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DISSERTAÇÃO DE MESTRADO IFT–D.003/15

Application of effective field theory and Grassmann variables to model

compact binaries with spin

Gilberto Mautner

Orientador

Riccardo Sturani

Coorientador

Nathan Berkovits

Julho de 2015



ii



Agradecimentos
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Resumo

Começamos por revisar um modo de calcular a energia potencial entre dois
corpos sem spin até segunda ordem nas velocidades, através da aplicação de
uma Teoria de Campos Efetiva que modela a interação entre eles por meio
do campo gravitacional. Estendendo este método para que leve em conta
também os graus de liberdade de spin, e descrevendo tais graus de liberdade
através de variáveis de Grassmann, calculamos termos adicionais no potencial
advindos das interações spin-spin e spin-orbital. Finalmente, calculamos a
energia como função da frequência de rotação do sistema binário, incluindo
o efeito destes termos relacionados a spin. Tais resultados devem tornar-se
cada vez mais relevantes para posśıveis medições em observatórios de ondas
gravitacionais tais como LIGO [1] e VIRGO [2].

Palavras-chave: Teoria de Campos Efetiva, Supersimetria, Variáveis de
Grassmann, Sistemas Binários
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Abstract

We review how an approximation of the potential between two spin-less bod-
ies is calculated, up to second order in the velocities, by employing effective
field theory methods to model their interaction though the gravitational field.
By extending this methodology to take into account their spin degrees of free-
dom and by describing such spin degrees of freedom in terms of Grassmannian
variables, we calculate the additional terms in the potential due to spin-spin
and spin-orbital interactions. Finally, we calculate the energy as a function
of rotational frequency of a binary system, including the effect of these spin
related terms. Such results are becoming increasingly relevant in possible
measurements by gravitational observatories like LIGO [1] or VIRGO [2].

Keywords: Effective Field Theory, Supersymmetry, Grassmann Variables,
Binary Systems
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Chapter 1

Introduction

Our goal in this work is to calculate classical quantities associated with a
compact binary system, such as potential and total energy. We’ll apply
two methods that have been separately developed and put them together to
tackle this problem: effective field theories and the application of Grassmann
variables to model spin degrees of freedom.

We begin by briefly reviewing the effective field theory (EFT) method in
chapter 2 and applying it to a toy model of two point particles interacting
through a scalar field which will serve to illustrate the basic concept of gener-
ating an effective action by “integrating out” the field and revealing potential
terms that depend only on the particles’ trajectories. This will also serve as
a prototype to the problem involving the real gravitational field.

Then, in chapter 3 we model a system of two point particles, still spinless,
interacting through a real gravitational field. We employ EFT to integrate
out the mediating gravitational field and give corrections to the Newtonian
potential energy, which will be calculated here up to order 1PN. The obtained
result is, effectively, the Einstein Infeld Hoffmann post-Newtonian potential
as a function of particles’ positions and velocities.

In chapter 4, section 4.1, we review a technique by which spin degrees
of freedom of point particles can be modeled by anticommuting Grassmann
variables in the Lagrangian. We show that they seem to describe spin by
making rotation transformations and seeing them appear in a sum with or-
bital angular momentum that is preserved along rotations. From this result,
in section 4.2, we construct a reparametrization invariant action and then
employ EFT to a system of two spinning particles whose interaction is me-
diated by the gravitational field. With that in hand we are able to generate
new pairings which will give rise to new potential energy terms in the ef-
fective action related to spin-spin and spin-orbit couplings between the two
bodies.

1



Finally, in chapter 5, we use the previously computed results to calculate
the energy associated with system of two spinning bodies with all corrections
associated both with 1PN corrections and terms coming from the spin-spin
and spin-orbit coupling. Then, in the particular case of circular orbits, we
show that we can express this energy in the more useful format of a function
of the rotational frequency without dependence on coordinates such as the
distance between the two bodies.
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Chapter 2

Summary of Effective Field
Theory

2.1 Conceptual Basis

Consider the partition function:

Z[J ] =

∫
Dφe( i~ )

∫
d4xL(φ,∂µφ,J)

Suppose that the action S =
∫
d4xL(φ, ∂µφ, J) varies by large amounts of ~

over small displacements in φ. Then, the partition function will be dominated
by the trajectories near the classical one, which minimizes the action. Further
from these trajectories, the exponent oscillates very rapidly and contributions
cancel out. So, in the classical limit:

lim
~→0

Z[J ] = N e( i~ )S(φcl,J)

Now, making ~ = 1 and defining

iSeff (J) ≡ ln(Z[J ]) (2.1)

We can see that

iSeff (J) = iS(φcl, J) + quantum corrections + const.

In this way, we have achieved a result which, apart from quantum corrections,
gives us the classical action in terms of the sources as the logarithm of the
partition function. If the ~ dependent terms are very small, this effectively
enables us to use all the techniques developed for path integrals, such as
perturbation theory and Feynman diagrams, to extract terms from the action
such as the kinetic energy, potential energy etc.
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2.2 A toy model

In this section we’ll apply the concepts just described above to the case of
sources whose interaction is mediated by a scalar field with no mass and no
self-interaction. That is,

S = Sscalar + Sint + Ssource

Where

Sscalar =

∫
d4x(−1

2
∂µφ∂µφ)

And

Sint =

∫
d4xφ(x)J(x)

In this case, the partition function can be calculated exactly by Gaussian
integration. We have:

Z[J ] = eiSsource
∫
Dφ e

i
∫
d4x{+ 1

2
φ (∂µ∂

µ)︸ ︷︷ ︸
≡∆

φ+ iε
2
φ2+φJ}

= N eiSsourcee−
i
2
J ·∆−1·J

where J ·∆−1 · J ≡
∫∫

d4x1d
4x2J(x1)∆(x1, x2)J(x2) (2.2)

And N is a normalization constant. The term + iε
2
φ2 has been added to make

the integral converge and will result in the iε term in the denominator below,
which implies the time symmetric solution for ∆−1:

∆−1(x1, x2) =

∫
d4k

(2π)4

e−ik·(x1−x2)

−k2 + iε
(2.3)

⇒ ∆∆−1(x1, x2) =

∫
d4k

2π
e−ik·(x1−x2) = δ4(x1 − x2)

Where k2 ≡ kµkµ, therefore −k2 = (k0)2 − k2. Now we want to model the
presence of two point particles. Therefore we want:

J(x, t) ∝ m1δ
3(x− x1(t)) +m2δ

3(x− x2(t))

From the scalar term we see that [φ] = L−1 is required to make the action
term dimensionless. So we need that [J ] = L−3 to make the interaction term
dimensionless as well. Since δ3(x) is already of dimension L−3 we need to

4



offset the dimension of the mass factor. Let’s do that by dividing m by an
arbitrary constant Λ of dimension L−1. We choose:

Λ ≡ (32πGN)−1/2 (2.4)

Where GN is Newton’s gravitational constant. Note that Λ is arbitrary and
that’s OK as long as we aren’t trying to create an experimentally proven
theory; we’re just playing with a toy model to demonstrate the methodology
of effective field theory. So now we define:

J(x, t) =
m1

Λ
δ3(x− x1(t)) +

m2

Λ
δ3(x− x2(t))

And the source term is:

Ssource = −m1

∫
dτ1 −m2

∫
dτ2

From (2.1), (2.2) and (2.3) we conclude that:

Seff = −i ln(Z[J ])

= Ssource−

− i(− i
2

)
m1m2

Λ2

∫∫
d4x d4x′δ3(x− x1(t))δ3(x′ − x2(t′))

∫
d4k

(2π)4

e−ik·(x−x
′)

−k2 + iε
−

− i(− i
2

)
m2

1

Λ2

∫∫
d4x d4x′δ3(x− x1(t))δ3(x′ − x1(t′))

∫
d4k

(2π)4

e−ik·(x−x
′)

−k2 + iε
+

+ 1↔ 2

It can be seen that the terms proportional to m2
1 ( m2

2 ) are constants with no
dependence on the particles’ trajectories, so they can be discarded because
they won’t influence the equations of motion. So, apart from these innocuous
terms we have:

Seff = Ssource −
m1m2

Λ2

∫
dt dt′

∫
dk0

2π
e+i k0(t−t′)

∫
k

e−ik·(x1(t)−x2(t′))

(k0)2 − k2
(2.5)

Now we make use of the expansion:

1

k2 − (k0)2
=

1

k2

(
1 +

(k0)2

k2
+

(k0)4

k4
+ . . .

)
5



We shall see below that this expansion can be done as each successive term
will generate higher orders in v2. So, in zeroth order in k0:

Seff ⊃
∫
dt
m1m2

Λ2

∫
k

e−ik·(x1(t)−x2(t))

k2

=

∫
dt
m1m2

Λ2

1

4πr

=

∫
dt

8GNm1m2

r

Where ∫
k

≡
∫

d3k

(2π)3

And
r ≡ |r| ≡ |x1 − x2|

This gives the following potential term:

V ⊃ −8GNm1m2

r

Which, apart from a factor of 8, resembles the Newtonian gravitational po-
tential. We don’t need to worry about this extra factor because as said before
we’re not trying to deduce that gravity is a scalar field, which we know is not.
We are performing this calculation simply to exercise the method of calcu-
lating potential terms starting from partition functions in a simpler scenario
before we go to the more complicated (and real) gravitational case.

We can also calculate the higher order terms in (k0)2. For example, we
can calculate the term of first order in (k0)2. To do that, first notice that

1

k2 − (k0)2
=

1

k2

(
1 +

(k0)2

k2
+

(k0)4

k4
+ . . .

)
can be written inside the integral in (2.5) as

1

k2

(
1 +

∂t∂t′

k2
+

(∂t∂t′)
2

k4
+ . . .

)
Where the time derivatives are applied to e+i k0(t−t′). Then, to first order in
(k0)2/k2 we’ll have the term:

Seff ⊃
m1m2

Λ2

∫
dt dt′

∫
dk0

2π
(∂t∂t′e

+i k0(t−t′))

∫
k

e−ik·(x1(t)−x2(t′))

k4

6



After integrating by parts both with respect to t and t′:

Seff ⊃
m1m2

Λ2

∫
dt dt′δ(t− t′)

∫
k

kiv1i(t)kjv2j(t
′)
e−ik·(x1(t)−x2(t′))

k4

=
m1m2

Λ2

∫
dt v1i(t)v2j(t)(−∂ri∂rj)

∫
k

e−ik·r(t)

k4
(2.6)

Here we can see, as stated previously, that each consecutive term in the
expansion in (k0)2/k2 generates a higher order term in velocities.

We use that ∫
k

e−ik·r

k2α
= r2α−3π−3/22−2αΓ(3/2− α)

Γ(α)

Which, for α = 2, gives: ∫
k

e−ik·r

k4
= − r

8π

Also, since

∂ri∂rjr =
δij
r
− rirj

r3

Then (2.6) becomes:

Seff ⊃ 32πGNm1m2

∫
dt v1iv2j

1

8π

(
δij
r
− rirj

r3

)
From which we get the following additional potential terms:

V ⊃ 4GNm1m2

(
− v1 · v2

r
+
rirj
r3

vivj

)
Although seemingly this potential appears to imply action at a distance (since
velocities and positions of the particles are measured at the same time), this
actually comes from trading knowledge about the particles’ positions at all
times for knowing all higher derivatives in the Taylor expansion and, then,
since we’re assuming velocities much smaller than 1, we’re allowing ourselves
to treat the problem perturbatively and consider only the first leading orders.

7
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Chapter 3

EFT for two gravitationally
interacting spin-less particles

In the previous section we illustrated the usage of EFT to calculate the
potential in a simple case involving a scalar field that mediates the interaction
between two spin-less particles. Despite some resemblance to the Newtonian
potential obtained in the end, we know that gravity is a rank 2 tensor field,
not a scalar. In this chapter we will take this into account and calculate the
potential terms given by all degrees of freedom of the gravitational field.

In order to tackle this more complicated problem we will break it into
three parts:

First obtain the quadratic field terms of the action in terms of components
of gravity taken from a useful ansatz (section 3.1).

Second, we will calculate the source terms in the action, which, contrary
to the last chapter, now play a role in the potential because of the non-flat
metric (section 3.2).

Third, calculate the potential terms up to 1PN order by contracting the
fields in the composite (field + source) action (section 3.3)

3.1 Quadratic field terms in the action

Here we’ll use the following variable redefinition for the metric as prescribed
by [4] and is inspired by Kaluza-Klein, although it is used here for a different
purpose than adding an extra dimension to unify gravity and electromag-
netism, but to create a hierarchy among the gravity component fields in 4
dimensions:

gµν = e2φ/Λ

(
−1 Aj/Λ
Ai/Λ e−cdφ/Λγij − AiAj/Λ2

)
(3.1)

9



with γij ≡ δij + σij/Λ and cd ≡ 2d−1
d−2

. So far we are simply rewriting gµν in
terms of new components φ, Aj and σij. The total action is given by:

S = SEH + SGF + Spp = Squad + Spp

Where SEH refers to the standard Einstein Hilbert action, expanded to
quadratic order in the fields, SGF is the harmonic gauge fixing term which
we can find, for example, in [6] and Spp refers to the two point particles’
world-lines which will be detailed in the next section. In this section we’ll
calculate the sum Squad = SEH + SGF up to quadratic order where

SEH =
1

16πGN

∫
dt ddx

√
−gR (3.2)

SGF =
−1

32πGN

∫
dt ddxgµνΓ

µΓν (3.3)

With Γµ ≡ Γµνρg
νρ. The calculations were performed with the help of the

Mathematica notebook as explained in Appendix A. We got:

Squad =

∫
dt ddx

{
4

[
− (~∇φ)2 + φ̇2

]
+

[
F 2
ij

2
+ (~∇ · ~A)2 − ~̇A 2

]

+

[
− 1

4
σ̇2 +

1

4
(~∇σ)2 +

1

2
σ̇2
ij −

1

2
(~∇σij)2

]}
(3.4)

Now we calculate the Green’s functions associated with each field in the
above action. These Green’s functions arise when fields in two different
space-time coordinates are “paired up” such as, for example, in the following
expression:

GF

(
x1(t1); t1,x2(t2); t2

)
≡ 1

Z[φ, J = 0]

∫
Dφ eiS[φ]φ

(
x1(t1), t1

)
φ
(
x2(t2), t2

)
=

1

Z[φ, J = 0]

{
δ

iδJ
(
x1(t1), t1

) δ

iδJ
(
x2(t2), t2

)∣∣∣∣
J=0

Z[φ, J ]

}

Where

Z[φ, J ] ≡
∫
Dφ ei

(
S[φ]+

∫
dt ddxφ(x,t)J(x,t)

)
In the last chapter, we have calculated the partition function for a scalar

field. Given:

Sscalar =

∫
d4x(−1

2
∂µφ∂µφ)

10



the partition function can be calculated exactly giving:

Z[J ] =

∫
Dφ e

i
∫
d4x{+ 1

2
φ (∂µ∂

µ)︸ ︷︷ ︸
≡∆

φ+φJ}

= N e−
i
2
J ·∆−1·J

where J ·∆−1 · J ≡
∫∫

d4x1d
4x2J(x1)∆(x1, x2)J(x2) (3.5)

And

∆−1(x1, x2) =

∫
d4k

(2π)4

e−ik·(x1−x2)

−k2 + iε

In this case the Green’s function will be:

GF

(
x1(t1); t1,x2(t2); t2

)
=

1

Z[φ, J = 0]

{
δ

iδJ
(
x1(t1), t1

) δ

iδJ
(
x2(t2), t2

)∣∣∣∣
J=0

Z[φ, J ]

}
=

1

N
1

i2
N
(
− i∆−1

(
x1(t1); t1,x2(t2); t2

))
=− i

∫
dk0

2π

∫
k

e−ik
0(t2−t1)+ik·

(
x2(t2)−x1(t1)

)
k2 − (k0)2 − iε

(3.6)

Observe that GF as defined obeys GF = i∆−1 so that it obeys GF∆(x1, x2) =
iδ4(x1 − x2) as expected for Green’s functions in Field Theory.

Note, also, that we’re simply reusing the results obtained in the last
chapter in (2.2) and (2.3) but this time Ssource is not factored out. It will be
expanded in powers of the fields and, when summed to the action, will cause
the appearance of 2-point and 4-point functions etc. modifying the potential
as will become clear in section 3.3.

So we follow ahead with the plan and calculate the Green’s functions
associated with each field appearing in the quadratic action (3.4).

3.1.1 φ Green’s function

The only difference between the quadratic term in φ and the scalar field
example of last section is the factor of 4 instead of 1/2. Since the Green’s
function is the inverse of the operator, it should be one eighth of the one
obtained in (3.6). Then

G
(φ)
F (x, t) = − i

8

∫
dk0

2π

∫
k

e−ik
0t+ik·x

k2 − (k0)2 − iε
(3.7)

11



3.1.2 ~A Green’s function

Take a look at the ~A term in the integrand in the quadratic field action (3.4).
It is: [

F 2
ij

2
+ (~∇ · ~A)2 − ~̇A 2

]
First note that:

F 2
ij

2
=

1

2
(∂iAj − ∂jAi)(∂iAj − ∂jAi)

=∂iAj∂iAj − ∂jAi∂jAi
=− Ai(δij∇2 − ∂i∂j)Aj

Where we integrated by parts in the last step. We also have:

(~∇ · ~A)2 = ∂iAi∂jAj = −Ai∂i∂jAj

And finally:

− ~̇A 2 = + ~A · ∂
2

∂t2
~A = Ai

∂2

∂t2
δijAj

Putting it all together we find that:[
F 2
ij

2
+ (~∇ · ~A)2 − ~̇A 2

]
=

1

2
(−2)Ai∂

µ∂µδijAj

Here the operator 1
2
∂µ∂µ is multiplied by a factor of −2 whose inverse is −1/2

and there’s also an outer product with δij whose inverse is δij itself. So we
conclude that:

G
(A)
F (x, t)ij =

i

2
δij

∫
dk0

2π

∫
k

e−ik
0t+ik·x

k2 − (k0)2 − iε
(3.8)

3.1.3 σ Green’s function

After integrating by parts, the quadratic terms in σ present in the action
(3.4) can be written in the following form:[

σii

(
− 1

4
∂µ∂µ

)
σkk + σij

(
1

2
∂µ∂µ

)
σij

]
=σij

(
− 1

2
δijδkl

)(
1

2
∂µ∂µ

)
σkl + σij

(
1

2
δikδjl +

1

2
δilδjk

)(
1

2
∂µ∂µ

)
σkl

=σijMijkl

(
1

2
∂µ∂µ

)
σjk

12



With

Mijkl ≡
1

2
δikδjl +

1

2
δilδjk −

1

2
δijδkl

To find the inverse operator, we have to multiply the already found inverse
of (1/2 ∂µ∂µ) by the inverse of M .

Such inverse should by a matrix M−1
ijkl such that

M−1
ijklMklmn =

1

2
(δimδjn + δinδjn)

The right hand side is the identity matrix with double and symmetric indices
ij and mn. It can be checked that the solution is given by:

M−1
ijkl =

1

2

(
δikδjl + δilδjk −

2

d− 2
δijδkl

)
Where d is the number of spatial dimensions. Therefore the Green’s function
for d = 3 is:

G
(σ)
F (x, t)ijkl =

−i
2

(δikδjl + δilδjk − 2δijδkl)

∫
dk0

2π

∫
k

e−ik
0t+ik·x

k2 − (k0)2 − iε
(3.9)

3.2 Source term

We will now write the source term for each particle which will be summed
with the quadratic action term calculated in last section.

The expression for a particle’s action is

Spp = −m
∫
dτ = −m

∫ √
−gµνdxµdxν = −m

∫
dt
√
−g00 − 2g0ivi − gijvivj

Using the definition of the metric components given in (3.1) this action be-
comes:

Spp = −m
∫
dt eφ/Λ

√
1− 2

Ai
Λ
vi − e−cdφ/Λ(v2 +

σij
Λ
vivj − AiAj

Λ2
vivj)

What we’re going to do next is expand the integrand in powers of the
fields φ, A and σ. In this way, as will become apparent in the next sec-
tion, expressions of type

∫
Dφ eiSquadeiSpp can be expanded into ones of type∫

Dφ eiSquadφ(x1)φ(x2) which in turn are equal to the Green’s function cal-
culated in the section above.
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Up to second order we have:

ex ≈ 1 + x+
x2

2
√

1 + x ≈ 1 +
x

2
− x2

8

We then get, up to order v2:

Spp ≈ −m
∫
dt

(
1 +

φ

Λ
+

φ2

2Λ2

)
×

×
(

1− Ai
Λ
vi +

3AiAj
4Λ2

vivj − v2

2
− σij

2Λ
vivj +

cdφ

2Λ
v2 +

cdφσij
2Λ2

vivj − c2
dφ

2

4Λ2
v2

)
+ . . .

= −m
∫
dt

[√
1− v2 +

φ

Λ

(
1 +

3

2
v2

)
+

φ2

2Λ2

(
1 +O(v2)

)
− Ai

Λ
vi
(

1− 3Aj
4Λ

vj
)

− σij
2Λ
vivj

(
1− cdφ

Λ

)]
(3.10)

Where we used cd = 4. Only terms up to order v2 are displayed. We also
omitted terms with products of 3 or more fields, such as, for example, φAiAj
or φ2σij. This omission is fine because, as will be detailed in the following
section, these terms give rise to vanishing or quantum contributions, which
can be neglected.

3.3 Calculation of potential terms

Now we will find the effective action terms which will be present in the
potential. We start from (2.1) substituting the results from (3.10):

iSeff = ln

∫
DφDADσ eiSquad

{
1 + · · ·+ i2

2

×
[
− m1

Λ

∫
dt1

(
φ
(

1 +
3

2
v2

1

)
+
φ2

2Λ
− Aivi1

)
− m2

Λ

∫
dt2

(
φ
(

1 +
3

2
v2

2

)
+
φ2

2Λ
− Aivi2

)
+ . . .

]2

+
i3

6

[
− m1

Λ

∫
dt1(φ(1 + . . . ))− m2

Λ

∫
dt2

(
· · ·+ φ2

2Λ
+ . . .

)]3

+ . . .

}
(3.11)
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We see that Green’s functions will start to appear when we combine (“pair
up”) fields of the same type at different space-time points. For example,
taking the term linear in φ in the second line and multiplying by the analog
term in the third line will give rise to the following term:

eiSeff ⊃
∫
DφDADσ eiSquad

[
1− m1m2

Λ2

∫∫
dt1dt2φ

(
x1(t1), t1

)
φ
(
x2(t2), t2

)
×
(

1 +
3

2
v2

1

)(
1 +

3

2
v2

2

)]
= N +N

[
− m1m2

Λ2

∫∫
dt1dt2G

(φ)
F

(
x1(t1)− x2(t2), t1 − t2

)
×
(

1 +
3

2
v2

1

)(
1 +

3

2
v2

2

)]
Using what we found for φ Green’s function in (3.7) and approximating
ln(1 + x) ≈ 1 + x, we get, apart from an additive constant:

Seff ⊃
m1m2

8Λ2

∫∫
dt1dt2

∫
dk0

2π

∫
k

e−ik
0(t1−t2)+ik·

(
x1(t1)−x2(t2)

)
k2 − (k0)2

(
1 +

3

2
v2

1

)(
1 +

3

2
v2

2

)
We now use the same prescription of section 2.2 with

1

k2 − (k0)2
=

1

k2

(
1 +

(k0)2

k2
+

(k0)4

k4
+ . . .

)
=

1

k2

(
1 +

∂t1∂t2
k2

+
(∂t1∂t2)2

k4
+ . . .

)
Up to order v2 will we get:

Seff ⊃
∫
dt
m1m2

8Λ2

[
1

4πr

(
1 +

3

2
v2

1 +
3

2
v2

2

)
− vi1vi2∂ri∂rj

(
− r

8π

)]
=

∫
dt
GNm1m2

r

[
1 +

3

2
v2

1 +
3

2
v2

2 +
1

2

(
v1 · v2 − (v1 · r̂)(v2 · r̂)

)]
(3.12)

Where we have used that

vi1v
i
2∂ri∂rjr = vi1v

j
2

(
δij
r
− rirj

r3

)
And the definition of Λ given in equation (2.4).

Notice that in (3.11) we’re hiding a lot of terms. That’s because their
pairing won’t generate relevant contributions. These are the criteria accord-
ing to which we include pairings:
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1. We only want terms which contain pairs of the same field. Terms with
an odd power of any field will give zero because

∫
d[φ(x)]eiSquad(φ(x))n

vanishes for n odd.

2. We only want contributions up to order v2. Because of this, for ex-
ample, terms proportional to σij from (3.10) aren’t considered because
their pairing is of order v4.

3. We aren’t including quantum contributions. The power of ~ is pro-
portional to the number of vertices minus the number of internal lines.
Then, for example, pairing φ2 from two different terms will give a power
of ~ superior to the other terms. Notice, however, that the cubic term
which includes one φ2 and two different φ’s will give a non-quantum
contribution because the extra vertex will be compensated by an addi-
tional internal line, as we will see below.

Leaving aside the contributions excluded by the above considerations, we
have the term calculated in (3.12) plus others. The next one will come from
the pairing of the A · v terms:

eiSeff ⊃
∫
DφDADσ eiSquad

[
1 +

i2

2

× 2
m1m2

Λ2

∫∫
dt1dt2AiAjv

i
1(t1)vj2(t2)

]
= N +N

{
− m1m2

Λ2

∫∫
dt1dt2G

(A)
F

(
x1(t1)− x2(t2), t1 − t2

)
ij
vi1(t1)vj2(t2)

}

From (3.8) we substitute the Green’s function for the A field. We see that
only the order zero expansion in (k0)2 is needed here since the expression is
already quadratic in v. Then:

iSeff ⊃ −
∫
dt
m1m2

Λ2

∫
dt1dt2

i

2
δij δ(t1 − t2)

1

4πr
vi1(t1)vj2(t2)

= −
∫

i

2

m1m2

Λ2

1

4πr
v1 · v2

From which we obtain:

Seff ⊃ −
∫
dt

4GNm1m2

r
v1 · v2 (3.13)
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There is yet another way to combine terms in (3.11) which is to contract
two φ’s from the fourth line with the φ2 from the same line:

iSeff ⊃ ln

∫
DφDADσeiSquad

[
1 +

i3

6

× −3m2
1m2

2Λ4

∫∫∫
dtA dtB dtC φ(x1, tA)φ(x1, tB)φ2(x2, tC)

]
(3.14)

Where the factor of 3 in the second line is due to the three different ways to
generate the product in the integrand from the cubic term in (3.11).

To save space let’s use the following notations:

A↔ (x1, tA) B ↔ (x1, tB) C ↔ (x2, tC)

φAφBφ
2
C ≡ φ(x1, tA)φ(x1, tB)φ2(x2, tC)

δJA ≡
δ

δJ(x1, tA)
δJB ≡

δ

δJ(x1, tB)
δJC ≡

δ

δJ(x2, tC)

J ·GF · J ≡
∫∫

dt1 dt2 d
3x1 d

3x2 J(x1, t1)GF

(
x1(t1)− x2(t2), t1 − t2

)
J(x2, t2)

GF · J(A) ≡
∫
dt ddxGF

(
x1(tA)− x(t), tA − t

)
J(x, t)

GF (A,C) ≡ GF

(
x1(tA)− x2(tC), tA − tC

)
Then

Z[J ] =

∫
DφDADσeiSquad+

∫
dt ddxφJ = N e−

1
2
J ·GF ·J

And∫
DφDADσeiSquadφAφBφ2

C =
1

i4
δJAδJBδ

2
JC
Z[J ]

∣∣∣∣
J=0

=N δJAδJBδ
2
JC
e−

1
2
J ·GF ·J = N

[
δJAδJBδJC

(
−GF · J(C) e−

1
2
J ·GF ·J

)]
=N δJAδJB

{[(
GF · J(C)

)2

−GF (C,C)

]
e−

1
2
J ·GF ·J

}

=N δJA

{[
2
(
GF · J(C)

)
GF (B,C) +GF (C,C)

(
GF · J(B)

)
+O(J2)

]
e−

1
2
J ·GF ·J

}∣∣∣∣∣
J=0

=N
[
2GF (A,C)GF (B,C) +GF (C,C)GF (A,B)

]
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Now substituting the result above, together with φ Green’s function ob-
tained in (3.7) into (3.14) we have, to order v0:

iSeff ⊃ ln

{
N −N im2

1m2

128Λ4

∫∫∫
dtA dtB dtC

∫
dk0

2π
e−ik

0(tA−tC)

∫
dk0′

2π
e−ik

0′(tB−tC)

∫
k

eik·
(
x1(tA)−x2(tC)

)
k2

∫
k′

eik
′·
(
x1(tB)−x2(tC)

)
k′2

}

iSeff ⊃ −i
m2

1m2

128Λ4

∫
dt

[ ∫
k

eik·(x1−x2)

k2

]2

= − i

128
m2

1m2(32πGN)2 × 1

(4πr)2

= −iG
2
Nm

2
1m2

2r2

Including the 1↔ 2 combination we get:

Seff ⊃ −
∫
dt
G2
Nm1m2(m1 +m2)

2r2
(3.15)

Putting together equations (3.12), (3.13) and (3.15) we find the Einstein
Infeld Hoffman corrections to the Newtonian potential:

VEIH = −GNm1m2

2r

[
3(v2

1+v2
2)−7v1·v2−(v1·r̂)(v2·r̂)

]
+
G2
Nm1m2(m1 +m2)

2r2

(3.16)
Essentially, what we’ve done so far is calculating the O(v2) (1PN) correc-

tions to the Newtonian potential using field theoretic methods. We will now
extend this technique to the case of spinning bodies. Note, also, that the last
term has scale proportional to (GM/r)2 and is, therefore, of the same PN
order since each additional factor of (GM/r) is of the same order of v2.
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Chapter 4

The Case of Spinning Particles

4.1 Usage of anti-commuting Grassmann vari-

ables for spin degrees of freedom

The problem of calculating additional terms in the above potential due to
spinning degrees of freedom has already been solved in EFT as seen, for
example, in [7]. However, here we will devise a different approach leading
to the same results, which is based on the modeling of the spin degrees of
freedom by anti-commuting Grassmann variables as depicted in [8]. In this
section we will make a brief summary of this method, and in the following
section we will apply it to our problem of two bodies interacting through the
gravitational field.

The point particle action written in a reparametrization invariant way is
given by:

Spp =

∫
dτ
√
−ẋµẋµ

As explained, for example, in [9], the action can be put in another useful form
by introducing a one-dimensional world-line metric γττ (τ) and its square root
η(τ) ≡

√
−γττ (τ). In 4 dimensions we would call η a tetrad or vierbein; since

it depends only on the world-line parameter τ we call it the einbein. The
action:

S ′pp =
1

2

∫
dτ
(
η−1ẋµẋµ − η m2

)
also has reparametrization invariance. By varying η we find the equation of
motion:

η2 = −ẋµẋµ/m2 (4.1)

When substituting this back into S ′pp we get back the first form Spp.
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If τ is the proper time then from the equation of motion η = 1/m. In
this case we can write

S ′pp =
1

2

∫
dτ(mẋµẋµ −m)

Where we no longer have reparametrization invariance. In order to be consis-
tent with the notation in [8] we will use another parameter s = τ/2m which
is also proportional to the proper time. We can then rewrite the action as

S ′pp =

∫
ds

(
1

4
ẋµẋµ −m2

)
(4.2)

So that

L =
1

4
ẋµẋµ

We don’t need to include the m2 term in the Lagrangian since, in the partic-
ular case when s is proportional do the proper time, it is constant and thus
doesn’t influence the equations of motion. But we should keep this in mind
as we’ll put it back later when we will need to express the action in another
parameter different from the particle’s proper time.

Ravndal proposes in [8] that we modify the Lagrangian in the following
way to describe the additional spinning degrees of freedom, first in the case
of a free particle (gµν = ηµν):

L =
1

4
(ẋµẋµ − iξµξ̇µ)

Where he introduces the four Grassmann variables ξµ = ξµ(s) which anti-
commute:

{ξµ, ξν} = 0

The hint that ξµ expresses the spin degrees of freedom comes from observing
that the Lagrangian is invariant under Lorentz transformations:

δxµ = εµνx
ν δξµ = εµνξ

ν

Where εµν = −ενµ are infinitesimal parameters.
By Noether’s theorem the conserved quantity associated with this sym-

metry is given by
K = δxµpµ + δξµζµ

Where pµ and ζµ are the conjugate momenta:

pµ ≡
∂L

∂xµ
ζµ ≡

∂L

∂ξµ
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From which we get then the conserved quantity K as:

K = −1

2
εµν
[
(xµpν − xνpµ) +

i

4
(ξµξν − ξνξµ)

]
We see then that Jµν = Lµν + Sµν is conserved where

Lµν = xµpν − xνpµ

is the orbital angular momentum and

Sµν =
i

4
[ξµ, ξν ] (4.3)

is the spin angular momentum.
This gauge fixed action is also verified to be SUSY invariant by expressing

it in the form of super-variables:

Xµ(s, θ) = xµ(s) + iθξµ(s)

Where the SUSY transformations are induced by:

θ → θ + ε s→ s− iεθ

So that

xµ + iθξµ → xµ − iεθẋµ + i(θ + ε)(ξµ − iεθξ̇µ)

= xµ + iεξµ︸︷︷︸
δxµ

+iθ(ξµ + εẋµ︸︷︷︸
δξµ

)

Which makes evident the component transformations:

δxµ = iεξµ δξµ = εẋµ (4.4)

We define the fermionic operator Q such that

δQX
µ = δxµ + iθδξµ = iεξµ − iεθẋµ ≡ −iεQXµ

Implying

Q = θ
∂

∂s
+ i

∂

∂θ

We see that Q satisfies the supersymmetry algebra:

{Q,Q} = 2i∂s
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And it is also convenient to define the operator:

D ≡ θ∂s − i∂θ

satisfying the anti-commutation relation:

{Q,D} = 0

Finally, we can show that our Lagrangian can be written as:

L =
1

4
(ẋµẋµ − iξµξ̇µ) =

1

4

∫
dθẊµDXµ

which can be checked by substituting D, Xµ and using the standard rules
for integration of Grassmann variables:∫

dθ = 0

∫
dθ θ = 1

Following the rationale in [8], once we have the Lagrangian for the free
particle using super-variables, under the presence a gravitational field we
must simply exchange ηµν → gµν . That is,

L =
1

4

∫
dθ gµν(X)ẊµDXν

obtaining the correct equations in motion.
When expanding the Lagrangian in component form, remember that

gµν(X) is expressed with a super-variable in the argument, therefore it has
to be expanded like:

gµν(x+ iθξ) = gµν(x) + iθξλ∂λgµν(x)

Then the Lagrangian in component form is expressed as

L =
1

4
gµν(ẋ

µẋν − iξµξ̇ν)− i

4
gµν,λẋ

µξνξλ (4.5)

With the conjugate momenta being given by

pµ =
∂L

∂xµ
=

1

2
ẋµ − 1

2
SλνΓλνµ

ζµ =
∂L

∂ξµ
=
i

4
ξµ
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One important fact which will be used later on is that there is a conserved
quantity associated with symmetries (4.4). Under these transformations, the
Lagrangian (4.5) changes by the total derivative:

δL =
i

4
ε
d

ds
(gµνξ

µẋν)

Implying the conserved quantity:

K = δxµpµ + δξµζµ −
i

4
ε
d

ds
(gµνξ

µẋν) =
1

2
iεξµẋµ

That is, ξµẋµ is conserved.

4.2 Reparametrization invariant action and

new pairings

Now we take a detour from [8]. Here we have a different objective. Instead
of deriving the equations of motion we want to write the action from the
reference frame of an observer far away from the two particles. Therefore we
cannot use the proper time so we have to go back to the reparametrization
invariant form of the action.

First remember we had a m2 term in (4.2) coming from the reparametriza-
tion invariant expression, so we put it back in the Lagrangian (4.5):

S =
1

4

∫
ds
[
gµν(ẋ

µẋν − iξµξ̇ν)− igµν,λẋµξνξλ − 4m2
]

Then change the parameter to τ = 2ms obtaining:

S =
1

2

∫
dτ
[
gµν(mẋµẋν − i

2
ξµξ̇ν)− i

2
gµν,λẋ

µξνξλ −m
]

Here we are still using the proper time as the parameter for the world-line
of the particle and the m term wouldn’t change the equations of motion. To
go back to the reparametrization invariant way, first notice that η(τ) = 1/m
and since, under any change of parameter, η(τ)dτ = η′(t)dt, we have:

dτ = mη′(t)dt⇒ d

dτ
=

1

mη′(t)

d

dt

Therefore, making the change of variable from τ to t (and dropping the prime
from η):

S =
1

2

∫
dt

[
gµν

(
η−1ẋµẋν − i

2
ξµξ̇ν

)
− i

2
gµν,λẋ

µξνξλ − η m2

]
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Now we can see that the m2 term influences the equations of motion since
it couples with η. Also, comparing to (4.1) we see that the equation of motion
of η is unchanged since the new terms containing ξ don’t couple with η. So
we get the same result which we repeat here:

η2 =
−gµν ẋµẋν

m2

Substituting η back into the action we get:

S =

∫
dt

[
−m

√
−gµν ẋµẋν −

i

4
gµνξ

µξ̇ν − i

4
gµν,λẋ

µξνξλ
]

The two new terms in the particle’s action, compared to the spin-less case,
will generate new pairings in the partition function and therefore modify the
potential. In order to calculate this effect we have to expand them into the
gravitational component fields as below:

− i

4
gµνξ

µξ̇ν =

− i

4
e2φ/Λ

[
− ξ0ξ̇0 +

Ai
Λ

(ξ0ξ̇i + ξiξ̇0) + e−cdφ/Λ
(
ξaξ̇a +

σij
Λ
ξiξ̇j

)
− AiAj

Λ2
ξiξ̇j

]
(4.6a)

− i

4
gµν,λẋ

µξνξλ =

− i

4

[
g00,iξ

0ξi + g0i,0ξ
iξ0 + g0i,jξ

iξj + gi0,jv
iξ0ξj + gij,0v

iξjξ0 + gij,kv
iξjξk

]
(4.6b)

Let us first focus on the O(v0) terms. Let’s consider that the conserved
quantity ξµẋµ is zero, which is allowed given that its square will always be
zero. Then, we should have ξ0 = ξivi. Since, for now, we’re interested only
in O(v0) corrections, the terms containing ξ0 don’t matter.

Continuing further to the second part (4.6b) we see that after disconsid-
ering terms containing ξ0 or of O(v) we’re left only with:

− i

4

[
g0i,jξ

iξj
]

= − i
4

[
2

Λ
∂jφ e

2φ/λAi
Λ

+ e2φ/Λ∂jAi
Λ

]
ξiξj

We see above that the only term whose pairing generates non quantum con-
tributions will be the one in zeroth order in φ and first order in A, that
is:

− i

4

∂jAi
Λ

ξiξj (4.7)
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This pairing can be calculated as follows:∫
DφDADσeiSquad ∂jAi(x)

Λ

∂j′Ai′(x
′)

Λ

=
1

Λ2
∂j∂j′

∫
DφDADσeiSquadAi(x)Ai′(x

′)

=
1

Λ2
∂j∂j′

(
− 1

2
δii′

)[
− i
∫
k

dk0

2π

e−ik
0(t−t′)+ik·

(
x(t)−x′(t′)

)
k2 − (k0)2

]

=
i

2Λ2
δii′

∫
k

dk0

2π

e−ik
0(t−t′)+ik·

(
x(t)−x′(t′)

)
k2 − (k0)2

kjkj′ (4.8)

Where we used that
∂j∂j′ = ikj(−ikj′) = kjkj′

We’ll also use (4.3) to define the spatial components of spin:

Sk =
1

2
εijkSij

⇒ 1

2
i ξiξj = Sij = εijkSk

⇒ ξiξj = −2i εijkSk

Now we are in conditions to start evaluating pairings. The first one we
can look at is the pairing between two terms containing ∂jAi. Substituting
(4.7) and the above definition for the spatial components of spin:

iSeff = ln

∫
DφDADσ eiSquad

{
1 + · · ·+ i2

2

×
[
− i

4

∫
dt
∂jAi

Λ
(−2i)εijkSk

− i

4

∫
dt′
∂j′Ai′

Λ
(−2i)εi′j′k′Sk′ + . . .

]2

+ . . .

}

(Note that we’re using unprimed and primed indices to denote the two
particles to make notation cleaner). Using (4.8) we get:

iSeff ⊃ −
i

8Λ2
δii′

∫
dt dt′δ(t− t′)

∫
k

(
1 +

∂t∂t′

k2
+ . . .

)
eik·
(
x(t)−x′(t′)

)
k2

kjkj′

× εijkSk
(
x(t), t

)
εi′j′k′S

′
k′

(
x′(t′), t′

)
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Using that:

δii′ εijk εi′j′k′ = εijk εij′k′ = δjj′ δkk′ − δjk′ δj′k

We then get the following terms with zeroth order in velocities:

iSeff ⊃ −
i

8Λ2
S · S′

∫
dt

∫
k

eik·(x−x
′) +

i

8Λ2
SjS

′
k

∫
dt

∫
k

eik·(x−x
′)

k2
kkkj

=
i

8Λ2
S · S′

∫
dt δ3(x− x′)− i

8Λ2
SjS

′
k

∫
dt ∂rj∂rk

(
1

4πr

)
Where we have used that ∂rj∂rke

ik·r = −kjkk eik·r.
The first term can be ignored since we’re dealing with bodies interacting

over a long distance compared to their own radii. To calculate the second
term we note that:

∂rj∂rk

(
1

r

)
= −δjk

r3
+

3 rjrk
r5

So we obtain:

iSeff ⊃
∫
dt

i

32πΛ2

[
S · S′

r3
− 3

r3
(S · r̂)(S′ · r̂)

]
Substituting Λ = (32πGN)−1/2 we finally obtain the spin-spin contribu-

tion to the potential (changing notation for particles to indices 1 and 2):

VSS =
GN

r3

[
− S1 · S2 + 3(S1 · r̂)(S2 · r̂)

]
(4.9)

Matching the result previously obtained for the spin-spin potential by [7].
Now we look at contributions of O(v). The first possibility arises from

combining the A·v term from (3.11) with the O(v0) term due to the spinning
degrees of freedom (4.7):

iSeff = ln

∫
DφDADσ eiSquad

{
1 + · · ·+ i2

2

×
[
− i

4

∫
dt1

∂jAi
Λ

(−2i)εijkS
(1)
k

+
m2

Λ

∫
dt2
(
Alv

(2)
l

)
+ . . .

]2

+ . . .

}
+ 1↔ 2

Using the Green’s function forA calculated in (3.8) and that ∂/∂x
(1)
j eik·(x

(1)−x(2)) =

−∂/∂x(2)
j eik·(x

(1)−x(2)) = ∂/∂rj e
ik·(x(1)−x(2)) with r ≡ x(1) − x(2):
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iSeff ⊃ −
1

2
· 2
(
− i

4

)
m2

Λ2

∫∫
dt1 dt2

[
(−2i) εijkS

(1)
k v

(2)
l ∂rj

i

2
δil

(
1 +

∂t1∂t2
k2

+ . . .

)

× δ
(
t1 − t2

) ∫
k

eik·
(
x1(t1)−x2(t2)

)
k2

]
− 1↔ 2

⇒ iSeff ⊃
∫
dt

[
i

4Λ2
m2v

(2)
i εijkS

(1)
k ∂rj

1

4πr

]
− 1↔ 2

= i

∫
dt 2GN

[
−1

r3
εijkS

(1)
k m2rjv

(2)
i

]
− 1↔ 2 (4.10)

There is yet another possible contribution of O(v). It comes from pair-
ing O(v0) terms in (3.11) with O(v) terms in (4.6b). We see that the non
quantum contributions will come from the pairing of φ. Expanding the O(v)
terms in (4.6b) to first order in φ we obtain:

− i

4

[
g00,iξ

0ξi + g0i,0ξ
iξ0 + gij,kv

iξjξk
]

=− i

4

{
∂i(−e2φ/Λ)ξ0ξi + ∂t

(
e2φ/ΛAi

Λ

)
ξiξ0

+ ∂k

[
e(2−cd)φ/Λ

(
δij +

σij
Λ

)
− e2φ/ΛAiAj

Λ2

]
viξjξk

}

=− i

4

[
− 2

Λ
(∂iφ)ξ0ξi +

2− cd
Λ

(∂kφ)δijv
iξjξk

]
=− i

4

[
− 2

Λ
(∂iφ)(−2i)Sjivj −

2

Λ
(∂kφ)vi(−2i)Sik

]
=

2

Λ
(∂iφ)εjikSkvj

In the first line, we neglected the terms of orders different than O(v). In
the fourth line, we expanded only to first order in φ and no orders in the
other fields (non quantum contributions). In the fifth line, we used that
ξµξν = (−2i)Sµν and cd = 4. In the last line, we used that Sji = εjikSk.

The pairing with −m2

Λ

∫
dt φ will produce:
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iSeff ⊃
∫
DφDADσeiSquad

{
i2

2
· 2 · 2m2

Λ2
∂

(1)
i

∫∫
dt1 dt2 φ(x1)εjikS

(1)
k v

(1)
j φ(x2)

}
+ 1↔ 2

Where x1 and x2 are the four-vector coordinates of particles 1 and 2.
Making use of the Green’s function for φ calculated in (3.7), and noting

that we don’t want to go beyond O(v), so that we can approximate 1/(k2 −
(k0)2) ≈ 1/k2 we obtain:

iSeff ⊃ −
im2

4Λ2
∂ri

∫
dt

1

4πr
εjikS

(1)
k v

(1)
j − 1↔ 2

= i

∫
dt 2GN

[
1

r3
εjikS

(1)
k m2riv

(1)
j

]
− 1↔ 2 (4.11)

Where we used that ∂
(1)
i = −∂(2)

i = ∂ri
Summing the two contributions (4.10) and (4.11) we obtain:

iSeff ⊃ i

∫
dt 2GN

[
1

r3
εijkS

(1)
i m2rj

(
v

(2)
k − v

(1)
k

)]
− 1↔ 2

= −i
∫
dt

2GNm2

r3
S(1) · L(2,1) + 1↔ 2 (4.12)

Where we define L(2,1) ≡ m2(r2 − r1)× (v2 − v1) to be the orbital angular
momentum of particle 2 relative to particle 1 and vice-versa for L(1,2). This
is the spin-orbit contribution to the potential:

VSO =
2GN

r3
(S(1) · L(2,1) + S(2) · L(1,2)) (4.13)

We’ll see later on that this formula is incomplete. Another contribution
will come out from the zeroth order term proportional to ξ0ξ̇0 in the action.
We’ll see how it changes the spin-orbit potential in (5.11).
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Chapter 5

Energy as a function of
frequency

Having achieved the results for the Einstein Infeld Hoffmann corrections to
the Newtonian potential in Chapter 3 (3.16); and spin-spin and spin-orbit
corrections in Chapter 4 (4.9) and (4.13) it is straightforward to compute
the energy by simply adding these corrections to the Newtonian expression.
However, this is not very useful since we would be expressing the energy in
terms of the radius r, which is not an observable. If we restrict ourselves to
circular orbits, we can express the energy as a function of the frequency of
rotation. This can be done in the following way:

1. We compute the equations of motion from the Lagrangian with correc-
tions

2. The radial component of the acceleration is, by definition, −ω2(r,v)
where ω is the angular frequency

3. We use v = ωr to eliminate v and thus we can express r as a function
of ω and therefore we obtain E(ω).

We will apply this method first to the EIH corrections and then to the
spin corrections.

5.1 Calculation of EIH corrections

As outlined above we start by computing the equations of motion. Other
than the potential terms. From the point particle action (3.10) we see that
a term −m

∫
dt
√

1− v2 goes unaltered to the effective action Seff . We see
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from (3.16) that VEIH is of order 1PN. To match that we expand the kinetic
term to O(v4) so that:

S =

∫
dt

{
1

2
(m1v

2
1 +m2v

2
2) +

1

8
(m1v

4
1 +m2v

4
2) +

GNm1m2

r

+
GNm1m2

2r

[
3(v2

1 + v2
2)− 7v1 · v2 − (v1 · r̂)(v2 · r̂)

]
+
G2
Nm1m2(m1 +m2)

2r2

}
The equation of motion for particle 1 is, applying Euler Lagrange:

d

dt

(
∂L

∂vi1

)
=

∂L

∂xi1
⇒

m1a
i
1 +m1a

j
1v
j
1v
i
1 +

1

2
m1v

2
1a

i
1 − 3GN

m1m2

r3
rj(v

j
1 − v

j
2)vi1 + 3GN

m1m2

r
ai+

7

2
GN

m1m2

r3
rj(v

j
1 − v

j
2)vi2 −

7

2
GN

m1m2

r
ai2 +

d

dt

(
− 1

2
GN

m1m2

r3
rivj2r

j

)
=∓GN

m1m2

r3
ri ∓ 1

2
GN

m1m2

r3
ri
[
3(v2

1 + v2
2)− 7v1 · v2 − (v1 · r̂)(v2 · r̂)

]
∓ 1

2
GN

m1m2

r

[
− (v1 · r̂)(v2 · r̂) +

vi1
r

(v2 · r̂)

]
±G2

N

m1m2(m1 +m2)

r4
ri1

Where the upper sign applies to particle 1, and the lower sign applies to
particle 2 (also exchanging indices 1 and 2 for particle 2).

These equations of motion seem complicated but by recurring to the hy-
pothesis of pure circular motion, by which ri(v

i
1−vi2) = 0, many terms cancel

out.
Another simplification can be done by using center of mass (CM) coordi-

nates. They are defined by:

rCM ≡
m1r1 +m2r2
m1 +m2

M ≡ m1 +m2 µ ≡ m1m2

M

Then
v1 = vCM +

m2

M
v v2 = vCM −

m1

M
v

By symmetry under boosts we can assume that vCM = 0.
After subtracting EOMs for particles 1 and 2, canceling multiples of r ·v

and converting to CM coordinates we reach the following equation:

2µai + µaj(1− 2η)vjvi +
1

2
µai(1− 2η)v2 +

13

2
µ
GM

r
ai

=− µri
[
2
GM

r3
+ 3

GM

r3
v2 +

Gµ

r3
v2 − 2

(GM)2

r4

]
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Where η ≡ µ/M .
Note that we’re at level 1PN so, in the second and third terms, we can

substitute the Newtonian solution for ai and aj. With that substitution, the
second term cancels out because it is proportional to rjvj. Replacing, in
the third term, the Newtonian acceleration ai = −GMri/r3 and canceling
factors of µ we have:

ai
[
2 +

13

2

GM

r

]
=− ri

[
2
GM

r3
+ 3

GM

r3
v2 + η

GM

r3
v2 − 2

(GM)2

r4
+

(
η − 1

2

)
GM

r3
v2

]
(5.1)

Let us define two auxiliary dimensionless variables:

α ≡ GM

r
x ≡ (GMω)2/3

Our task is, then, to find α as a function of x. Note that, at Newtonian level:

ai = −ω2ri = −GM
r3

ri

⇒ (GMω)2 =

(
GM

r

)3

⇒ x = α

So we’re looking for perturbative corrections for α(x), that is,

α(x) = x+O(x2) + . . .

Since we want only the next to leading order correction we want to find
d2α/dx2|x=0 in the expansion:

α(x) ≈ dα

dx

∣∣∣∣
x=0

x+
1

2

d2α

dx2

∣∣∣∣
x=0

x2 (5.2)

Where we already know that dα/dx|x=0 = 1. Replacing α and x in (5.1) we
get:

2α4 − 2α3 + (4− 2η)x3α + 2x3 = 0

If we derive this equation twice, apply (5.2) and set x = 0 we find:

d2α

dx2

∣∣∣∣
x=0

= 2− 2

3
η
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So (5.2) now reads as:

α = x

[
1 +

(
1− 1

3
η

)
x

]
(5.3)

Another useful formula is:

v2 = ω2r2 =
x3

α2
=

x[
1 +

(
1− 1

3
η

)
x

]2

= x

[
1− 2

(
1− η

3

)
x

]
(5.4)

Now we have everything at hand to compute the energy as a function of
frequency with corrections up to 1PN using (3.16).

First, it’s important to take into account the terms up to O(v4) in the
expansion of −m

√
1− v2 because we’re working at level 1PN. This will gen-

erate the following terms in the Lagrangian:

1

2
(m1v

2
1 +m2v

2
2) +

1

8
(m1v

4
1 +m2v

4
2)

=
1

2
µ
m2 +m1

M
v2 +

1

8
µ
m3

2 +m3
1

M3
v4

=− 1

2
µ

[
− v2 +

(
3

4
η − 1

4

)
v4

]
Where we have used center of mass coordinates with vCM = 0.

Summing with the potential at (3.16) we get the Lagrangian:

L = −1

2
µ

[
− 2

GM

r
− GM

r
(3 + η)v2 +

(
GM

r

)2

− v2 +

(
3

4
η − 1

4

)
v4

]
Where we’re assuming that v · r = 0 (circular orbit).

Now, since energy is given by

E =
∂L

∂v
v − L

And substituting (5.3) and (5.4) we obtain, up to O(x2),

E = −1

2
µx

[
1−

(
3

4
+

η

12

)
x

]
= −1

2
µ(GMω)2/3

[
1−

(
3

4
+

µ

12M

)
(GMω)2/3

]
(5.5)

Which is the Newtonian energy plus the 1PN correction.
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5.2 Calculation of corrections related to Spin

Let’s start with the spin-spin contribution (4.9). Stating the Euler Lagrange
equation in terms of center of mass coordinates we obtain:

∂L

∂vi
=µai =

∂

∂ri

{
G

r3

[
S1 · S2 − 3(S1 · r̂)(S2 · r̂)

]}
+ . . .

=− 3Gri

r5

[
S1 · S2 − 3(S1 · r̂)(S2 · r̂)

]
− 3G

r3

[
− 2(S1 · r̂)(S2 · r̂)

ri

r2
+
Si1
r

(S2 · r̂) +
Si2
r

(S1 · r̂)

]
+ . . .

So we conclude that

aSS = − 3G

µr4

{
r̂
[
S1 · S2 − 5(S1 · r̂)(S2 · r̂)

]
+ S1(S2 · r̂) + S2(S1 · r̂)

}
(5.6)

One could ask why we hadn’t included terms with higher orders of v in
the left hand side, that is, why we considered only the Newtonian kinetic
term 1

2
µv2 in ∂L

∂vi
. The answer is that the right hand side is entirely (at least)

of order 1PN. If the objects are small, that is R1,2 is of order m1,2, and, let’s
say, their rotational speeds are closer to unity, then their spins are of order
m1,2v1,2R1,2 = m2

1,2. Then:

G

r3
S1S2 ∼ µ

G

r3
Mm1m2 ∼ µ

(
GM

r

)3

Which is already of order 2PN. If the rotational speeds are small, then the
correction is even less significant. If the problem involved objects with sizes
comparable to r, which isn’t the case here, one could show that the correction
would still be at least of order 1PN.

Coming back to (5.6), the next step is to look at the radial component
which is what interests us here, since we want to find ω though the identity
−ω2r = a · r̂. Projecting (5.6) along the radial direction see that:

aSS · r̂ = − 3G

µr4

[
S1 · S2 − 3(S1 · r̂)(S2 · r̂)

]
(5.7)

In order to express the spin projections along the axis perpendicular to the
orbit (i.e., along the orbital angular momentum of the system), we first see
that:

S1 · S2 = (S1 · r̂)(S2 · r̂) + (S1 · v̂)(S2 · v̂) + (S1 · l̂)(S2 · l̂)
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But, taking the angular average, the first two terms are equal. Then we
conclude that

(S1 · r̂)(S2 · r̂) =
1

2

[
S1 · S2 − (S1 · l̂)(S2 · l̂)

]
In this way (5.7) becomes:

aSS · r̂ = +
3G

2µr4

[
S1 · S2 − 3(S1 · l̂)(S2 · l̂)

]
(5.8)

Just for abbreviation let’s define

d ≡ S1 · S2 − 3(S1 · l̂)(S2 · l̂)

Now we can calculate the change in radius due to the spin-spin potential,
relative to the Newtonian case, by adding the new radial acceleration term:

− ω2r = (aNEWTON + aSS) · r̂ = −GM
r2

+
3G

2µr4
d

⇒ ω2 − GM

r3
+

3G

2µr5
d = 0

We can solve this equation perturbatively since we’re looking for the first
order correction. We can then state the equation above as:

ω2 − GM

r3
+

3G

2µr3

1

r2
NEWTON

d = 0 (5.9)

Where we use the Newtonian level solution

(GMω)2 =

(
GM

rNEWTON

)3

The solution to (5.9) is given by:

r =
(GM)1/3

ω2/3

(
1− 3

2

ω4/3

µG2/3M5/3
d

)1/3

=
(GM)1/3

ω2/3

(
1− 1

2

ω4/3

µG2/3M5/3
d

)
(5.10)

Where in the last line we expanded (1 + x)1/3 ≈ 1 + x/3 since we want only
the first order term in d.
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Now we turn to the spin-orbit contribution. We could just start from
(4.13) but there is something else to consider. When looking at the terms
added to the action in (4.6a), consider what happens to the term:

i

4
ξ0ξ̇0

Where it is taken at leading order. It gets unaltered to the effective action
and it does have a contribution. From the constraint ξ0 = ξivi we find (e.g.
for particle 1):

ξ0
1 ξ̇

0
1 = ξi1 v

i
1 ξ̇

j
1 v

j
1 + ξi1 v

i
1 ξ

j
1 a

j
1

From the EOM of ξ one can see that the first term has contributes in higher
order than O(v2) but the second term does have a contribution to be con-
sidered when taking the Newtonian order for acceleration.

Taking the center of mass coordinate where vi1 = m2

M
vi we get:

i

4
ξ0

1 ξ̇
0
1 =

i

4
ξi1 v

i
1 ξ

j
1 a

j
1 =

1

2
εijkS

(1)
k

m2
2

M2
vi
(
− GM

r3
rj
)

Now it becomes evident that the spin-orbit potential deducted from (4.12) is
incomplete. We have to add this new term. After this correction the formula
for VSO becomes:

VSO =
2G

r3
µ(r×v) ·

[(
1+

3m1

4m2

)
S2+

(
1+

3m2

4m1

)
S1

]
≡ G

r3
µ(r×v) ·~χ (5.11)

Where, following [7], we define:

~χ ≡
(

2 +
3m1

2m2

)
S2 +

(
2 +

3m2

2m1

)
S1

Now we can follow the same path we did for the spin-spin contribution.
We find the equation of motion:

aSO =
G

r3

[
3r̂(r̂× v) · ~χ− 2v × ~χ+ 3r̂ · v(r̂× ~χ)

]
(5.12)

Taking the radial component of this acceleration plus the Newtonian one and
comparing with −ωr we find:

ω2 − GM

r3
+
Gω

r3
l̂ · ~χ = 0

Giving the first order correction to the radius:

r =
(GM)1/3

ω2/3

(
1− 1

3

ω

M
l̂ · ~χ

)
(5.13)
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Now we can start calculating E(ω). First let’s do it taking into account
the spin-spin and spin-orbit contributions which have higher orders. Noticing
from (5.12) that aSO · v = 0 the conserved energy is:

E =
1

2
µv2 − µGM

r
+ VSS

For any power of r we just need to approximate [rNEWTON(1 + δ)]n ≈
rNEWTON

n(1 + nδ) so it becomes straightforward to get all contributions
from the spin-spin and spin-orbit to the energy:

E(ω) = −1

2
µ(GMω)2/3

{
1+

4

3

ω

M
l̂ · ~χ+

ω4/3

µG2/3M5/3

[
S1 ·S2−3(S1 · l̂)(S2 · l̂)

]}
Now summing the contribution previously calculated in (5.5) we can state
the final result:

E(ω) = −1

2
µ(GMω)2/3

{
1 +

4

3

ω

M
l̂ · ~χ+

ω4/3

µG2/3M5/3

[
S1 · S2 − 3(S1 · l̂)(S2 · l̂)

]
−
(

3

4
+

µ

12M

)
(GMω)2/3

}
(5.14)

And that concludes our work.
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Appendix A

Mathematica notebook
calculations

In this section we detail how we got to (3.4) using a Mathematica notebook
whose original file can be downloaded from http://tiny.cc/MautnersMasterThesis.
The notebook makes use of the “EinS” package ([5]) which can be obtained
at http://rcswww.urz.tu-dresden.de/~klioner/eins.html.

Observe that the object definitions of the fields A, φ and σ are made such
that the Λ denominator is incorporated into them. Therefore, the obtained
expressions in quadratic order have to be multiplied by (1/Λ2). For example,

√
−gR→ 1

Λ2

√
−gR =

1

32πGN

√
−gR

Therefore, the expression obtained for
√
−gR has to be multiplied by 2 to

give the Einstein Hilbert action integrand since according to (3.2):

SEH =

∫
dt ddx

1

16πGN

√
−gR

Accordingly, the expression −
√
−g(gµνΓ

µΓν) in the Mathematica file gives,
after adjusting by the factor 1/Λ2, the correct factor of 1/(32πGN) in (3.3).
So, in the Mathematica file, the gauge fixing term is divided by 2 so that
it has the same overall factor of (1/2) as the Einstein Hilbert term. To
summarize: the results of the Mathematica notebook are half the correct
ones so we have to multiply everything by 2.

We now explain how we got the results for each of the component fields.
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A.1 φ field

A.1.1 Einstein Hilbert term of order φ2

This is located in the “RicciPAS0” entry in the file, which shows the expan-
sion of

√
−gR up to second order in the A field and zeroth order in σ. The

terms quadratic in the φ field can be extracted as the ones proportional to
epsP 2. Note that E4 epsP φ when expanded gives additional factors of epsP .
We find the terms:

−2(~∇φ)2 + 18φ̇2 − 6φ̈(−4φ) =

−2(~∇φ)2 − 6φ̇2

Where we integrated the third term by parts.

A.1.2 Gauge fixing term of order φ2

This is located in the “GaugeFixPAS0” entry and the only term quadratic
in epsP 2 is:

8φ̇2

Therefore, after summing the EH and GF terms quadratic in φ and mul-
tiplying by 2 as explained at the beginning of this section we obtain:

Squad ⊃
∫
dt ddx 4[−(~∇φ)2 + φ̇2]

A.2 A field

A.2.1 Einstein Hilbert term of order A2

We look again at the “RicciPAS0” entry in the file, which shows the expansion
of
√
−gR up to second order in the A field and zeroth order in σ. The terms

quadratic in the A field can be extracted as the ones proportional to epsA2

and they are:

−2 ~̇A 2 +
1

2
Aa,bAa,b − 2AaÄa −

1

2
Aa,bAb,a
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The first and third terms cancel each other after integrating by parts. The
second and fourth terms can be simplified in the following way:

1

2

(
Aa,bAa,b − Aa,bAb,a

)
=

1

4

(
Aa,bAa,b + Ab,aAb,a − Aa,bAb,a − Ab,aAa,b

)
=

1

4
(Aa,b − Ab,a)2

=
1

4
F 2
ab

A.2.2 Gauge fixing term of order A2

This is located in the “GaugeFixPAS0” entry and the terms quadratic in
epsA2 are:

−1

2
~̇A 2 +

1

2
(~∇ · ~A)2

Summing the EH and GF terms and multiplying by 2 we obtain:

Squad ⊃
∫
dt ddx

[
F 2
ij

2
+ (~∇ · ~A)2 − ~̇A 2

]

A.3 σ field

A.3.1 Einstein Hilbert term of order σ2

The calculations involving σ are more complicated, so here we calculate sep-
arately

√
−g and R and then multiply them manually.

The calculation for
√
−g can be found at entry “SDetgS2” which expands

it only up to second order in σ without any expansion in A and φ. It gives:

1 +
σ

2
− 1

4
σ2
ab +

1

8
σ2

Where it is understood that σ2
ab is equal to the contraction

∑
a,b σabσab and

σ ≡ Tr σ =
∑

a σaa.

The calculation of R up to second order in σ and no expansions in A
and φ is located at entry “RiccisclS2”. It has terms of order σ, which get
multiplied by the order σ term in

√
−g, and terms of order σ2, which get
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multiplied by the 1 from
√
−g. The desired terms quadratic in σ in

√
−gR,

after simplifying, are:

√
−gR in order σ2

=− 1

4
σ̇2 +

1

4
(~∇σ)2 +

1

4
σ̇2
ij −

1

4
(~∇σij)2 +

1

2
σσbc,bc + (σab,a)

2 − 1

2
(σab,cσac,b)

A.3.2 Gauge fixing term of order σ2

First we calculate Γα ≡ Γαµνg
µν . This is performed at cell “GamGFS2”. We

can see from the result that only terms of order σ and beyond are obtained.
Since we’re interested in the contraction gµνΓ

µΓν , only the O(σ) term from
Γα matters. Also, only the zeroth order of gµν (that is, ηµν) can be used if
we truncate the result to orders less than 2 in σ. The same applies to

√
−g

which is therefore considered to be 1 for this calculation.
Then, in order σ2 we’ll have:

1

2
(−1)

√
−ggµνΓµΓν

=− 1

2
ΓαΓα

=− 1

2

(
−∂ασ

2
+ ∂aσαa

)(
−∂ασ

2
+ ∂aσαa

)
=
σ̇2

8
− (~∇σ)2

8
+

1

2
∂bσ∂aσab −

1

2
(∂aσab)

2

Where α is a 4-vector index and a is a 3D vector index. Also, indices are
lowered and uppered with the Lortentz metric.

Remember, also, that the (1/2) factor accounts for the fact that the
Einstein Hilbert term obtained in the notebook is half the correct one, so
we’ll divide the GF term by 2, sum it with the EH term and after multiply
the final result by 2.

Now we can sum the EH and GF terms. After integrating by parts,
the fifth term in the EH expression cancel with the third term in the GF
expression. The last two terms of EH plus the last term of GF give

(1/2)[(σab,a)
2 − σab,cσac,b]

=(1/2)[σba,aσbc,c − σba,cσbc,a]
=(1/2)[−σba,caσbc + σba,caσbc]

=0

Where we integrated by parts in the third line.
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Therefore, summing the remaining terms we’re left with (after multiplying
by 2 as explained before):

Squad ⊃
∫
dt ddx

[
− 1

4
σ̇2 +

1

4
(~∇σ)2 +

1

2
σ̇2
ij −

1

2
(~∇σij)2

]
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