)
where |χ〉 has ghost number 0. This corresponds to the exact state defined in (B.18). From the
above, we notice that an on-shell state, which is a solution to the equation of motion of S0, is
a physical state in string theory. In order to obtain the interacting field theory, we will have to
include higher orders terms in Φ using the generalization we have exposed already in section 2.2.

2.4. Cubic String Field Theory Action
After studying the generalization of the Chern-Simons theory in section 2.2, we can construct our
string field theory action considering the same axioms we have seen already with the identification
of the BRST operator, QB, as the nilpotent derivative operator and string fields as the elements
of the algebra B.

In order to understand better why this axiomatic approach makes sense to deal with open string
field theory, we need to give a better look at the ' product. First, let’s call attention to what is
pointed out in [3]: we do not need to work with reparametrization invariant strings once we have
imposed the conservation of the BRST charge, which is natural giving our identifications. Hence,
the following construction will not be reparametrization invariant as we will be choosing a preferred
point of the string, the mid-point σ = π/2, remembering we are considering σ ∈ [0, π]. So, consider:

5 All the physical states in the operator formalism have ghost number +1, as it is explained in the appendix .
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2. String Field Theory

1. The '−product will be associative if we interpret this operation as gluing two half-strings
together as in Figure 2.1 (a). We glue together the right hand piece of the string U , (π/2 ≤
σ ≤ π), to the left hand piece of the string V, (0 ≤ σ ≤ π/2), remaining a string-like object
composed by the left hand piece of U and right hand piece of V . The resulting string state
on U ' V is the string field a 'b ;

2. Since we are considering a non-commutative operation, U 'V and V 'U are different. On the
other hand, the integration is defined as

´

a 'b = (−1)kakb
´

b ' a, i.e., it is "commutative"
ignoring the sign difference. That suggests us that the integration procedures glues the
remaining sides of U and V . In (c), that would mean to sew together the left- and right-hand
ends of the string U at its mid-point;

VU W

U
V

0

0 ð/2
ð/2

ð

ð

U

0

ð/2

ð

U
V

(a) (b) (d)
Figure 2.1.: (a) Gluing of two strings which have half of them coinciding in space-time. (b) Glu-

ing three strings shows qualitatively why associativity follows. (c) The integration
operation sews together both halves of the string at its mid-point. (d) Multiplication
followed by an integration,

´

(U ' V ).

Once the '-product and the integration operation is understood as above, we can consider to write
the so called Witten vertex,

ˆ

Φ1 ' ... ' Φn, (2.20)

where Φi denotes a string field on the ith string Hilbert space. It is the 3-string vertex that matters
for us, since it is for the cubic interaction term that we were able to generalize the gauge invariance.
We represent this vertex below :

Ö Ö
Ö1

2
3

Figure 2.2.: 3-string vertex.

We have not finished with the identifications. Once the BRST charge QB is qualified as the
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2.5. Evaluation method

derivative operator, the algebra Z grading comes from the ghost number. It was already explained
that the string field has ghost number +1. Besides, we consider that #gh(QB) = 1 and #gh(') = 0.

Now, we can understand why only the quadratic term and the 3−string vertex were considered
from the beginning. We know that the ghost number counts the number of c ghosts in the correlator
minus the number of b ghosts. On the other hand, according to the Riemann-Roch theorem, we
must have for each correlator

#cghost − #bghost = 3χ, (2.21)

where χ is the Euler characteristic number for the surface considered. In the open string case, we
are considering the disk6, which gives χ = 1. Hence, the ghost number for each correlator is 3, so
that only the quadratic and cubic term were possible candidates from the beginning.

Finally, we can rewrite the action (2.11) for the open string interaction as

S = −
(ˆ

Φ ' QBΦ + 2
3goΦ ' Φ ' Φ

)
, (2.22)

which is gauge invariant under

δΦ = QBε + go(Φ ' ε − ε ' Φ), (2.23)

where ε is a gauge parameter with ghost number 0 and go is the open string coupling constant.
Indeed, the action with which we will be working comes from redefining the string field as Φ → α′

go
Φ

and changing the overall normalization such that

S = − 1
g2

o

( 1
2α′

ˆ

Φ ' QBΦ + 1
3

ˆ

Φ ' Φ ' Φ
)

. (2.24)

After considering the above construction, we can now state the correspondence between the
nonabelian Chern-Simons theory in 2 + 1- dim and the open string field theory in the table below:

Open String Field Theory Chern-Simons theory in differential forms
element string field differential k-form
degree (−1)#ghost (−1)k

multiplication '−product ∧ (wedge product)
derivation QB exterior derivative d
integration

´ ´

on a k−dimensional manifold

2.5. Evaluation method
In the last section, we have justified why the relevant action to work the interactions in the string
field theory framework is (2.24). However, we still do not know how to do calculations with it.
Even though the quadratic term can be promptly associated with 〈Φ|QB|Φ〉, the cubic term does
not have a ready translation.

There are more than one method to work out the interaction string field term. Here we will
be considering a conformal field theory approach, in which conformal mappings and calculation of
correlators in the disk will be relevant. The construction presented in [4] is very clear and we will
follow it closely.

As it is explicit in appendix A, in the z−coordinate system an ith string evolving from t = −∞,
which corresponds to zi = 0 (Pi), propagates radially until it reaches an interaction point, which

6 Because we will be considering only tree-level amplitudes.
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2. String Field Theory

we considered as t = 0, that is, |zi| = 1. Note that in the CFT framework, these states have
a corresponding vertex operator inserted at Pi. Since we are worried about the 3−string vertex,
the idea is to map the three upper half-disks associated with the strings to one unique disk on a
conformal plane. Graphically, we have:

P1A B

Q
z1-plane

ó=0 s =ð

s =ð/2

P2B C

Q
z2-plane

ó=0 s =ð

s =ð/2

P3C A

Q
z3-plane

ó=0 s =ð

s =ð/2

Figure 2.3.: As we learned in the last section, the gluing process will take half of each string and
sew together to form a new string-like object.

In other words, we will be mapping three half-disks with their own local coordinates z′
is to the

interior of a unique disk with global coordinate ζ. This map must satisfy these properties:

1. The common interaction point Q is mapped to the center ζ = 0 of the unit disk;

2. The real axes, which are the open string boundaries, are mapped to the boundary of the unit
disk.

In order to implement this transformation, let’s consider the first string. The mapping

z1 → ω = h(z1) = 1 + iz1
1 − iz1

(2.25)

satisfy the above properties. On the other hand, we are trying to construct a unit disk from three
half disks, so we need to consider yet another transformation over ω so that the the z1−plane is
mapped to a region with an angle of 120o. The second transformation is given by

ω → ζ = η(ω) = ω2/3. (2.26)

Following the same ideas for the second and third strings, we end up with three wedges of 120o

angle that can be combined and form a unit disk. The last point to be made is to take care of the
sewing, that is, we need to sew together the right-hand piece of the first string with the left-hand
piece of the second string and so on, as it was establish in the last section. This can be achieved
through the following transformations

g1(z1) = e− 2πi
3

(1 + iz1
1 − iz1

)2/3

η ◦ h(z2) = g2(z2) =
(1 + iz2

1 − iz2

)2/3
(2.27)

g3(z3) = e
2πi

3

(1 + iz3
1 − iz3

)2/3
.

These mappings are graphically represented as
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2.5. Evaluation method

P1A B

Q
z1-plane

P2B C

Q
z2-plane

P3C A

Q
z3-plane

?-plane
C

B

A Q

g3

g2

g1

P3

P1

P2

Figure 2.4.: 3−string vertex.

Therefore, using those mappings we can give a representation for the interaction term as a
3−point correlator function,

ˆ

Φ ' Φ ' Φ = 〈g1 ◦ Φ(0) g2 ◦ Φ(0) g3 ◦ Φ(0)〉, (2.28)

where it is defined on the global disk constructed above and evaluated in the combined matter and
ghost CFT. Note that gi ◦ Φ(0) is just the conformal transformation of Φ(0) by gi, i.e.

gi ◦ Φ(0) = (g′
i(0))hΦ(gi(0)), (2.29)

if the Φ is a primary operator (A.31) with conformal weight h.
We can now go back to the upper half plane considering the inverse transformation of (2.25),

that is,

z = h−1(ζ) = −i
ζ − 1
ζ + 1 , (2.30)

so that the final expression for the 3−point vertex is given by

ˆ

Φ ' Φ ' Φ = 〈
3∏

i=1
fi ◦ Φ(0)〉 (2.31)

fi(zi) = h−1 ◦ gi(zi). (2.32)

The action of h−1 is represented below
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P3

P2

P1

æ-plane
P3P1 P2

z-plane
Q

Figure 2.5.: Coming back to the upper half plane.

The above construction can be generalized for the n−point vertex, which becomes
ˆ

Φ ' ... ' Φ = 〈f1 ◦ Φ(0)...fn ◦ Φ(0)〉, (2.33)

where

fj(zj) = h−1 ◦ g(zj)

gj(zj) = e
2πi
n (j−1)

(
1 + izj

1 − izj

) 2
n

, 1 ≤ j ≤ n. (2.34)

Hence, for the quadratic term in (2.24) n = 2, so that

f1(z1) = h−1
(1 + iz1

1 − iz1

)
= z1 = id(z1) (2.35)

f2(z2) = h−1
(

−1 + iz2
1 − iz2

)
= − 1

z2
≡ I(z2) (2.36)

and
ˆ

Φ ' QBΦ = 〈I ◦ Φ(0)QBΦ(0)〉. (2.37)

Finally, the string field theory action in terms of the CFT correlators is given by

S = − 1
g2

0

[
1

2α′ 〈I ◦ Φ(0)QBΦ(0)〉 + 1
3〈

3∏

i=1
fi ◦ Φ(0)〉

]

. (2.38)
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3. The Tachyonic Potential
In the last chapter we have constructed an action for the string field considering the axiomatic
proposal from Witten’s generalization of the Chern-Simons theory. Besides, we have presented a
CFT method to evaluate that action so that one is able to calculate, at least in principle, the full
action for the spacetime fields.

Giving our interest in inflation, as we have already stated in the introduction, we will obtain an
action for the tachyonic field in a perturbative way, which will be explained below. Then, we will
consider its potential calculated in this framework in the last chapter as a candidate for producing
an inflationary scenario.

Our basic references are again [3, 4, 5, 6].

3.1. The gauge choice
The action for the bosonic open string theory (2.24) is gauge invariant under the transformation
(2.23). Therefore, in order to proceed with our calculations, we will be considering the so called
Feynman-Siegel gauge in the state formalism1,

b0|Φ〉 = 0, (3.1)

that is, there is no c0 mode in the string field. This is a good gauge choice because:

1. It can always be chosen, at least at the linearized level: let’s consider a state |Ψ〉 with
Ltot

o |Ψ〉 = h|Ψ〉 not obeying (3.1). We can define a new state |Ψ̃〉, which is a linearized
gauge transformation of the original state, as

|Ψ̃〉 = |Ψ〉 − 1
h

QB|Λ〉

where |Λ〉 = b0|Ψ〉. The new state satisfies the above gauge condition:

b0|Ψ̃〉 = b0|Ψ〉 − 1
h

b0QBb0|Ψ〉

= b0|Ψ〉 − 1
h

b0{QB, b0}|Ψ〉

= b0|Ψ〉 − 1
h

b0Ltot
0 |Ψ〉

= 0,

where we have used (B.26) in the third line. Note we have shown this property for h /= 0 and
that the |Ψ̃〉 and |Ψ〉 are physically equivalent because, as we have explained in the appendix
B, QB|Λ〉 is a closed state;

1 One of the motivations for this gauge choice comes from the fact that the string field theory action, when
considered this gauge, has a global Z2 symmetry, called the twist symmetry, which simplifies level calculations.
We will not need to consider this symmetry for our calculations because they are the very first approximation.
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3. The Tachyonic Potential

2. There are no residual gauge transformations preserving the gauge condition: suppose we have
two states satisfying the gauge condition, b0|Ψi〉, i = 1, 2, and they are related by a gauge
transformation: |Ψ1〉 = |Ψ2〉+QB|ξ〉. Therefore, QB|ξ〉 is a residual gauge degree of freedom.
Then,

h(QB|ξ〉) = Ltot
0 (QB|ξ〉) = {QB, b0}QB|ξ〉 = QBb0(QB|ξ〉) = 0,

where we have used the nilpotency of QB. Hence, since h /= 0 from above, we see that
QB|ξ〉 = 0.

Besides, the usefulness of the Feynman-Siegel gauge can be appreciated in the quadratic piece of
the action providing the canonical kinetic term for the states satisfying (3.1):

〈Ψ1|QB|Ψ2〉 = 〈Ψ1|QB{b0, c0}|Ψ2〉
= 〈Ψ1|QBb0c0|Ψ2〉
= 〈Ψ1|{QB, b0}c0|Ψ2〉
= 〈Ψ1|Ltot

0 c0|Ψ2〉
= 〈Ψ1|c0Ltot

0 |Ψ2〉,

where we used again (B.26) and [Ltot
0 , c0] = 0. As Ltot

0 is roughly p2 + m2, we have the familiar
kinetic terms.

3.2. Level truncation scheme
As we have defined in the last chapter, the string field has infinite spacetime fields in it. Hence, in
order to work out the action (2.24) we have to developed some kind of truncation.

Let’s expand |Φ〉 in the momentum basis using the state formalism, so

|Φ〉 =
ˆ

ddk
(

ϕ + Aµαµ
−1 + iαb−1c0 + i√

2
Bµαµ

−2 + 1√
2

Bµναµ
−1αν

−1

+β0b−2c0 + β1b−1c−1 + iκµαµ
−1b−1c0 + ...

)
c1|k〉, (3.2)

where we have not considered a gauge condition yet. The expansion coefficients might appear to
be quite arbitrary, but they are adjusted so that the spacetime field terms recover their usual form
in the end. Now, remembering from appendix A, we know that

Ltot
0 = α′p2 +

∞∑

n=1
αµ

−nαµn +
∞∑

n=−∞
n ◦ c−nbn ◦ −1, (3.3)

where ◦...◦ denotes annihilation-creation normal ordering. Then, we define the level of a state as
the sum of the level numbers n of the creation operators acting on c1|k〉, that is, the sum of the
second and third terms above. Therefore, the zero momentum tachyonic mode has level 0.

We can also define the level of each term in the action, which is naturally defined to be as the sum
of the level of each field involved. Therefore, we understand the truncation to level N as keeping
only those terms with level less than or equal to N. We shall denote “level (M, N) truncation”
when the string field has terms with l ≤ M while the action has ones with l ≤ N .

Even though the truncation is well defined, it is just an approximation to deal with an infi-
nite number of fields. There are some works trying to explore how good is this approximation
through numerical analysis, in which they consider higher levels and see if the method is numer-
ically convergent. Indeed, it seems to converge quite well, but we still lack a theoretical proof of
this.
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3.3. The potential

Another important point to be made is that when a particular level truncation is chosen the gauge
invariance breaks down because the action was invariant under the full gauge transformations, which
involves all the infinite fields. Hence, in order to proceed with calculations, we shall impose our
gauge choice before use the level truncation.

3.3. The potential
In this section we intend to obtain a formula for the tachyonic potential using the methods developed
above and results from appendix A so that we can consider it as a candidate for producing an
inflationary scenario. Since our objective here is academic, we will keep the calculations as simple
as we can using the very first approximation that the level truncation scheme provides us. As we
have talked above, the string field has an infinite number of spacetime fields which can be classified
according to their level. In order to do calculations, we use the level truncation scheme as an
approximation. For our purposes here, let’s consider the |Φ〉 up to l = 2. Besides, we work in the
Feynman-Siegel gauge, thus all the terms containing c0 are dropped. Therefore, (3.2) becomes

|Φ〉 =
ˆ

ddk
[
ϕ(k) + Aµ(k)αµ

−1 + i√
2

Bµ(k)αµ
−2 + 1√

2
Bµν(k)αµ

−1αν
−1 + β1(k)b−1c−1

]
c1|k〉. (3.4)

Using the vertex-operator map from section A.5, we can rewrite the string field in the operator
formalism as

|Φ〉 =
ˆ

ddk
[
ϕ(k)c(0) + i√

2α′
Aµ(k)c∂Xµ(0) − 1

2
√

α′
Bµ(k)c∂2Xµ(0)

− 1
2
√

2α′ Bµν(k)c∂Xµ∂Xν(0) − 1
2β1(k)∂2c(0)

]
|k〉, (3.5)

with |k〉 = eik·X(0)|0〉. As one can check, the vertex operators of the last three terms above are
not primary operators (A.31) and they can complicate a lot the CFT method. Therefore, we will
proceed with our calculations at the (1, 3) truncation level.

The quadratic term in (2.24) is 〈I ◦ Φ(0)QBΦ(0)〉, then we have to consider the conformal
transformations of the vertex operators in the string field under I = −z−1 given by (A.31), so that

1. I ◦
[
ceik·X(ε)

]
=

=
[
∂z

(
−1

z

)]−1+α′k2

z→ε
ceik·X

(
−1

ε

)

=
( 1

ε2

)−1+α′k2

ceik·X
(

−1
ε

)
; (3.6)

2. I ◦
[
c∂Xµeik·X(ε)

]
=

=
[
∂z

(
−1

z

)]−1+α′k2+1

z→ε
c∂Xµeik·X

(
−1

ε

)

=
( 1

ε2

)α′k2

c∂Xµeik·X
(

−1
ε

)
. (3.7)
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3. The Tachyonic Potential

Note that we have to take the limit ε → 0 in the end. Then, using (B.24), the quadratic term
becomes

〈I ◦ Φ(0)QBΦ(0)〉 =
ˆ

ddkddq

〈[( 1
ε2

)−1+α′k2

ceik·X
(

−1
ε

)
ϕ(k)+

i√
2α′

Aµ(k)
( 1

ε2

)α′k2

c∂Xµeik·X
(

−1
ε

)]
˛

dz

2πi
[cT m(z) + bc∂c(z)]

×
[
ϕ(q)ceiq·X(ε) + i√

2α′
Aν(q)c∂Xνeiq·X(ε)

]〉

ε→0

=
ˆ

ddkddq

˛

dz

2πi

〈( 1
ε2

)−1+α′k2

ϕ(k)
[
ϕ(q)ceik·X

(
−1

ε

)
cT m(z)ceiq·X(ε)

+ i√
2α′

Aν(q)ceik·X
(

−1
ε

)
cT m(z)c∂Xνeiq·X(ε) + ϕ(q)ceik·X

(
−1

ε

)
bc∂c(z)ceiq·X(ε)

+ i√
2α′

Aν(q)ceik·X
(

−1
ε

)
bc∂c(z)c∂Xνeiq·X(ε)

]
+ i√

2α′
Aµ(k)

( 1
ε2

)α′k2

×
[
c∂Xµeik·X

(
−1

ε

)
cT m(z)ceiq·X(ε)ϕ(q) + i√

2α′
Aν(q)c∂Xµeik·X

(
−1

ε

)
cT mc∂Xνeiq·X(ε)

+ϕ(q)c∂Xµeik·X
(

−1
ε

)
bc∂c(z)ceiq·X(ε) + i√

2α′
Aν(q)c∂Xµeik·X

(
−1

ε

)
bc∂c(z)c∂Xνeiq·X(ε)

]〉

ε→0
.

We have eight different terms above, but we will keep our attention to the ones involving only the
tachyonic field2. Therefore, we are left with

〈I ◦ Φ(0)QBΦ(0)〉ϕ =
ˆ

ddkddq

˛

dz

2πi

( 1
ε2

)−1+α′k2

ϕ(k)ϕ(q)
{〈

ceik·X
(

−1
ε

)
cT m(z)ceiq·X(ε)

〉

+
〈

ceik·X
(

−1
ε

)
bc∂c(z)ceiq·X(ε)

〉}
. (3.8)

The detailed calculation is presented in appendix C. The final result is

〈I ◦ Φ(0)QBΦ(0)〉ϕ = (2π)dα′
ˆ

ddk
(

k2 − 1
α′

)
ϕ(−k)ϕ(k). (3.9)

Considering the Fourier-transformation to the position space,

ϕ(k) =
ˆ

ddk

(2π)d
ϕ(x)e−ik·x, (3.10)

the quadratic part of the tachyonic field becomes

S(2)
ϕ = 1

g2
0

ˆ

ddx
(

−1
2∂µϕ∂µϕ + 1

2α′ ϕ
2
)

. (3.11)

2 Some of the other terms give no contribution at all or are responsible for the kinetic term of the vetor field.
The curious reader can check the other terms in [4], page 30.
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3.3. The potential

Now, let’s calculate the cubic term. We will focus again on the terms of our interest, that is,
involving only the scalar field. Even though just the main results are expressed below, we provide
details in appendix C. From (2.31), we consider

fi ◦ Φ(0) =
ˆ

ddk
[
ϕ(k)fi ◦ (ceik·X)(0) + i√

2α′
Aµ(k)fi ◦ (c∂Xµeik·X)(0)

]

=
ˆ

ddk
{[

f ′
i(0)

]α′k2−1 ϕ(k)ceik·X(fi(0))

+ i√
2α′

[
f ′

i(0)
]α′k2

Aµ(k)c∂Xµeik·X(f ′(0))
}

.

Then, we need to calculate the f ′
is and their first derivatives. They are given by

w1 = −
√

3
w2 = 0
w3 =

√
3

w′
1 = 8

3
w′

2 = 2
3

w′
3 = 8

3 ,

where wi ≡ fi(0). The 3−point function has only one term involving only the tachyonic field, which
is

〈
3∏

i=1
fi ◦ Φ(0)〉 =

ˆ

ddk

ˆ

dpk

ˆ

ddqw′α′k2−1
1 w′α′p2−1

2 w′α′q2−1
3 ϕ(k)ϕ(p)ϕ(q) ×

〈
ceik·X(w1)ceip·X(w2)ceiq·X(w3)

〉

= (2π)d
ˆ

ddk

ˆ

ddp

ˆ

ddqw′α′k2−1
1 w′α′p2−1

2 w′α′q2−1
3 ϕ(k)ϕ(p)ϕ(q) ×

|w12|2α′k·p+1|w23|2α′p·q+1|w13|2α′k·q+1

= 6
√

333

27 (2π)d
ˆ

ddk

ˆ

dpk

ˆ

ddqδd(k + p + q)ϕ(k)ϕ(p)ϕ(q)F (k, p, q),(3.12)

where
F (k, p, q) = exp

[
α′ ln

( 4
3
√

3

)
(k2 + p2 + q2)

]
.

Thus, the ϕ3 term in the action is given by

S(3)
ϕ = − 1

3g2
0

(
3
√

3
4

)3 ˆ

ddxϕ̃(x)3, (3.13)

where we have used the Fourier-transformation for the position space (3.10) and defined

ϕ̃(x) = exp
(

−α′ ln 4
3
√

3
∂µ∂µ

)
ϕ(x). (3.14)

Therefore, the tachyonic action3 is given by

Sϕ = 1
g2

0

ˆ

ddx



−1
2∂µϕ∂µϕ + 1

2α′ ϕ
2 − 1

3

(
3
√

3
4

)3
ϕ̃3



 . (3.15)

3 The curious reader can check the full action at the level (1,3) truncated in [4], page 34.
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3. The Tachyonic Potential

There are higher-order calculations in the literature, up to level (10, 20) [36]. In order to see
how good is the approximations we have considered above, let’s write the effective potential for the
(2, 4)−level [4]:

V (2,4) = 6π2ϕ2

256(288 + 581
√

3ϕ)2(432 + 786
√

3ϕ + 97ϕ2)2 ×

×(−660451885056 − 4510794645504
√

3ϕ

−32068942626816ϕ2 − 25455338339328
√

3ϕ3 + 27487773823968ϕ4

+54206857131636
√

3ϕ5 + 24845285906980ϕ6 + 764722504035
√

3ϕ7). (3.16)

The graphic of the potential in the level we calculated, which was (0, 0) after all the approximations,
and the level (2, 4) is [4]

Figure 3.1.: The dashed line is the potential calculated here while the solid line is the potential for
the (2, 4) level.

so that we did not lose too much information after all.
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4. Inflation: motivations, qualitative description
and old approaches

Before we start to study inflation and its consequences, it is important to contextualize the sta-
tus quo of cosmology by the end of 70′s, focusing in its properties and issues that preceded and
motivated the inflationary scenario proposal. Some points of the discussion will be limited to qual-
itative aspects, hence the reader that is not familiar with General Relativity or the basic aspects
of Cosmology should first address the appendix D.

4.1. Historical Context

The cosmological standard model before the inflationary proposal by [15, 16, 17, 23] had some
arguable problems related with initial-conditions. After the observation of the CMB (Comic Mi-
crowave Background) radiation, which indicated that the universe was extremely homogeneous and
isotropic at recombination1, the best model at time to describe the primordial universe until the
CMB emission was provided by the expanding radiation-dominated FRW metric2.

On the other hand, we know that inhomogeneities are unstable gravitationally (if there is an
accumulation of matter-energy at some point, this should grow with time because gravity is at-
tractive). As a result, if the CMB pointed out a universe highly homogenous at the last-scattering
surface, it was expected that the inhomogeneities were even smaller in the primordial universe.
However, Rindler [18] had already noticed that an expanding radiation-dominated universe should
have a particle horizon and, consequently, it would be composed of a lot of causally disconnected
regions. Therefore, it is odd to imagine that these regions should present so similar physical proper-
ties without any dynamical reason. This is essentially the recipe for the initial-condition problems
we will talk quantitatively below.

4.2. A simple analogy

It is generally better when we can have some intuition about a complicated problem using ordinary
physics. Hence, let’s consider the following situation: suppose we receive a photograph of a very
soft material, showing the shape in the Figure 4.1.

1 Footnote on page 67.
2 Table D.1.
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4. Inflation: motivations, qualitative description and old approaches

Figure 4.1.: Note that the shape presented is very flat and regular, with only some small "inhomo-
geneities" in its surface.

Knowing that it could be anything in the photo (it is a soft object after all), we could ask
ourselves some natural questions: why such a regular object? Why is it so flat? Then, one may
consider two different positions: the object was always just as above and that is it, or something
might have happened to make the object as in the figure. In this very simple case, one who has
chosen the second alternative might wonder that a racket have hit the object, Figure 4.2, letting it
as above.

(a) (b) (c)

Figure 4.2.: (a) Very irregular object; (b) Ping-Pong racket hitting the material; (c) The material
is deformed in a very regular form.

Well, what any of this has anything to do with the universe? Actually, it is pretty much the same
physical intuition. Take the very irregular soft material as some initial state of the universe at a
very early age, which was inhomogeneous. The photograph is representing the CMB, which tells
us the universe was extremely homogeneous and isotropic, i.e., the analogous to the object soon
after being hit. Besides, the questions posed above can be translated as: why the universe was
very homogeneous and isotropic? Why was it so flat? And the answer for both situations could
be a very short period of acceleration, that is, a racket hit causing a stretching acceleration on the
object and a very short period of accelerated expansion of the universe, also known as inflation.

Therefore, inflation will be understood as a stage of accelerated expansion of the universe in the
very early ages. It will be argued quantitatively and qualitatively that it can address some initial-
condition problems once one has assumed that Quantum Gravity is not relevant3 after tP l ∼ 10−43s
and that inhomogeneities are not dissolved by expansion.

Before we continue, one should note that the problem to explain dynamically the initial-conditions
of the universe, its kinematics, is essentially a philosophical one. When some of the others areas are

3 So that it makes sense to use General Relativity and all its consequences when applied for this early age of the
universe.
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4.3. The initial-condition issues

contemplated, coming from classical mechanics to quantum physics, we see that the dynamics is
fundamentally concerned in predicting the future evolution of a system given the initial-conditions.
Hence, it is not clear if cosmology should differ from this paradigm. On the other hand, once we
have a dynamical theory in which these conditions are naturally produced, we shall explore it and
try to infer some other results in order to corroborate this scenario.

4.3. The initial-condition issues
In this section, we will follow some calculations from [10] with minor changes and present some
insights coming from different references which are cited in the text.

4.3.1. Homogeneity, isotropy (horizon) problem
The homogeneous and isotropic wedge of the universe at the last-scattering surface is at least as
large as the horizon scale: ctrec ∼ 1021m (it is bigger if taking into account that it was expanding),
where trec is 380, 000 years.

Initially, this piece of the universe was much smaller, by a factor4 of ai
arec

. Hence, the size of the
isotropic homogeneous region from which the universe at the last-scattering originated at t = ti

was of order
li ∼ ctrec

ai

arec
. (4.1)

On the other hand, the causal region at that time was of order lc ∼ cti (in fact, it would be smaller
if we considered the expansion). Comparing both regions,

li
lc

∼ trec

ti

ai

arec
. (4.2)

In order to estimate this ratio, we assume that the primordial radiation dominates at ti ∼ 102 × tP l

and use that a(t) ∝ t
1
2 from Table D.1. Hence,

li
lc

∼ 10−1
√

trec

tP l
∼ 10−1

√
1013

10−43 ∼ 1027. (4.3)

Thus, at ti the size of the homogeneous and isotropic universe exceeded the causality scale by
27 orders of magnitude! This means that in 1081 (volume ∼ l3) causally disconnected regions
the energy density was distributed with a fractional variation not exceeding δρ/ρ ∼ 10−4. This
unnatural fine-tunning energy distribution cannot be explained by causal physical processes given
that no signals propagate faster than light.

Note also that if a ∼ tn, then a
t ∼ ȧ and (4.2) becomes

li
lc

∼ ȧi

ȧrec
, (4.4)

which implies that the homogeneity scale was always larger than the causality one if gravity was
always attractive (hence decelerating the expansion). That’s why this problem is also called horizon
problem.

An important point to be made that was emphasized by Guth [15] is that the horizon problem
could be obviated by consideration of the full quantum gravitational theory if it has an unexpected
behavior in the very early universe, which could compensate this huge scale difference between the
causal connected regions and their homogeneity.

4 Here, we denote the initial time using the index "i" and it refers to a point comfortably below the Planck time.
Further comments about it will be given in Section 4.5.1.
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4. Inflation: motivations, qualitative description and old approaches

4.3.2. Flatness problem
One of the Friedmann equations from General Relativity is given by (D.32)

H2 + k

a2 = 8πρ

3 , (4.5)

where H(t) = ȧ(t)
a(t) is the Hubble parameter, k is associated with the spatial curvature and ρ(t) is

the energy density. We define the cosmological parameter, Ω(t), as

Ω(t) = ρ(t)
ρcr(t) , (4.6)

where ρcr(t) = 3H2/8π is the critical energy (it is often used to refer to the current value of the
energy density). Then (4.5) can be rewritten as

Ω(t) − 1 = k

(Ha)2 .

Thus,
Ωi − 1 = (Ωrec − 1)(Ha)2

rec

(Ha)2
i

= (Ωrec − 1)
(

ȧrec

ȧi

)2
≤ 10−54, (4.7)

where we have used (4.4) and Ωrec " 15. Hence, the above relation tells us that the cosmological
parameter must be initially extremely close to unity, i.e., we had a flat universe by that time.
That’s why we call this as the flatness problem. It was known at least since the end of 70′s [19].

4.3.3. Initial perturbation problem
One might wonder how the primordial inhomogeneities that ended up forming the large structures
of the universe were originated. An answer to this question is also expected and it turns out
that inflation has something to say about it. In fact, inflation might not only be responsible for
the large-scale homogeneity of the universe, but also for the small fluctuations in the primordial
universe that were the seeds for the formation of the large-scale structures.

A qualitative understanding [12] is to imagine that the microscopic fluctuations in the energy
density were created in the very early universe during a period of inflation. Then, they were
stretched by the inflationary expansion to macroscopic scales, larger than the physical horizon
at that time, leaving behind a perfectly homogeneous universe. These perturbations remained
causally unaccessible until they re-enter the horizon at a later time during the FRW non-accelerated
expansion, when the universe was about 100, 000 years old, before recombination. Inside the horizon
again, these perturbations could create the inhomogeneities we observe in the CMB spectrum that
were the key for the large-structure formation.

This is all we will talk about cosmological perturbations. The interested reader can check [12, 10]
for more informations.

4.4. Inflation: qualitative aspects
In the last section we saw that the initial-condition problems are related to the fact that ȧi/ȧrec 3 1.
This condition can be avoided only if during some period of expansion gravity acted as a repulsive

5 In order to check this, we can use (4.7) with ti → t0 = today and Ω0 = −0.001
(

+0, 0062
−0, 0065

)
from [14]. The

value of Ω0 comes from a combination of data from several sources as can be checked in the reference.
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4.5. The old and new scenarios

force, thus accelerating the expansion. In this situation, we can have ȧi/ȧrec < 1 and it becomes
possible to have a large homogeneous universe coming from a single causally connected domain.
This is a necessary but not suficient condition. Despite of general features of inflation that can be
investigated, the specific model that provides this scenario will also play an important role, as we
will be able to see studying the old, new and chaotic inflationary scenarios in the next sections and
chapter.

Considering the above remarks, inflation is a stage of accelerated expansion of the universe when
gravity acts as a repulsive force. The general picture of universe evolution in its early ages should
be as the Figure 4.3,

QG?

a

ttf

inflation decelerated Friedmann expansion

Figure 4.3.: Representation of what the expansion of the universe would look like in the first ages,
where tf ∼ 10−34 − 10−36s. QG stands for Quantum Gravity.

where tf comes essentially from requiring the generation of primordial fluctuations. We also note
that the curve is smooth at the connection between the end of inflation and the Friedmann expan-
sion. This is important to guarantee that the homogeneity of the universe is not spoiled.

The idea of an accelerated expansion phase in the beginning of the universe is, in fact, better
than stated above because it is even possible to relax the restriction of homogeneity on the initial
conditions, i.e., if starting with a strongly inhomogeneous causal domain, inflation can produce a
large homogeneous universe (intuitively, it is possible to think of a very irregular rubber material
being suddenly stretched). A quantitative argument is given at [10], page 232. This is one of the
aspects regarding chaotic inflation, as we will see in chapter 5.

4.5. The old and new scenarios
Let’s now consider the initial proposals of an inflationary universe, first Guth’s and Sato’s [15, 23],
known as the old inflation, and then Linde’s [16] and Steinhardt and Albrecht’s [17], called new
inflation.

4.5.1. The old inflation
In order to be pragmatic, we will follow the general proposal of Guth, with some comments coming
from Sato’s work.
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4. Inflation: motivations, qualitative description and old approaches

Guth started recognizing that there is a singularity in the FRW metric at t = 0, what is called
until today the Big Bang, so that the initial conditions could not be defined there. Besides, even
after the singularity, we are in the Planck regime. Then, quantum gravity effects are expected to
play a role and the Einstein’s equation is meaningless at this point. Therefore, he established that
within the scope of knowledge of the epoch, it only made sense to consider the FRW expansion at
some energy scale comfortably below EP . He proposed 1017 GeV as the limit because there was
a lot of interest in Grand Unification Theories (GUTs) by that time, which were expected to be
relevant in these energies scales. Thus, below this limit one should be able to describe the universe
as a set of initial conditions and with the subsequent evolution given by the equations of motion
coming from General Relativity.

Considering a thermodynamical approach, he noticed that the horizon and flatness problems
were an indication that the expansion of the universe was not adiabatically, i.e., the total entropy
of the universe should not be a constant. Actually, there should be a huge increase of entropy at
some moment of the early universe to prevent those problems. In order to create that moment, he
proposed what he called an inflationary universe, described below.

Suppose that the equation of state for matter exhibits a phase transition at some critical tem-
perature, Tc. As a result, when the universe reaches the temperature Tc (remember it is cooling
due to the expansion), bubbles of the low-temperature phase should start to nucleate and grow.
A phase-transition should happen here. However, if the nucleation rate for this phase transition is
low, the universe will continue to cool as it expands, supercooling in the high-temperature phase6.
Suppose that this supercooling continues until some temperature Ts, where Ts 4 Tc. When the
phase transition finally takes place, then the latent heat is released. Because the latent heat is
characteristic of the energy scale of Tc, the universe is reheated to some temperature Tγ ∼ Tc.
Remembering from appendix that

a(t) ∝ T −1,

the horizon and flatness problems are solved if Tγ/Ts ∼ 1027.
Even though the huge expansion was found, the dynamics remains to be determined. In other

words, what is the expression for a(t)? The key point to answer this question is to notice that while
the universe is supercooled in the high-temperature phase, its energy density must be modified.
Until the system reaches the phase-transition, it is cooling not toward the true vacuum, but rather
toward some metastable false vacuum with an energy density ρ0 which is necessarily higher than
that of the true vacuum. Hence, we end up with

ρ = ρ0 + ρmatter + ρradiation.

But, as it was deduced in the appendix, ρmatter and ρradiation goes with a−3(t) and a−4(t), respec-
tively. So, as soon as the temperature drops considerable, their contribution are negligible. Finally,
using (D.32), we can obtain a(t) :

a(t) ∝ eβt,

where β =
√

8πρ0
3 . Obviously, this behaviour is very different from what is expected from matter-

radiation content, as it was showed in Table D.1. Actually, it reproduces the behavior of a cosmo-
logical constant. This is essentially the physics contained in the old inflation.

6 Let’s talk about this phenomenum in another context. If we have liquid water and start to drop the temperature
passing the melting point, the water starts to freeze through a nucleation process. This is a phase-transition and
it happens if there are others substances in the liquid water, possibiliting the water molecules to nucleate. These
nucleations are the equivalent to the bubbles we are talking about. They are "transforming" the liquid- to the
solid-phase. However, this nucleation process can be very slow if the water is pure. In fact, it is possible to drop the
temperature until −48.3o C without freezing the water. Hence, if the nucleation process is very slow, we can keep
the high-temperature phase even after crossing the critical temperature that characterizes the phase-transition.
This is supercooling.
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There are some interesting remarks already pointed by Guth in his paper:

1. We cannot use necessarily the FRW metric from the beginning, since it already assumes ho-
mogeneity and isotropy. The solution proposed was that even in the inhomogeneous universe,
local homogeneous regions could appear due to thermalization of the particles distribution
(and by local we mean smaller than the horizon length). Thus, assuming at least some region
of the universe with a temperature higher than Tc, we should expect that, by the time the
temperature in one of these regions falls to Tc, it will be locally homogeneous, isotropic and
in thermal equilibrium. It will then be possible to describe this local region of the universe
by a FRW metric, which will be accurate at small distance scales compared to the horizon
scale. When the temperature falls off Tc, the inflationary scenario will take place. The result
will be a huge isotropic and homogeneous regions. Depending on the final temperature after
the latent heat is released, we can have a region bigger than our observed universe;

2. This scenario has some problems. The most relevant for us here is to notice that the model
does not have an smooth end after the exponential expansion, which spoils the homogeneity
of the universe. This happens because the bubbles of the low-temperature phase carry all
this energy in their walls, as already pointed out in [28]. Hence, the bubbles walls have to
collide so that this energy can be thermalized. However, the walls move almost at the speed
of light [28] and when the collisions happen the bubbles are too large, generating a highly
inhomogeneous and anisotropic universe.

4.5.2. The new inflation
Only one year after Guth’s proposal, Linde and Albrecht with Steinhardt [16, 17] came up with
an inflationary scenario in which the problems in the old inflation were essentially solved. They
considered the phase-transition with the Coleman-Weinberg mechanism of symmetry breaking [20].
Let’s explore the features of this model.

As we have seen above, during the exponential expansion phase, the energy density was given
by ρ0, implying that Ḣ0 = 0. Hence, through the Friedmann equations, it is easy to find that
p0 = −ρ0. Now, if we consider that this vacuum energy density can be associated with a perfect
fluid, the energy-momentum tensor is given by

T vac
µν = ρ0gµν . (4.8)

If we suppose that the phase-transition is due to the Coleman-Weinberg mechanism of symmetry
breaking, which is generated by a scalar field7 ϕ, then we can use our results from appendix D and
rewrite (4.8) as

T vac
µν = V (0)gµν , (4.9)

where we have considered the potential at ϕ = 0 as the metastable vacuum. It is essentially the
same phenomenon of supercooling above. However, the novelty here is to notice that [33] inflation
can occur not only in this supercooled state, but also while the field is growing towards its true
vacuum slowly enough, much larger than the cosmological time scale giving by H−1. This condition

7 It is interesting to note that at that time, the scalar field was thought to be the Higgs. Today, we know that
the scalar field known as inflaton could not have been the Higgs if one consider that the potential coupling for
the Higgs is constant. In fact, when the Higgs particle is considered as a candidate for the inflaton, the slow-roll
approximation, as we will study below, implies that the Higgs potential is super-Planckian in the beginning of
inflation. This happens because the potential coupling is not small enough. However, when we consider the
renormalization and the running of this coupling, it might be possible that it gets lower enough for the scale in
which inflation starts so that the Higgs potential could be responsible for inflation.
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4. Inflation: motivations, qualitative description and old approaches

can be realized if the potential of the field is sufficiently flat around ϕ = 0, letting the universe
inflates enough so that the field bubbles grow much more than the horizon scale, not damaging the
homogeneity (as it happens in the old scenario). After reaching the true vacuum, the field executes
damped oscilattions around it creating elementary particles.

The new scenario has problems also. There is a fine-tunning problem related to the period of
time the field spends in the false vacuum to lead to sufficient amount of inflation. Besides, the
justification for the initial conditions of the scalar field was the assumption that the universe was
in a state of thermal equilibrium from its beginning, which is very unlikely.

The difference between the old and new scenarios can be essentially captured in the figure 4.4.

V

u nt nneli g

Old inflation V

quantum fluctuations

New inflation

Figure 4.4.: In the old inflation scenario, the phase-transition begins with the formation of bubbles
of the field ϕ, which is a tunneling process. So, it is intuitively clear why there is
not a smooth transition from the inflationary phase to the FRW stage. On the other
hand, in the new inflation, because the potential is very flat and has a maximum at
ϕ = 0, the scalar field escapes from the maximum due to quantum fluctuations, rolling
towards the global minimum [10].

.
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5. The chaotic inflation
In this chapter we will study a class of inflationary models called chaotic inflation considering the
slow-roll limit. They were introduced by Linde [27] and are called chaotic due to the possibility
of having almost arbitrary initial conditions for the scalar field. Then, the tachyonic potential
calculated in chapter 3 will be considered as one of these models and we will analyze its classical
consequences.

Even though the first article by Linde is pretty clear, we will take a modern approach and the
main references to be considered are [10, 12, 21, 22].

5.1. Why chaotic?
Before start to study the slow-roll approximation and some examples, let’s understand why the
term chaotic. Briefly, one can show that [33] the unique exigency over the initial condition of
the scalar field is that it must be larger than the Planckian value (that is why these models are
called large field models, while the others are called small field ones). Once this is guaranteed, it
is possible to drop the homogeneity on the initial conditions of the scalar field [10] (as it was the
case for the old and new scenarios when thermal equilibrium of the universe in the pre-inflationary
regime was assumed).

5.2. Slow-roll limit
As we have seen in the last chapter, a de Sitter evolution of the universe gives an approximately good
description of how inflation solves the horizon and flatness problems of the standard cosmological
model. On the other hand, we have not given a precise formulation of how this scenario takes place
quantitatively yet. Then, let us start considering the action (D.18) for a scalar field minimally
coupled to gravity1

Sϕ =
ˆ

d4x
√

−gLϕ, (5.1)

with
Lϕ = −1

2gµν∂µϕ∂νϕ − V (ϕ). (5.2)

Considering flat spacetime in comoving coordinates with metric given by g00 = −1, gij = a2(t)δij ,
goi = 0, the equation of motion (D.19) can be written as

ϕ̈ − 1
a2 ∇2ϕ + 3Hϕ̇ + dV

dϕ
= 0, (5.3)

where an overdot indicates a derivative with respect to the time t and H ≡ ȧ/a is the Hubble
parameter2.

1 There is no direct coupling between the field and the metric, which would be an interaction-like term that
couples, for instance, a function of the Ricci scalar and the scalar field. In practice, we do not consider these kind
of models because they can be reduced to the minimally coupled one with a field redefinition in general [12].

2 The reader not familiar with the basics of cosmology should read the appendix D.
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Instead of working with the above equation of motion for the scalar field, we will suppress the
second term, reducing the above equation to

ϕ̈ + 3Hϕ̇ + dV

dϕ
= 0. (5.4)

That term was suppressed because after the expansion has started, it becomes negligible very
rapidly. One could argued that our approach is assuming homogeneity a priori, otherwise we could
not have used the FRW metric. In fact, this is true. However, since the scalar field has initial
conditions very chaotic, there is a probability that a very small region is approximately homoge-
neous, permitting the FRW metric. Then, once this region starts to expand, the inhomogeneities
are kicked out and the approximation only gets better (see page 231, [10]).

In the appendix D we have already calculated the energy-momentum tensor for the scalar field
and rewritten it as a perfect fluid. Then, consider the De Sitter limit, p " −ρ, which generates a
quasi-exponential expansion as explicit at Table D.1. It is the same as to consider the limit

V (ϕ) 3 ϕ̇2, (5.5)

coming from (D.24) and (D.25). This is known as slow-roll limit.
One could argue that this limit, which provides inflation to happen, is very restricted and not

so common as an initial condition. However, in order to see this is reasonable, let us assume the
kinetic energy is much bigger than the potential energy. Then, the resultant equation from the
combination of the Friedmann equations,

ϕ̈ + ϕ̇
√

24π(ϕ̇2/2 + V )1/2 + dV

dϕ
= 0

ϕ̇
dϕ̇

dϕ
+ ϕ̇

√
24π(ϕ̇2/2 + V )1/2 + dV

dϕ
= 0, (5.6)

can be approximated as
dϕ̇

dϕ
6

√
12πϕ̇. (5.7)

The solution for this is
ϕ̇ = C exp(

√
12πϕ). (5.8)

Hence, the derivative of the scalar field decays exponentially faster than the scalar field itself. That
means that the friction term damps the initial velocities and enforces a slow-roll regime in which the
acceleration can be neglected compared to the friction term. This also can be seen as an argument
about the chaotic status of this scenario, since it does not matter how is the initial time derivative
of the field, it decays much faster than the field itself so that the slow-roll regime will take place
sooner or later.

Let us define the e-folds number, N, given by

a(t) ∝ exp(
ˆ

Hdt) ≡ e−N (5.9)

dN ≡ −Hdt. (5.10)

Note that N is large in the past and it decreases as the scalar factor grows.
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5.3. Slow-roll parameters

5.3. Slow-roll parameters
The Friedmann equations (D.32) and (D.31) for the scalar field are given by

H2 = 8π

3

[1
2 ϕ̇2 + V (ϕ)

]
(5.11)

(
ä

a

)
= −8π

3 (ϕ̇2 − V ). (5.12)

The second equation can be rewritten as
(

ä

a

)
= H2(1 − ε), (5.13)

where we have defined the parameter ε as

ε ≡ 3
2

(
p

ρ
+ 1

)
= 4π

(
ϕ̇

H

)2
. (5.14)

The usefulness of defining this parameter is that it tells us that the universe is under accelerated
expansion if ε < 1. In the de Sitter limit, ε → 0, (5.11) becomes

H2 6 8π

3 V (ϕ). (5.15)

If we also consider that the friction term in the equation of motion for the scalar field dominates3,
that is,

|ϕ̈| 4 3Hϕ̇, (5.16)
we end up with

3Hϕ̇ + dV

dϕ
6 0. (5.17)

The equations (5.15) and (5.17) are referred to as the slow-roll approximation. Note that the
dominance of the friction term can be expressed by another parameter, α, defined as

α ≡ − ϕ̈

Hϕ̇
= ε + 1

2ε

dε

dN
. (5.18)

This is the second slow roll parameter4. The slow roll approximation is the same as to consider
ε, |α| 4 1. It is worth noting that inflation happens independent of the α value. Thus, we could
associated ε directly with if inflation is or not happening, while α define for us a whole class of
potentials with some general characteristics (in fact, the smallness of the α parameter helps to
ensure that inflation will occur by a sufficient period).

The slow-roll parameters written in the slow-roll approximation, that is, using (5.15) and (5.17),
become

ε 6 1
16π

[
V ′(ϕ)
V (ϕ)

]2

α 6 1
8π

{
V ′′(ϕ)
V (ϕ) − 1

2

[
V ′(ϕ)
V (ϕ)

]2}

. (5.19)

3 Otherwise, ϕ̇ starts growing too fast and the kinetic energy becomes bigger than the potential energy too early.
Accelerated expansion will only be sustained for a sufficiently long period of time if the second time derivative is
small enough.

4 In the literature, this parameter is usually referred as η. However, in order to denote the proper time as τ in
the appendix D, we have already used η to denote the conformal time. That is the reason why we are considering
an unusual notation.
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5. The chaotic inflation

Then, in order to have the parameters small, we see that the potential has to be flat V ′(ϕ) 4 V (ϕ)
and its curvature, V ′′(ϕ), small. The e-fold number in this approximation becomes

N = −
ˆ

Hdt (5.20)

6 8π

ˆ ϕ

ϕe

V (ϕ)
V ′(ϕ)dϕ = 2

√
π

ˆ ϕ

ϕe

dϕ√
ε
, (5.21)

where ϕe denotes the end of inflation. As we have already said, N decreases as time goes on and
represents the number of e-folds the expansion takes place between ϕ and ϕe.

A natural question is how long inflation must go so that it solves the horizon and flatness
problems. As we have seen in the last chapter, if the scale factor is ai at the beginning of inflation,
then the scale factor at the end must be approximately ae ∼ 1027ai. Hence, the scale factor a
increases by a factor of eN , where

N ∼ 62, (5.22)
given our calculations5.

After the end of inflation the inflaton begins to oscillate around its true vacuum and the universe
enters the stage of deceleration. In order to determine the effective equation of state for the scalar
field, we go back to (5.4) suppressing the expansion term (which implies that the cosmological time
is much bigger than the period of oscillation) and rewrite it as

d

dt
(ϕϕ̇) − ϕ̇2 + ϕ

dV

dϕ
6 0. (5.23)

Averaging over a period the first term drops away and we get 〈ϕ̇2〉 6 〈ϕdV
dϕ 〉. Hence, the effective

equation of state is

ω = p

ρ
6

〈ϕdV
dϕ 〉 − 〈2V 〉

〈ϕdV
dϕ 〉 + 〈2V 〉

, (5.24)

which simplifies to ω 6 (n − 2)/(n + 2) for an n−monomial potential. Note that for n = 2 and
n = 4, the oscillating field reproduces matter- or radiation-dominance, respectively.

In order to clarify the above considerations and calculations, let us consider some simple examples
below.

5.3.1. Examples
i)V(ϕ) = λϕ4

The second slow-roll equation (5.17) implies

ϕ̇ = −V ′(ϕ)
3H

= −ϕ

√
2

3π
. (5.25)

Then, we have ϕ̇ ∝ ϕ while V (ϕ) ∝ ϕ4. Therefore, the slow-roll limit is satisfied as the modulus
of the field grows up, even though the potential itself not being properly flat graphically. The ε
parameter is given by

ε 6 1
16π

[
V ′(ϕ)
V (ϕ)

]2
= 1

πϕ2 , (5.26)

5 Even though we will not study the primordial density fluctuations here, they can constrain N at the lower
bound together with the so observed baryon asymmetry of the universe and the hot Big Bang scenario. In 2006
yet, the theoretical incertanties in the lower bound of the e-fold number was[34] Nmin $ [46, 60].
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5.3. Slow-roll parameters

so that ε(ϕe) = 1 implies

ϕe = ± 1√
π

. (5.27)

Hence, from the (5.13) we see that for ϕ >ϕ e the universe is inflating, while for ϕ <ϕ e it enters
in a decelerated phase.

The e-fold number is given by
N = πϕ2 − 1. (5.28)

Thus, in order to have N ∼ 62, the field value with which inflation starts is

ϕ62 ∼ ±4.48, (5.29)

remembering we are working in Planck units. In fact, ϕ62 ∼ 4.48mP l, where mP l is the Planck
mass. Note that this simple potential provides an inflationary scenario, but the scalar field is
assuming a huge value in the beginning of inflation in order to provide sufficient e-folds and one
could argue that quantum gravity should take a role there. On the other hand, we see that the
coupling constant of the potential has not appeared anywhere. Therefore, for a very tiny value6

of λ, the energy density in the field, which is the physically important quantity, ends up being
much less than the Planckian energy density. The effective equation of state tells us this potential
imitates a radiation-dominant universe.

Zoom in

Figure 5.1.: We have plotted the potential in the blue full line; the orange dashed curve present
V (ϕ)−ϕ̇2, so that the region in which this curve is above the ϕ−axis is where the poten-
tial starts dominates over the kinetic energy, that is, ϕ < −0.460659 or ϕ > 0.460659;
the blue points indicate the field values for which ε = 1, representing essentially the end
of inflationary solution. In this plot, we are considering λ = 1, because the coupling
value for a monomial potential does not affect the general behavior we are analysing.

6 According to [25], λ $ 10−13. This constraint comes from the fact that the couplings are important for
the amplitudes of the density fluctuations, something we have observational access. Unfortunately, we are not
considering here the quantum aspects of inflation, that is why we only provide the reference.
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5. The chaotic inflation

ii) V(φ) = m2ϕ2

Following the detailed example above, we have

ϕ̇ = −m

√
1

12π
. (5.30)

Then, we have ϕ̇ = const while V (ϕ) ∝ ϕ2. Therefore, the slow-roll limit is satisfied for all the
field values in which V (ϕ) 3 ϕ̇2. The ε parameter is given by

ε = 1
4πϕ2 , (5.31)

so that ε(ϕe) = 1 implies

ϕe = ± 1
2√

π
. (5.32)

The e-fold number is given by
N = 2πϕ2 − 1. (5.33)

Thus, in order to have N ∼ 62, we field value with which inflation starts is

ϕ62 ∼ ±3.06603. (5.34)

We have ωeff = 0, imitating matter-dominance. As in the first example, the coupling is constrained
by the amplitude of density perturbations. Data from COBE satellite [26] gives m 6 10−6mpl.
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Figure 5.2.: For V (ϕ) > ϕ̇2, ϕ > |0.230329|; ϕε=1 = ±0.282095.

iii) Higgs-like potential: V = V0

[
1 −

(
ϕ
µ

)2]2

The algorithm is the same as the above examples. The graphic alone can provide the general
picture:
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5.4. General picture in conformal diagrams
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Figure 5.3.: For this plot, we have considered µ = 1 for convenience and omitted V0. The range of
dominance of the potential over the kinetic energy is: ϕ > |1.25651| or ϕ < |0.795854|;
the ε−parameter is ε = 1

πµ4
ϕ2

[1−(ϕ/µ)2]2 , so that ϕε=1 = ±1.32132, ±0.756932 for µ = 1.
In order to calculate the ϕ62, we can consider, for instance, ϕε = 0.756932, so that
N = [πϕ2 − 2π ln ϕ]

∣∣ϕ62
ϕε

→ ϕ62 = 0.0000514141, in Planck units as always.

iv) Natural inflation: V(φ) = m4
[
cos

(
φ
f

)
+ 1

]
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Figure 5.4.: From [22], we have f ≈ 1019GeV and m ≈ 1016GeV , so that in Planck units we
consider f = 50

60 and m = 1
1220 . The ε−parameter is ε = 9 tan(1+ 6

5 ϕ)
100π , so that ϕε=1 =

−2.00261, 0.33594. In order to calculate the ϕ62, we consider ϕε = 0.33594, so that
N = −50

9 π ln
[
sin

(
1 + 6

5ϕ
)]∣∣∣

ϕ62

ϕε
→ ϕ62 = −0.809784.

5.4. General picture in conformal diagrams
As we can see in appendix D, we can define the conformal time as

η =
ˆ t

0

dt

a(t) , (5.35)
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5. The chaotic inflation

so that light propagates at ±45o in the η − χ plane, being χ a comoving coordinate. Hence, during
matter, radiation or cosmological constant domination the scale factor evolves as

a(η) ∝






η radiation
η2 matter
− 1

Hη Λ, H=const
, (5.36)

using the results from Table D.1. We see that for radiation and matter domination there is an
initial singularity: a(ηi ≡ 0) = 0. Therefore, the standard cosmological model without inflation
gives the conformal diagram as seen in Figure 5.5:

Big Bang Singularity
rec Recombination Particle Horizon

i ?

o

Figure 5.5.: There is a singularity at ηi = 0 where it is pretty clear the horizon problem, since the
past light cones from different regions at the ηrec consist of many causally disconnected
regions.

On the other hand, if we have inflation in the very early universe, it behaves similar to a cosmo-
logical constant (H ≈ const), so that the initial singularity is pushed to the infinite past, ηi → −∞.
One could think that the scale factor would diverge at η = 0, but this would happen only for a
de Sitter universe, which means an inflationary universe forever. We know that this is not true,
because inflation ends at finite time and this approximation breaks down at the end o inflation.
The new scenario can be observed in Figure 5.6:
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5.5. The tachyonic potential

Big Bang Singularity

rec Recombination
Particle Horizon

causal contact
i

Infaio
n lt

o

?
Figure 5.6.: Inflation "creates" additional conformal time, extending the diagram downwards and

providing causal contact at past between regions that were causally disconnected in
the standard cosmological model without inflation. There is no singularity at η = 0
any longer.

5.5. The tachyonic potential
The last model we analyze comes directly from calculations of chapter 3, where we have obtained
the potential associated with the tachyonic mode of the open string spectrum using the String Field
Theory framework. In fact, this is the last piece of the bridge connecting Strings and Cosmology
in this thesis.

First, we will provide a naive analysis only for academic purposes, where we call attention for
some problems that should be addressed so that the model could be really considered. Then, we use
some already known results about the potential to carry a realistic analysis. We will not provide
here the details of how the realistic model comes from the open string field theory.

5.5.1. A naive analysis
The tachyonic action obtained in Chapter 3 was

Sϕ = 1
g2

0

ˆ

d26x



−1
2∂µϕ∂µϕ + 1

2α′ ϕ
2 − 1

3

(
3
√

3
4

)3
ϕ̃3



 , (5.37)

where we have already assumed 26 dimensions, as it is demanded by consistency of the bosonic
string theory. However, in order to consider this as an academic exercise, we will be working with
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5. The chaotic inflation

the following naive effective action

Seff
ϕ = V (22)

g2
0

ˆ

d4x
√

−g(4)



−1
2∂µϕ∂µϕ + 1

2α′ ϕ
2 − 1

3

(
3
√

3
4

)3
ϕ3



 . (5.38)

There is a lot of issues in order to come from (5.37) to (5.38). We will explain qualitatively what
are the assumptions in order to call the attention to some problems that usually appear when
considering higher dimensional models. The considerations are:

1. There is no coupling with the 26−metric in (5.37). This is not a surprise, since we have
started considering only open strings while the graviton appears as a closed string state. On
the other hand, closed strings emerge in perturbative open string scattering amplitudes ([29]).
Actually, it might be even possible that closed string states should also arise as asymptotic
states of the quantum open string field theory, which has been under investigations and still
lack of a final resolution [30]. Therefore, if one consider not only the classical theory, it makes
sense to couple the Lagrangian from (5.37) with the 26−metric;

2. Once the above coupling is considered, the tachyonic action becomes

S(1)
ϕ = 1

g2
0

ˆ

d26x
√

−g(26)



−1
2∂µϕ∂µϕ + 1

2α′ ϕ
2 − 1

3

(
3
√

3
4

)3
ϕ̃3



 .

Therefore, we should compactify it in order to be more realistic. The net result from this
matching has important consequences when the energy is of order of the radius used in the
compactification, which is close to the Planckian length. On the other hand, from inflationary
purposes, we do not want to consider very high energies, otherwise this would break down
the whole approach from this and last chapter concerning the early universe. Therefore, in
this low energy regime, the compactification of the additional dimensions gives effectively a
volume factor, which it was represented as V (22);

3. So far, we have reduced the original action to

S(2)
ϕ = V (22)

g2
0

ˆ

d4x
√

−g(4)



−1
2∂µϕ∂µϕ + 1

2α′ ϕ
2 − 1

3

(
3
√

3
4

)3
ϕ̃3



 .

Now, remembering the slow-roll regime, we have seen that the first and second derivatives
are small and they must continue like this in order to keep the approximation valid. Hence,
higher derivatives must be even smaller, otherwise they would spoil the smallness of the first
and second ones. This limit could be considered direct in the equation of motion, but we
shall considered an effective action instead, that means, we consider

ϕ̃ ≈ ϕ − α′ ln 4
3
√

3
∂µ∂µϕ.

In fact, this looks like a perturbative expansion, because for α′ = 1
2 , we see that the constant

in the exponential defining ϕ̃ is 0.130812035. Now, the action looks like

S(3)
ϕ = V (22)

g2
0

ˆ

d4x
√

−g(4)



∂µϕ∂µϕ
(

−1
2 + α′ ln 4

3
√

3
ϕ2

)
+ 1

2α′ ϕ
2 − 1

3

(
3
√

3
4

)3
ϕ3



 .
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4. The final step would be to redefine the field in order to recover the canonical kinetic term.
In fact, there is a solution, given by

ϕ′ = ϕ

√

−α′

2 ln 4
3
√

3

√

1 − 2α′ ln 4
3
√

3
ϕ + 1

2 ln
(√

−α′

2 ln 4
3
√

3
ϕ +

√

1 − 2α′ ln 4
3
√

3
ϕ2

)

.

Then, we should invert this function in order to calculate the potential for ϕ′. However, the
above function is too complicated and there is not an analytic inverse. Therefore, we will
consider the approximation, where ϕ̃ ≈ ϕ. The reasons for this are two: i) we want to keep
things simple as possible as an academic exercise so that it is possible to have contact with
all the way coming from strings to inflation and ii) it can be checked that the full potential,
considering even very high truncation levels, is reduced to a combination of second and third
power law in the tachyonic field (graphic comparing levels (0, 0) and (2, 4)), so that our
effective action can provide all the basic intuition for a more involved analysis7.

Once we have emphasized the above points, let’s start our naive analysis. The potential for the
tachyonic mode is given by8

Vnaive(ϕ) = − 1
2α′ ϕ

2 + 1
3

(
3
√

3
4

)3
ϕ3 + 214

310 . (5.39)

Note that we considered α′ = 1
2 , which is a common convention for the open strings. Besides, we

have added a constant so that the energy value for ϕ = 0 is not zero. This comes from the tension
of the D−brane [41], which makes the energy value in the local minimun to be zero. Then, the
graphic of the potential is
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Figure 5.7.: The tachyonic potential (5.39).

The ε parameter is given by

ε = ϕ2

16π

[
81

√
3ϕ − 128

220
314 − 64ϕ2 − 27

√
3ϕ3

]2
, (5.40)

7 Also, we could argue that our analysis is restricted to the slow-roll approximation, in which the temporal second
derivatives of the field are negligible and that we can consider the field homogeneously as an initial chaotic state
at some region of the universe, as it was argued by Linde in [24].

8 The common notation for the tachyonic field is T (x). However, we will be using the same notation as we have
been using for the inflaton in the last chapters.
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so that we have four solutions for ϕ that gives ε = 1 (which indicates the end of inflation), they
are ϕε=1 = −0.628827, 0.661862, −0.341043, 1.22036, but only one is relevant for us because of our
interest in the rolling tachyon phenomenum, i.e., the decaying of the tachyon from the unstable
equilibrium point to the minimum of the potential. Therefore, we use ϕε=1 = 0.661862.

The e-fold number is given by

N(ϕ) =
ˆ ϕ

ϕε=1
n(ϕ)dϕ = 4π

39(128
√

3 − 243ϕ)2(64 + 81
√

3ϕ)
[81ϕ(−227√

3 + 22035ϕ + 213310√
3ϕ2 −

−5 × 26314ϕ3 + 318√
3ϕ4) − 214(220 − 26310ϕ2 + 313√

3ϕ3) ln ϕ]
∣∣∣
ϕ

ϕε=1
(5.41)

If we plot the above function in order to have a picture of the behavior of the e-fold number, we
obtain
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Figure 5.8.: Ignoring the contribution of ϕε=1 for the e-fold number (which is −0, 744494), we see
that it rapidly diverges. Therefore, we can produce any e-fold number that we want.

We have seen that the expected value for N is close to 62. Therefore, we can obtain the initial
value of the field so that enough inflation is produced, which is

ϕinitial ≈ 2, 283 × 10−8. (5.42)

Hence, our naive potential can, in fact, produce enough inflation. Should this surprise ourselves?
Not really. If we remember the e-fold number formula, we had in the denominator the derivative
of the potential. So, when the field approaches the value that gives the local maximum (ϕ = 0),
the integrand diverges, so that we have field values for any e-fold number we want, including 62 as
we saw above.

The conclusion here must be very conservative. Even though we have obtained a potential that
produces enough inflation, this is the very first test for a model. The real tests come from the
energy density fluctuation amplitudes that appear in the CMB, a subject we have not considered
here. Therefore, this model shall be seen at this point only as a possible candidate for inflation,
having passed in the very first possible classical test, which is if it can or cannot produce enough
inflation.
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6. Conclusion
One of the objectives of this thesis was the construction of a bridge connecting String Theory with
inflationary cosmology. We have seen that the fundamental piece for that was the presence of a
tachyonic mode in the open string spectrum, because this was an indication that its potential might
have relevant properties to consider it as a possible candidate for inflation. However, in order to
calculate the tachyonic potential, we had to introduce the framework of String Field Theory. Let’s
quickly review what we have done.

In chapter 2, we gave the basic intuition concerning String Field Theory from the nonabelian
Chern-Simons theory in 2 + 1−dim. Then, we investigated how real calculations could be made in
that framework using a conformal field theory approach and established the tools for calculate the
tachyonic potential.

Then, we obtained the tachyonic potential in chapter 3. However, it was necessary to define a
scheme of truncation over the string field, because it is a combination of all the possible modes of
the string, having as coefficients what were identified as the spacetime fields. Once this truncation
was defined, the lowest order of the potential was obtained.

So far, those efforts were related only with one side of the bridge. Therefore, in chapter 4
we focused to introduce the inflationary scenario so that the other side of the problem could
be established. This first part was worried in motivating the inflationary paradigm throughout
problems cosmology was facing in the beginning of the 80′s.

Then, in chapter 5 we were able to consider the quantitative aspects of inflation and learned how
we could check if a particular model for the inflaton potential could be useful in the context of the
slow-roll approximation. In fact, we worked only the classical aspects related with this exponential
expansion.

Once the two sides of the bridge were defined, the last piece was the analysis investigating if
the tachyonic potential, which comes from calculations in String Field Theory, could be used to
provide the necessary amount of inflation that is required by observations. In order to make the
analysis of our model, we had to consider the very first approximation of the truncation method
in the string field.

More than that, we had to consider some assumptions in order to let the model tractable peda-
gogically in this thesis. Those assumptions could be worked out better, indicating field for future
work. First of all, one could work out higher levels of approximation in the truncation scheme, so
that the tachyonic potential obtained would be more realistic. Secondly, one could, for instance,
improve the calculations for the compactification of the model to 4−dim, investigating different
ways of compactify the extra dimensions. Besides, the higher-derivative terms that were not con-
sidered in the action could be included in the analysis, because those terms have proven to be
relevant in other approaches. Another issue that can be improved in the calculations is the search
for the canonical kinetic term in the action, since we only recovered it using approximations based
in the slow-roll limit and justifying some steps as pedagogical. Probably, if one or more of these
considerations were taken into account, analytical calculations would not be possible in several
steps that we took. Therefore, it is hard to know how far one can go trying to let this model more
realistic.

After the analysis of the tachyonic potential, we concluded that it could be responsible for
the whole period of exponential acceleration in the early universe. We have estimated that the
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universe should expand around by a factor of e62 during the inflationary period, which brought
some conditions for the potential. However, for our particular naive potential, we have seen that
it can produce how much inflation we want due to its particular form. Therefore, this indicates
that a deeper analysis of the model is welcome, considering other classical tests and investigating
its quantum aspects in comparison with the data. In particular, considering or not the above
suggestions to make the model more realistic, one could work out the the scalar and tensorial
fluctuations coming from the model with the data.

Finally, we emphasize that a lot of approximations were considered in order to arrive at some
results and that we have worked here only with the open bosonic sector. Therefore, this same
proposal could be carried out in the superstring theory yet.
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A. Elements of Bosonic Open String Theory
The objective of this appendix is to present the basic elements concerning Conformal Field Theory
so that the thesis will be essentially self-contained. Besides, since we are considering here a tran-
sition between String Theory and Cosmology, more precisely inflation, it is expected that this can
help the reader more familiarized with the latter than the former.

We will be reviewing below the string action in the conformal gauge, the Operator Product
Expansion (OPE), the mode expansions of the scalar and bc theory and some results of the vertex-
operator map and of tree-level amplitudes. Since we are concerned with only open strings through-
out this work, we will be focusing in this subject below.

The reference for this analysis is [7].

A.1. String Action in the conformal gauge
The fundamental action in String Theory is the Polyakov one, given by

SP [X, γ] = − 1
4πα′

ˆ

M
dτdσ(−γ) 1

2 γab∂aXµ∂bXµ, (A.1)

where M denotes the world-sheet, which is the generalization of the world-line for the point par-
ticle, that is, it is a two-dimensional surface embedded in the spacetime representing the string
"trajectory"; τ and σ are the parameters describing the world-sheet, being the former a temporal
coordinate and the latter a spatial one limited in [0, π] for the open string; γ is the embedded
metric1; Xµ, with µ = 1, ..., 26, are the spacetime coordinates of the string, being vectors in the
spacetime but scalars in the world-sheet.

The above action has the following symmetries:
1. D-dimensional Poincaré invariance:

X ′µ(τ, σ) = Λµ
νXν(τ, σ) + aµ

γ′ab(τ, σ) = γab(τ, σ); (A.2)

2. World-sheet diffeomorphism invariance:

X ′µ(τ ′, σ′) = Xµ(τ, σ)
∂σ′c

∂σa

∂σ′d

∂σb
γ′

cd(τ ′, σ′) = γab(τ, σ), (A.3)

for new coordinates σ′a(τ, σ);

3. Two-dimensional Weyl invariance:

X ′µ(τ, σ) = Xµ(τ, σ)
γ′

ab(τ, σ) = exp[2ω(τ, σ)]γab(τ, σ),

for arbitrary ω(τ, σ).
1 a, b = 1, 2; The metric γ has signature −1 and it is the analogous in two dimensions of the ηµν from Special

Relativity.
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These symmetries are at the classical level. However, the attempt to keep them at the quantum
level brings up amazing results concerning String Theory, as the reader can check in the reference
we are following. For our purposes, we only need to work with the conformal properties regarding
this action. Hence, we fix almost all of the above freedom considering the unitary gauge, given by

γab = δab. (A.4)

Then, we reduce (A.1) to
SP [X, γ] = − 1

4πα′

ˆ

dτdσ∂aXµ∂aXµ.

It is better to work with the action in an Euclidean world-sheet (iσ0 → σ2), that means, we can
consider the embedded metric with a (+, +) signature. Hence, the action becomes

SP [X, γ] = 1
4πα′

ˆ

d2σ(∂1Xµ∂1Xµ + ∂2Xµ∂2Xµ), (A.5)

where the overall sign dropped out because we are following the same convention from [7]. It is
worth to comment that our gauge fixing let a group of local symmetries not fixed, the so called
conformal transformations, which is a combination of a diffeomorphism and a Weyl transformation.

In order to work out the conformal properties coming from (A.5), we will use the z−coordinate
system that is convenient for the open string analysis:

0 ð

w
z

Figure A.1.: Open string coordinates. Note the equal time contours in both planes.

We present all the relevant information below for completeness:

w = σ1 + iσ2

z = −e−iω

∂1 = ie−iω(∂z − e2iσ1
∂z̄), ∂2 = −e−iω(∂z + e2iσ1

∂z̄)
d2z = 2 exp(2σ2)dσ1dσ2
´

d2zδ2(z, z̄) = 1,

Then, the action with which we will work is given by

S = 1
2πα′

ˆ

d2z∂Xµ∂̄Xµ, (A.6)
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with equation of motion
∂∂̄Xµ(z, z̄) = 0. (A.7)

In order to fix the gauge, the Faddeev-Popov method2 had to be used. Its straightforward appli-
cation leads to the introduction of anticommuting ghost fields: a traceless symmetric 2-tensor bab

and a vector ca 3. The action for the ghosts takes the form

Sgh = 1
2π

ˆ

d2z(bzz∂̄c + bz̄z̄∂cz̄). (A.8)

Considering the above coordinate transformations, the end points of the string are mapped to the
real axis Im z = 0, being the scalar field Xµ(z, z̄) only defined in the upper-half plane. In order
to calculate the propagator, let us impose Neumann boundary conditions, in which the end of the
open string move freely in spacetime:

∂σXµ(τ, 0) = ∂σXµ(τ, π) = 0. (A.9)

A convenient way to implement this boundary condition is to use the doubling trick: one can
combine the holomorphic and anti-holomorphic fields Xµ(z) and X̃(z̃) on the upper half plane into
a single holomorphic field defined on the whole complex plane by defining

Xµ(z) = X̃µ(z̄) at z = z̄, (A.10)

where
Xµ(z, z̄) = Xµ(z) + X̃µ(z̄). (A.11)

In this way, the Neumann boundary condition is automatically satisfied. So the CFT on the upper
half plane can be reduced to the holomorphic sector of the CFT on the complex plane. Then, the
propagator is defined as

〈Xµ(z, z̄)Xν(z′, z̄′)〉 = Gµν(z, z̄; z′, z̄′), (A.12)
where ∂2G = −2πα′δ2(z − z′) subject to the boundary condition

0 = ∂1Gµν(z, z̄; z′, z̄′)|σ1=0,π.

The solution can be found considering an "image charge" in the lower-half plane considering now
Xµ(z, z̄) varying over the whole complex plane and it is given by

Gµν(z, z̄; z′, z̄′) = −α′

2 ηµν ln |z − z′|2 − α′

2 ηµν ln |z − z̄′|2, (A.13)

remembering that ∂∂̄ ln |z|2 = 2πδ2(z, z̄).
Quantizing the theory using the path integral formulation we can define expectation values as

〈F [X]〉 =
ˆ

[dX] exp(−S)F [X], (A.14)

where F [X] is any functional of X. Then, remembering that the path integral of a total derivative
is zero, the classical equation of motion (A.7) becomes

〈∂∂̄Xµ(z, z̄)〉 = 0. (A.15)
2 Check subsection (B.1.1).
3 Actually, one should also introduce a ghost field for the Weyl transformations, which would couple with the

trace part of bab. But this field turn out to be auxiliary, having no derivatives acting on them, so that it can be
eliminated, imposing bab to be traceless.
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A.2. Operator Product Expansion (OPE)
We have seen above that

Xµ(z, z̄)Xν(z′, z̄′) = −α′

2 ηµν ln |z − z′|2 − α′

2 ηµν ln |z − z̄′|2, (A.16)

for the open string in the operator formalism. On the other hand, as it will be clear soon, when
working only with open string interactions, due to a conformal transformation, the strings are
identified with vertex operators on the disk boundary, where Im z = 0 and the above operatorial
equation becomes

Xµ(x1)Xν(x2) = −α′ηµν ln(x1 − x2)2. (A.17)

Let us now define the normal ordering:

: Xµ(z1) : = Xµ(z1) (A.18)

: Xµ(z1)Xν(z2) : = Xµ(z1)Xν(z2) + α′

2 ηµν ln(|z12|2|z1 − z̄2|2), (A.19)

where z12 = z1 − z2. This definition has the following property

∂2
1 : Xµ(z1, z̄1)Xν(z2, z̄2) := 0, (A.20)

and satisfies the boundary equation.
From this definition, it is interesting to consider the normal ordering of a general functional of

the field, F [X],

: F : = exp
[

α′

4

ˆ

d2z1d2z2 ln(|z12|2|z1 − z̄2|2) δ

δXµ(z1, z̄1)
δ

δXµ(z2, z̄2)

]

F

= F +
∑

subtractions, (A.21)

where the sum runs over all ways of choosing one, two or more pair of fields from the functional
and replacing each pair with α′

2 ηµiµj ln(|zij |2|zi − zj |2).
A common object we will be considering is the expectation values of a product of local operators in

the limit where two operators are taken to approach one another. The tool that gives a description
of this limit is the operator product expansion (OPE). It essentially states that given two pair of
operators, F and G, the OPE is given by

: F :: G :=: FG : −
∑

(cross subtractions). (A.22)

The sum now runs over all ways of contracting pairs with one field in each functional. This can
also be written as

: F :: G := exp
[

−α′

2

ˆ

d2z1d2z2 ln(|z12|2|z1 − z̄2|2) δ

δXµ
F (z1, z̄1)

δ

δXGµ(z2, z̄2)

]

: FG :, (A.23)

where the functional indices indicates where the derivatives act (they will be indicated by (1) and
(2) in the following).

Let us work out several examples that will be useful for us through the thesis4:
4 We are using ” ∼ ” instead of ” = ” when we are keeping only the singular terms.
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1. : ∂Xρ(z, z̄) :: ∂Xσ(y, ȳ) :=

= exp
[

−α′

2

ˆ

d2z1d2z2 ln(|z12|2|z1 − z̄2|2) δ

δXµ
(1)(z1, z̄1)

δ

δX(2)µ(z2, z̄2)

]

: ∂Xρ(z, z̄)∂Xσ(y, ȳ) :

∼ −α′

2

ˆ

d2z1d2z2 ln(|z12|2|z1 − z̄2|2)δρ
µ∂zδ2(z1, z)ησαδµ

α∂yδ2(z2, y)

∼ −α′

2 ησρ∂z∂y[ln(z − y) + ln(z̄ − ȳ) + ln(z − ȳ) + ln(z̄ − y)]

∼ −α′

2 ησρ 1
(z − y′)2 ; (A.24)

2. : T (z, z̄) :: ∂Xσ(y, ȳ) :=

∼ ησρ∂Xρ(z)∂z∂y ln(|z − y|2|z − ȳ|2)

∼ ∂Xσ(z) 1
(z − y)2

∼ 1
z − y

∂2Xσ(y) + 1
(z − y)2 ∂Xσ(y); (A.25)

3. : eiq·X(z) :: eik·X(y) :=

= exp
[

α′

2 q · k ln(|z − y|2|z − ȳ|2)
]

: eiq·X(z)eik·X(y) :

= (|z − y||z − ȳ|)α′q·k : ei(q+k)·X(y)[1 + O(z, z̄)] :; (A.26)

4. : eik·X(z) :: ∂Xρ(y) :=

∼ −α′

2 ikρ : eikX(z) : ∂y(ln |z − y|2|z − ȳ|2)

∼ α′

2 ikρ
( 1

z − y
+ 1

z̄ − y

)
: eik·X(y) :; (A.27)

5. : T (z, z̄) :: eik·X(y) :=

∼ ikµ
( 1

z − y
+ 1

z − ȳ

)
: eik·X∂Xµ(y) : +α′

4 k2
( 1

z − y
+ 1

z − ȳ

)2
eik·X(y); (A.28)

6. : T (z, z̄) :: T (y, ȳ) :=

= ∼ − 2
α′

ˆ

d2z1d2z2 ln(|z12|2|z1 − z̄2|2)δα
µ∂zδ2(z1, z)δµ

β∂yδ2(z2, y) : ∂Xα(z)∂Xβ(y) :
︸ ︷︷ ︸

− 2
α′ :∂Xµ(z)∂Xµ(y): 1

(z−y)2

− 2
α′

1
(z − y)2

1
2

(
−α′

2

)ˆ
d2z1d2z2 ln(|z12|2|z1 − z̄2|2)ηµ

µ∂zδ2(z1, z)∂yδ2(z2, y)

∼
ηµ

µ

2
1

(z − y)4 + 2T (y) 1
(z − y)2 + ∂T (y) 1

(z − y) . (A.29)
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In general, for a generic operator A(z′, z̄′), the OPE with T (z, z̄) has the following form

T (z)A(z′, z̄′) = ... + h
( 1

z − z′ + 1
z − z̄′

)2
A(z′, z̄′) +

( 1
z − z′ + 1

z − z̄′

)
∂A(z′, z̄′) + ..., (A.30)

where h, the constant multiplying the term with second order pole, is called conformal weight. As
it can be seen above, sometimes there is not a term involving5 (z − z̄′)−1. If the OPE with the
energy-momentum tensor has the higher order pole equals 2, then the operator is called a tensor
operator or primary field, denoted O(z′, z̄′). In this case, it transforms under a general conformal
transformations z → z′(z) as

O′(z′, z̄′) = (∂zz′)−h(∂z̄ z̄′)−h̃O(z, z̄). (A.31)

A.3. The bc theory
We have seen that the Faddeev-Popov method of gauge fixing implied an additional ghost term in
the Polyakov action, given by

Sgh = 1
2π

ˆ

d2zb∂̄c, (A.32)

where b and c are anticommuting. This action is conformally invariant for b and c transforming as
tensors of weights (λ, 0) and (1 − λ, 0), respectively. For our case, λ = 2 6.

The operator equations of motion are
∂̄c(z) = ∂̄b(z) = 0 (A.33)

∂̄b(z)c(0) = 2πδ2(z, z̄). (A.34)
The second equation gives that the normal ordered bc product is

: b(z1)c(z2) := b(z1)c(z2) − 1
z12

. (A.35)

The energy-momentum tensor is
T (z) =: (∂b)c − 2∂(: bc :). (A.36)

It is interesting to note that there is a ghost number symmetry coming from considering δb = −iεb,
δc = iεc, with corresponding current

j = − : bc :, (A.37)
which can be checked as not being a tensor.

A.4. Mode Expansion
It is useful to consider the operators we will be working expanded as oscillators. Once we are
working in the complex plane, we expand a holomorphic operator in a Laurent series as

O(z) =
∞∑

m=−∞

Om

zm+h
, (A.38)

where h is the operator conformal weight. If the operator is antiholomorphic, the expansion would
be over z̄, with conformal weigh h̃.

5 This kind of term does not appear when the two functionals have derivatives.
6 This comes from consistency of the theory. In fact, the total central charge of the Virasoso algebra (see below)

has to be zero so that the theory has no anomalies. The matter piece contributes with cm = 26, while the ghost
one gives cgh = −3(2λ − 1)2 + 1, so that for λ = 2 we have ctotal = 0.
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A.4.1. Scalar field Xµ

The scalar fields on the worldsheet satisfy

∂∂̄Xµ = 0, (A.39)

with the additional boundary condition ∂Xµ = ∂̄Xµ on the real axis for the open string. Then,
disregarding this boundary condition, we have two possible expansion

∂Xµ(z) = −i
(

α′

2

)1/2 ∞∑

m=−∞

αµ
m

zm+1 (A.40)

∂̄X(z̄) = −i
(

α′

2

)1/2 ∞∑

m=−∞

α̃µ
m

z̄m+1 , (A.41)

with
αµ

m =
(

α′

2

)˛
dz

2π
zm∂Xµ(z), (A.42)

and analogously for the α̃µ
m On the other hand, considering the boundary condition, we end up

with αµ
m = α̃µ

m. Hence, the expansion for Xµ is given by

Xµ(z, z̄) = xµ − iα′pµ ln |z|2 + i
(

α′

2

)1/2 ∞∑

m=−∞,m&=0

αµ
m

m
(z−m + z̄−m),

where xµ is the center of mass coordinate of the string and pu is the conserved charge associated
with the spacetime translational current calculated by the Noether theorem, that is,

pµ = 1
2πi

˛

C
dzjµ = (2α′)−1/2αµ

0 , (A.43)

considering only the holomorphic current in the whole complex plane due to the doubling trick.
From the canonical commutator [πµ, Xν ] = −δν

µ, we derive

[αµ
m, αν

n] = mδm,−nηµν (A.44)
[xµ, pν ] = iηµν . (A.45)

For the energy-momentum tensor, the expansion is given by

T =
∞∑

m=−∞

Lm

zm+2 , (A.46)

where
Lm =

˛

C

dz

2πiz
zm+2T, (A.47)

with C any contour encircling the origin counterclockwise. These Lm coefficients are known as
Virasoro generators and satisfy the Virasoro algebra

[Lm, Ln] = (m − n)Lm+n + c

12(m3 − m)δm,−n, (A.48)

where c is the central charge. Expanding T in modes of X, we find

Lm = 1
2

∞∑

n=−∞
αν

m−nαµn, (m /= 0) (A.49)

L0 = α′p2 +
∞∑

n=1
αµ

−nαµn. (A.50)
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Note also that from the OPE of the energy-momentum tensor with a primary operator, we have

[Lm, On] = [(h − 1)m − n]Om+n.

A.4.2. bc fields
The expansions of the b and c fields are given by

b(z) =
∞∑

m=−∞

bm

zm+2 (A.51)

c(z) =
∞∑

m=−∞

cm

zm−1 , (A.52)

with

bm =
˛ 1

2πi
dzzm−1b(z) (A.53)

cm =
˛ 1

2πi
dzzm−2c(z), (A.54)

where we are considering the specific case for which λ = 2. Besides, we are integrating over a
whole path in the complex plane because we have implicitly considered the doubling trick so that
the antiholomorphic fields in the upper half plane are written in terms of holomorphic fields in the
whole plane, using the definition

c(z) ≡ c̃(z̄′), b(z) ≡ b̃(z̄′), Im(z) ≤ 0, z′ = z̄. (A.55)

The bc OPE gives the anticommutators

{bm, cn} = δm,−n. (A.56)

The ghost vacuum will be denoted by | ↓〉 and defined by

b0| ↓〉 = 0 (A.57)
c0| ↓〉 = | ↑〉 (A.58)

bn| ↓〉 = cn| ↓〉 = 0, n > 0. (A.59)

The Virasoro generators are

Lm =
∞∑

n=−∞
(2m − n) ◦ bncm−n ◦ −δm,0, (A.60)

where the operators between ◦...◦ are ordered with annihilation operators to the right and creation
ones to the left.

For the ghost number current (A.37), the charge is

Ng =
∞∑

n=1
(c−nbn − b−ncn) + c0b0 − 1

2 , (A.61)

satisfying
[Ng, bm] = −bm [Ng, cm] = cm. (A.62)

Note that the ground state has ghost number −1
2 .
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A.5. Vertex Operators
In conformal field theory there is a map between the set of local operators and the space of states
of the theory. For each state, there will be a local operator called vertex operator and they are
identified through this symbol ∼= .

Let’s provide the relevant identifications and then justify them. The map is

States Operators
|0; 0〉m 1m

αµ
−m, m ≥ 1 i

(
2
α′

)1/2 1
(m−1)!∂

mXµ(0)
xµ

0 Xµ(0, 0)
|0; k〉 : eik·X(0,0) :

b−1| ↓〉 1g

b−m, m ≥ 2 1
(m−2)!∂

m−2b(0)
c−m, m ≥ −1 1

(m+1)!∂
m+1c(0)

Note that the subscript g and m stand for ghost and matter. Now, we explain:

1. The states are identified with operators at z = 0 because an initial state in the σ−coordinate
system has the temporal coordinate at −∞. Hence, the behavior of the fields at the origin in
the complex plane is equivalent to specifying the boundary condition for the path integral in
the σ−coordinate, that is, the initial state;

2. The unity operators for matter, denoted 1m, is associated with the ground state because the
matter oscillators for m ≥ 0, defined by (A.42), multiplied by this unity operator have no
poles at the origin and so vanish. Thus, we can think that 1m is "annihilated" by these modes
in the operator formalism. In the state formalism, this would be written as αµ

m|0; 0〉 = 0 for
m ≥ 0. It is analogous for the ghost piece;

3. The fourth identification can be understood given the transformation the state and its cor-
responding operator suffers under a translation Xµ → Xµ + aµ. The state transforms as
|0; k〉 → eik·a|0; k〉 from Quantum Mechanics while the operator transforms equally, since
there is no contractions between the scalar field and a constant;

4. Note that for the open strings, the case of our interest, the origin is also the boundary of the
strings. Therefore, when we will calculate OPE of our local operators for the open strings,
we will be doing the calculations over the boundary and the OPE formulas will be simplified
as we have already talked about in section A.2;

A.6. Tree-level Amplitudes
We present here just some results of tree-level amplitudes calculations on the disk boundary:

1)
〈

n∏

i=1
eikiX(yi)

p∏

j=1
∂Xµj (y′

j)
〉

matter

= (2π)dδd

(
n∑

i=1
ki

)
n∏

i,j=1; i<j

|yi − yj |2α′ki·kj ×

〈 p∏

j=1
[vµj (y′

j) + qµj (y′
j)

〉

norm.

, (A.63)
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where
vµ(y) = −2iα′

n∑

i=1

kµ
i

y − yi
, 〈qµ(y)qν(y′)〉norm. = −2α′ ηµν

(y − y′)2 ; (A.64)

2) 〈c(z1)c(z2)c(z3)〉 = |z12z23z13| ←→ 〈0|c−1c0c1|0〉. (A.65)
The derivation of them are very simple but a little longer and they can be found in our reference.
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B. BRST Quantization
The BRST charge was fundamental in the construction of the open string field theory action, so
that it is worth to dedicate an appendix to review this approach used to study the string spectrum
of states.

We will be following closely [7].

B.1. The String Spectrum
As we have seen above, in conformal gauge1, the world-sheet fields are Xµ and the Faddeev-Popov
ghosts bab and ca. This covariant gauge implies that the Hilbert space of states contains unphysical
states and, therefore, is bigger than the physical spectrum of the string. These unphysical states
either have negative norm, coming from the timelike oscillators and ghosts, or are null states, which
are redundant states of a physical one.

In order to find out the set of physical states, one might consider the amplitude on the infinite
cylinder for some initial state |i〉 propagating to a final state |f〉. Having fixed the metric to be
gab(σ) using the local symmetries, one would not expected that this amplitude would vary if a
different gauge was considered: gab(σ) + δgab(σ). Hence, the resulting variation on the amplitude
should vanish,

0 = δ〈f |i〉 ∝
ˆ

d2σg(σ)1/2δgab(σ) < f |T ab|i >, (B.1)

where T ab = T ab
X + T ab

ghost. Then, a necessary condition for arbitrary physical states is given by

〈ψ|T ab|ψ′〉 = 0. (B.2)

Note that before fixing the gauge we had the equation of motion for the metric telling us T ab = 0.
However, when we work with the gauge fixed theory, we do not have this equation of motion
anymore since the metric is fixed. Hence, the above condition says that this missing equation must
hold for matrix elements between physical states. Carrying (B.2) throughout quantization is called
Old Covariant Quantization.

In this procedure, we have (Lm
0 − 1)|ψ〉 = 0 which really comes from (Lm

0 + Lg
0)|ψ, ↓〉 = 0. Hence,

Ng|ψ, ↓〉 = −1/2|ψ, ↓〉. So, the vertex operator associated with this physical state must have ghost
number 1, since Qg = Ng + (λ − 1/2) = 1. This difference between ghost number of the vertex
operator and the physical state associated with it is due to the fact that the ghost number of states
is conventionally defined by the cylindrical frame expression

Ng = − 1
2πi

ˆ 2π

0
dwjw =

∞∑

n=1
(c−nbn − b−ncn) + c0b0 − 1/2,

while the ghost number of the vertex operator to the radial frame

Qg = 1
2πi

˛

dzjz = Ng + q0 (q0 = 3/2 for λ = 2).

1 In the unitary gauge, we would have also the BA ghost associated with the Weyl transformation.
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Summarizing, all the vertex operators associated with the physical states will have ghost number
+1 once the states have ghost number −1/2.

As it should be clear, this is an ad hoc procedure and we intend to explore a more systematic
method, the BRST quantization.

B.1.1. BRST Quantization
In order to explore this quantization procedure, let’s follow the very general approach presented
by Polchinski to gauge fix an action through Faddeev-Popov procedure.

Let a path integral whose fields are denoted φi, in our case they are Xµ(σ) and gab(σ), having
a local symmetry. The index i labels the field and the coordinate σ. The gauge invariance is εαδα

with α also representing the coordinate and the parameters εα being reals, since we can always
separated a complex parameter into two real ones. The gauge transformations satisfy an algebra2

[δα, δβ] = fγ
αβδγ . (B.3)

We write the gauge fixing condition as

F A(φ) = 0, (B.4)

where A also includes the coordinate. Following Faddeev-Popov procedure, one should find
ˆ [dφ]

Vgauge
exp(−S1) →

ˆ

[dφdBAdbAdcα] exp(−S1 − S2 − S3), (B.5)

where S1 is the original action and S2 and S3 are given by

S2 = −iBAF A(φ) (B.6)
S3 = bAcαδαF A(φ). (B.7)

The BA was only introduced to create an integral representation of the gauge-fixing δ(F A).
The total action coming from the Faddeev-Popov procedure turns out to have an additional

symmetry. It is invariant under

δBφi = −iεcαδαφi (B.8)
δBBA = 0 (B.9)
δBbA = εBA (B.10)

δBcα = i

2εfα
βγcβcγ . (B.11)

Remember that cα and bA are anticommuting objects; so is ε. As we have seen in appendix A, there
is a conserved ghost number, which is +1 for cα, −1 for bA and ε, and 0 for all the other fields.
The above symmetry is called BRST symmetry.

Note also that
δB(bAF A) = iε(S2 + S3), (B.12)

which implies that a small change δF in the gauge-fixing condition at the amplitude level gives

εδ〈f |i〉 = −ε〈f |{QB, bAδF A}|i〉. (B.13)
2 This algebra is not so general. In fact, we are considering the structure constants independent of the fields and we

do not have additional terms proportional to the equations of motion in the right-hand side. If we had considered
all this, the above BRST formalism would have to be generalized, resulting in what is called Batalin-Vilkovisky
formalism.
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B.1. The String Spectrum

where we have written the BRST variation as an anticommutator with the corresponding conserved
charge QB, which will be called BRST operator from now on.

Therefore, as we have seen in the beginning of this section, physical states must satisfy

〈ψ|{QB, bAδF A}|ψ′〉 = 0. (B.14)

For this to hold for arbitrary δF , we must have

QB|ψ〉 = QB|ψ′〉 = 0. (B.15)

A physical state will satisfy this condition and it will be called a BRST invariant state3 .
An important property of the BRST operator is its nilpotency, that is,

Q2
B = 0. (B.16)

It is implicit the operator squared is acting in a state. A simple way to understand why this is
true it is to remember that QB is a charge, hence [QB, H] = 0, where H is the Hamiltonian. While
we move around in the space of gauge choices, H → H + δH. On the other hand, QB remains a
charge. Therefore, we end up with the condition

0 = [QB,δH]
= −[QB,δBL]
= [QB,{QB, bAδF A}]
= [Q2

B, bAδF A]. (B.17)

Because this is valid for any change of gauge, QB is nilpotent4. A more direct way to check this
property is to consider the action of the BRST operator twice in the fields, leaving them invariant.
As an example, let’s consider it on φi :

δB′δBφi = −iεδB′(cαδαφi) = −iε
[

i

2εfα
βγcβcγδαφi + cα(−iεcβδβ)δαφi

]
= 0.

Considering (B.15), the nilpotency of QB has an important consequence. A state of the form

QB|χ〉 (B.18)

is physical. On the other hand, it is orthogonal to all the other physical states including itself.
Such a state is called null state. Note that if we have two physical states differing by a null state,
as below,

|ψ′〉 = |ψ〉 + QB|χ〉, (B.19)

they will be equivalent because for all the practical calculations, such as physical amplitudes, we
obtain the same results. A common terminology here is to call the physical states annihilated by
QB as closed and the ones with the form (B.18) as exact. When considering these redundant states,
we end up with the physical Hilbert space given by

HBRST = Hclosed

Hexact
. (B.20)

3 We have assumed that QB is hermitian.
4 Note that Q2

B cannot be a constant, since it has ghost number 2.
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B. BRST Quantization

B.2. BRST quantization of the string
The BRST transformation for string theory is given by

δBXµ = iε(c∂ + c̃∂̄)Xµ (B.21)
δBb = iε(Tm + Tg) (B.22)
δBc = iεc∂c. (B.23)

The BRST current, calculated using Noether’s theorem, is

jB = cTm+ : bc∂c : +3
2∂2c, (B.24)

where the last term was added by hand in order to make the BRST current a tensor. Therefore,
the BRST operator for the open string is

QB =
∞∑

n=−∞
cLm

−n +
∞∑

m,n=∞

(m − n)
2 ◦ cmcnb−m−n ◦ −c0. (B.25)

Note that
{QB, bm} = Lmatter

m + Lghost
m . (B.26)
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C. Calculations from Chapter 3

Quadratic action for the tachyonic field
We had the following calculation to be made

〈I ◦ Φ(0)QBΦ(0)〉ϕ =
ˆ

ddkddq

˛

dz

2πi

( 1
ε2

)−1+α′k2

ϕ(k)ϕ(q)
{〈

ceik·X
(

−1
ε

)
cT m(z)ceiq·X(ε)

〉

+
〈

ceik·X
(

−1
ε

)
bc∂c(z)ceiq·X(ε)

〉}
,

so let’s consider each term individually:

1. We can rewrite the first term as

A =
˛

dz

2πi

〈
ceik·X

(
−1

ε

)
cT m(z)ceiq·X(ε)

〉
=
˛

dz

2πi

〈
c

(
−1

ε

)
c(z)c(ε)

〉

gh
×

〈
eik·X(− 1

ε )T m(z)eiq·X(ε)
〉

m
,

focusing in the amplitudes for now. Then, considering the OPE’s developed in appendix A,
we have

: eik·X
(

−1
ε

)
:: T m(z) :: eiq·X(ε) : ∼ : eik·X(− 1

ε ) :
[

2
z − ε

: ∂εe
iq·X(ε) : +α′q2

2
1

(z − ε)2 : eiq·X(ε) :
]

+ : eiq·X(ε) :
[

2
z + 1

ε

: ∂− 1
ε
eik·X(− 1

ε ) :

+α′k2

2
1

(z + 1
ε )2 : eik·X(− 1

ε ) :
]

+ : T m(z) :
∣∣∣∣−

1
ε

− ε

∣∣∣∣
2α′q·k

: ei(q+k)·X(ε) : .

Since we are integrating z in a closed path around the operators, we have only one pole inside
the path, which is z = ε (z = −1

ε is outside the region of integration because 1
ε 3 0 - in

fact, this argument is not even necessary if one remembers that the charge is an operator,
therefore, only acting in the vertex operator in its right, the one over the point ε). Therefore,
the second and forth terms give no contributions. Besides, the fifth term also gives zero
because the dependence on z is holomorphic. The first term does not contribute neither
because the dependence on z is on the c ghost, producing c(ε)2 = 0. Thus, we end up with
˛

dz

2πi

〈
ceik·X

(
−1

ε

)
cT m(z)ceiq·X(ε)

〉
= α′q2

2
〈
eik·X(− 1

ε )eiq·X(ε)
〉

m

〈
c

(
−1

ε

)
∂cc(ε)

〉

gh

= α′q2

2 (2π)dδd(k + q)
∣∣∣∣−

1
ε

− ε

∣∣∣∣
2α′q·k (

ε + 1
ε

)2
,
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using the calculations from section A.6. Finally, the final result is given by

A = lim
ε→0

ˆ

ddkddq
( 1

ε2

)−1+α′k2

ϕ(k)ϕ(q)α′q2

2 (2π)dδd(k + q)
∣∣∣∣−

1
ε

− ε

∣∣∣∣
2α′q·k (

ε + 1
ε

)2

= lim
ε→0

ˆ

ddk
( 1

ε2

)−1+α′k2

ϕ(k)ϕ(−k)α′k2

2 (2π)d
∣∣∣∣−

1
ε

− ε

∣∣∣∣
−2α′k2 (

ε + 1
ε

)2

= (2π)d
ˆ

ddk
α′k2

2 ϕ(k)ϕ(−k) lim
ε→0

(
ε2 + 1

)2−2α′k2

= (2π)2α′
ˆ

ddkϕ(k)ϕ(−k)k2,

which gives the canonical kinetic term for the tachyonic field after a Fourier-transformation
for the position space.

2. The second term can be rewritten as

B =
ˆ

ddkddq

˛

dz

2πi

( 1
ε2

)−1+α′k2

ϕ(k)ϕ(q)
〈

c
(

−1
ε

)
bc∂c(z)c(ε)

〉

g

〈
eik·X(− 1

ε )eiq·X(ε)
〉

m
.

Then, from the bc theory, the ghost piece together with the z integration gives
˛

dz

2πi

〈
c

(
−1

ε

)
bc∂c(z)c(ε)

〉

g
=
˛

dz

2πi

[

: c
(

−1
ε

)
:: c∂c(ε) : 1

z − ε
− : c(ε) : c∂c

(
−1

ε

)
: 1

z + 1
ε

]

= −
(

ε + 1
ε

)2
,

using the amplitude results from section A.6. The last term does not contribute by the same
reasons as in the above case. Therefore,

B = − lim
ε→0

ˆ

ddkddq
( 1

ε2

)−1+α′k2

ϕ(k)ϕ(q)
(

ε + 1
ε

)2 〈
eik·X(− 1

ε )eiq·X(ε)
〉

m

= −(2π)d lim
ε→0

ˆ

ddkddq
( 1

ε2

)−1+α′k2 (
ε + 1

ε

)2
ϕ(k)ϕ(q)δd(k + q)

∣∣∣∣−
1
ε

− ε

∣∣∣∣
2α′q·k

= −(2π)d lim
ε→0

ˆ

ddkϕ(k)ϕ(−k)
( 1

ε2

)−1+α′k2 (
ε + 1

ε

)2 (1
ε

+ ε
)−2α′k2

= −(2π)d
ˆ

ddkϕ(k)ϕ(−k) lim
ε→0

(
ε2 + 1

)2−2α′k2

= −(2π)d
ˆ

ddkϕ(k)ϕ(−k),

giving the quadratic term on ϕ in (3.11).

Cubic action for the tachyonic field
→ Let’s start calculating the f ′

is and their derivatives. Remembering first that

h−1(ζ) = −i
ζ − 1
ζ + 1

fi(zi) = h−1 ◦ gi(zi),
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then,
f ′

i(zi) = − 2ig′
i(zi)

[gi(zi) + 1]2 ,

so that:

1. For g1(z1) = e−2πi/3
(

1+iz1
1−iz1

)2/3
, we have

g1(0) = e−2πi/3

g′
1(0) = 4

3 ie−2πi/3.

Therefore, f1(0) = −
√

3 and f ′
1(0) = 8/3;

2. For g2(z2) =
(

1+iz2
1−iz2

)2/3
, we end up with

g2(0) = 1

g′
2(0) = 4i

3 ,

providing f2(0) = 0 and f ′
2(0) = 2/3;

3. For g3(z3) = e2πi/3
(

1+iz3
1−iz3

)2/3
, we get

g3(0) = −1
2 + i

√
3

2
g′

3(0) = 4
3 ie2πi/3,

giving f3(0) =
√

3 and f ′
3(0) = 8/3.

→ Another important calculation that was omitted is the derivation of the F (k, p, q) term. If one
substitute the above calculations in (3.12), it will conclude that

F (k, p, q) = 23α′(k2+q2)+α′p2+2α′q·k3α′(k·p+k·q+p·q−k2−p2−q2).

We can rewrite it as

F (k, p, q) = exp[α′k · p ln 3 + α′p · q ln 3 + α′k · q(ln 3 + 2 ln 2) + α′k2(3 ln 2 − ln 3)
+α′p2(ln 2 − ln 3) + α′q2(3 ln 2 − ln 3)

and using q = −k − p from the delta function, we get

F (k, p, q) = exp
[
α′ ln 4

3
√

3
(k2 + p2 + q2)

]
.
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D. Elements of General Relativity and
Cosmology

This appendix is intended to be a quick review on some aspects of General Relativity and Cosmology
in order to fix the notation and to provide a short reference for the results we have been using
so far. We will be concerned about our homogeneous and isotropic universe, its kinematics and
dynamics and some particular examples that were important throughout the thesis. It is expected
that this is enough to study the inflationary paradigm in Chapters 4 and 5.

The basic references for this short review are [10, 11, 12].

D.1. Our Universe
The Cosmic Microwave Background (CMB) radiation, first observed by Penzias and Wilson [13],
tells us that the universe was extremely homogeneous and isotropic in the past (around 380,000
years-old)1. In fact, we observe only small fluctuations of order 10−5 in the energy density distri-
bution by that time, when the universe was ≈ 1100 smaller than now. Together with the CMB
observations, redshifts surveys, counts of radio sources and the isotropy of the X-ray and γ-ray
background suggest that the universe is homogeneous and isotropic on large scales (# 100 Mpc),
having inhomogeneous structures in small scales, e.g., galaxies.

On theoretical grounds, in order to describe properly the universe we need to know the spacetime
metric of the universe, gµν . General Relativity provides the proper equations to describe the
dynamics of the metric through the Einstein’s equation:

Gµν ≡ Rµν − 1
2gµνR = 8πTµν + Λgµν . (D.1)

where G = c = 1; Λ is a cosmological constant2; Tµν is the energy-momentum tensor, responsible
for the matter-energy content of the universe. The Ricci tensor and the Ricci scalar are defined,
respectively, by

Rµν = ∂αΓα
µν − ∂µΓα

να + Γα
βαΓβ

µν − Γα
βνΓβ

µα (D.2)
R = gµνRµν , (D.3)

where the Christoffel symbols are

Γα
µν = 1

2gαβ(∂νgµβ + ∂µgνβ − ∂βgµν). (D.4)
1 Around 10−6s, the early universe was made up of high energy plasma composed by photons, electrons and

baryons. As it expanded, the plasma temperature decreased until it became favorable for electrons to combine
with protons, decoupling matter and radiation. This event, called recombination, happened when the temperature
was approximately 3000 K. After the decoupling, those photons have remained in thermodynamical equilibrium
and been affected only by the expansion of the universe, which redshifted them from infrared to the microwave
(≈ 2, 73 K). We also refer to this event as the last-scattering surface.

2 Its empirical value is 10−122 in Planck units and it will be considered zero from now on. This is justifiable
because we will be worried here only with the early universe until recombination and the cosmological constant
was not relevant for that epoch. In fact, the accelerated expansion promoted by Λ, as deduced below, only became
dominant when the universe was ≈ 1010 years.
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Given the above observational evidences, assuming homogeneity and isotropy3 on large scales
one is lead to the Friedmann-Robertson-Walker (FRW) metric

ds2 = −dt2 + a2(t)[dχ2 + ΦK(χ)(dθ2 + sin2 θdφ2)] (D.5)

ΦK(χ) =






sinh2 χ, k = −1
χ2, k = 0
sin2 χ, k = 1.

(D.6)

To understand the above elements, consider spacelike hypersurfaces Σ. So, the scale factor, a(t), is
associated with the relative size of these hypersurfaces at different times. Besides, if Σ is positively
curved, k = 1; if flat, k = 0; and if negatively curved, k = −1. Finally, it should be said we are using
comoving coordinates, that means the coordinates r, θ, φ are constant for all the observers/objects
that are not under peculiar motion (this never happens, but it is a good approximation)4. Note
that we have reduced all the dynamics of the homogeneous and isotropic universe to a unique
function of time.

Ót1

Ót2

÷ ÷1 2

d

d

1

2

Figure D.1.: Representation of the spacelike hypersurfaces, comoving coordinates and the intuition
of the scale factor. Note that dt =

´

Σt

√
ds2 = a(t)∆χ, having suppressed the other

comoving coordinates.
3 A homogeneous space is one which has translational invariance while an isotropic one has rotational invariance.

For a formal definition, see [11], chapter 5. There one can also find a formal reduction of the generic metric to
the FRW one.

4 In fact, for objects far away, on the same scale where homogeneity and isotropy seems to be observable, the
redshift due to peculiar motion is meaningless compared to the redshift coming from the expansion of the universe
(considering peculiar velocities of order 100 km/s and H0 = (67.4 ± 1.4) km s−1 Mpc−1[14].
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D.2. Kinematics: causal structure

Considering the FRW-metric, now it is just a matter to insert it into the Einstein’s equation to
determine a(t). An important quantity from now on is the Hubble parameter,

H = ȧ

a
, (D.7)

which is positive for an expanding universe and negative for a collapsing one. It sets the charac-
teristic time- and length-scale of the universe: t ∼ H−1 and d ∼ H−1 (c = 1), respectively.

D.2. Kinematics: causal structure
D.2.1. Conformal Time
The causal structure of the universe is given by the propagation of light in the FRW metric. We
know that light-rays follow null geodesics, ds2 = 0, which look simple if, instead of the physical
time t, we use the conformal time

η =
ˆ

dt

a(t) . (D.8)

Then, the metric (D.5) in η, χ coordinates is

ds2 = a(η)2[−dη2 + (dχ2 + Φk(χ)(dθ2 + sin2 dφ2))]. (D.9)

Considering only the radial light geodesics of light (isotropic universe), their description are given
by

χ(η) = ±η + const., (D.10)
corresponding to straight lines at angles ±45o in the η − χ plane.

Looking for (D.8), an intuitive way to understand the conformal time is to think it as a "clock"
that slows down with the expansion of the universe.

D.2.2. Particle Horizon
The comoving distance light can propagate between an emission time, ti, and some latter time, t,
is

χp(η) = η − ηi =
ˆ t

ti

dt′

a(t′) . (D.11)

In a universe with an initial singularity, we define ti by a(ti) = 0. Multiplying χp by the scale
factor, we obtain the physical size of the particle horizon:

dp(t) = a(t)χp = a(t)
ˆ t

ti

dt′

a(t′) . (D.12)

The particle horizon is finite at any time in the past, limiting the distance of causal contact
between different regions in the early universe.

D.2.3. Event Horizon
The event horizon is the complement of the particle horizon. It defines the set of points from which
signals sent at a given moment of time η will never be received by an observer in the future. In
comoving coordinates these points satisfy

χ >χ e(η) =
ˆ ηmax

η
dη = ηmax − η. (D.13)
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Hence, the physical size of the event horizon at time t is

de(t) = a(t)
ˆ tmax

t

dt′

a(t′) ,

where ηmax refers to the final moment of time, which may be finite or infinite.

D.2.4. Redshift
Consider a source of radiation with comoving coordinate χem, which emits a signal at conformal
time ηem with duration δη. The trajectory of the signal is χ(η) = χem − (η −ηem) and it is detected
at χobs = 0 at time ηobs = ηem + χem. Even though δηem = δηobs = δη, the physical time intervals
are different at the points of emission and detection and given by

δtem = a(ηem)δη

δtobs = a(ηobs)δη.

If δt is the period of the light wave, then its wavelength is λ = δt, so that

λobs

λem
= a(ηobs)

a(ηem) . (D.14)

We define the redshift parameter as

z = λobs − λem

λem
. (D.15)

This formula can be rewritten using (D.14) as

1 + z = a0
a(tem) , (D.16)

where ao is the present value of the scale factor.

D.3. Dynamics
D.3.1. Energy, momentum and pressure
On the cosmic scales, each galaxy can be idealized as a "grain of dust". Besides, the peculiar
velocities of the galaxies are small, so what would be an equivalent pressure, p, of this dust is
negligible. Hence, the ordinary matter can be described as a perfect fluid with p = 0. However,
there are others forms of energy content in the universe with non-zero pressure, e.g. radiation.
Therefore, we shall consider the general perfect fluid form for Tµν, given by

Tµν = (ρ + p)uµuν + pgµν , (D.17)

where ρ is the energy density and uµ is the 4−velocity of the fluid. Note that ρ and p are defined
in the fluid rest frame.

An important example of matter field that is of fundamental importance for us is the classical
scalar field ϕ with potential V (ϕ) and action given by,

Sϕ =
ˆ

d4x
√

−g
[
−1

2∂µϕ∂µϕ − V (ϕ)
]

. (D.18)
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The equation of motion is
1√
−g

∂µ(
√

−g∂µϕ) − dV

dϕ
= 0. (D.19)

The energy-momentum tensor for the scalar field is5

T (ϕ)
µν ≡ −2√

−g

δSϕ

δgµν
= ∂µϕ∂νϕ − gµν

(1
2∂σϕ∂σϕ + V (ϕ)

)
. (D.20)

If the kinetic term is negative (ϕ̇2 > (∂iϕ)2), then we can rewrite it in the form of a perfect fluid
by defining

ρ ≡ −1
2∂µϕ∂µϕ + V (ϕ) (D.21)

p ≡ −1
2∂µϕ∂µϕ − V (ϕ) (D.22)

uµ ≡ ∂µϕ/
√

−∂αϕ∂αϕ. (D.23)

In particular, if the field is homogeneous, i.e. ∂iϕ = 0, we have

ρ = 1
2 ϕ̇2 + V (ϕ) (D.24)

p = 1
2 ϕ̇2 − V (ϕ). (D.25)

If the potential has a local minimum at ϕ0, then ϕ(t) = ϕ0 is a solution of (D.19), for which

p = −ρ = −V (ϕ0). (D.26)

Back to the energy-momentum tensor, we find

Tµν = V (ϕ0)gµν , (D.27)

which mimics a cosmological term with Λ = 8πGV (ϕ0). Remembering now that the cosmological
constant produces an accelerated expansion, this example turns out to be a key point in inflation.

D.3.2. Friedmann Equations
In the last section, we have seen that we can use the energy-momentum tensor of a perfect fluid
to describe different energy-matter contents in the universe. Then, what remains to be done is to
use it in the Einstein’s equation with the FRW metric so that we can obtain the dynamics of the
scale factor.

We can start saving ourselves some hand work noticing that, although (D.1) has 10 equations
coming from the 10 independent components (remember we have two-index symmetric tensors), the
symmetries in the FRW metric reduces the problem into only two independent equations. In order
to understand it, span the space-time with four normalized 4-vectors, one of them the 4-velocity,
which is timelike, and the three others spacelike, sα (in fact, they are tangent to the homogeneous
hypersurfaces, Σ, we talked before). In Cartesian coordinates, they are {∂t, ∂i; i = x, y, z}. Now,
imposing isotropy we must have6

Gµ
νuν ∝ uµ,

5 Remember that ∂(√−g) = 1
2
√

−ggαβδgαβ = − 1
2
√

−ggαβδgαβ .
6 We are ignoring a cosmological constant now.
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otherwise, we would have a preferred direction in space. Hence, Gµ
νuνsµ = 0. As a result, the

"time-space" components of the Einstein’s equation are identically zero. Besides, the diagonal
"space-space" components produce the same equation, as can be inferred by (D.17). Therefore,
there remains two independent equations:

Gµνsµsν = 8πTµνsµsν → G.. = 8πp (D.28)
Gµνuµuν = 8πTµνuµuν → Gtt = 8πρ, (D.29)

where we used Cartesian coordinates to keep it simple.
Now, it is just a matter of some tedious calculations to obtain the Ricci’s scalar and tensor. The

results are





R00 = −3 ä
a

Rij = δij

[
2ȧ2 + aä + 2 k

a2

]

R = 6
[

ä
a +

(
ȧ
a

)2
+ k

a2

]
.

(D.30)

Using (D.30) into (D.28) and (D.29), we end up with the Friedmann Equations:

ä

a
= Ḣ + H2 = −4π

3 (ρ + 3p) (D.31)
(

ȧ

a

)2
= H2 = 8πρ

3 − k

a2 . (D.32)

There are three important points to be made about them:

1. Combining (D.31) e (D.32), the continuity equation is obtained,

dρ

dt
+ 3H(ρ + p) = 0; (D.33)

2. The Friedmann equations are only two while we have to solve them for three variables. Hence,
we need another relation, the equation of state, which relates the pressure and energy density.
It is usually expressed as

ω = p

ρ
, (D.34)

defining the parameter ω. For radiation, matter and the cosmological constant, w = 1
3 , 0, −1,

respectively;

3. We only have an accelerated expansion if the strong energy condition, ρ + 3p > 0, is violated.
This happens for ω < −1

3 .

D.3.3. General example
Let’s solve in detail the equations for the scale factor and the energy density assuming an arbitrary
ω for k = 0. From (D.33), we have

0 = 1
ρ

dρ

dt
+ 31

a

da

dt
(1 + ω)

= d ln ρ

d ln a
+ 3(1 + ω).
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D.3. Dynamics

Integrating,
ρ(a) ∝ a−3(1+ω).

Together with (D.32), we find

ȧ2 ∝ a−3ω−1

a
3ω+1

2 da ∝ dt.

This leads to the time evolution of the scale factor,

a(t) ∝
{

t
2

3(1+ω) , w /= −1,
expHt, w = −1.

(D.35)

Then, we obtain

ω ρ(a) a(t) a(η)
matter 0 a−3 t2/3 η2

radiation 1
3 a−4 t1/2 η

Λ -1 a0 expHt − 1
η

Table D.1.: The scale factor evolution for different energy contents.
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