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An extended treatment of the one-dimensional q-harmonic oscillator, based on two examples
of inequivalent representations of the Heisenberg quantum algebra which appeared recently
in literature is presented. The dependence of several oscillator properties such as the energy
spectrum, uncertainty relations and selection rules on the new parameters characterizing
those generalized representations is also discussed.

I. Introduction

Quantum groups are among the recent mathemati-

cal developments in closest contact with physics, partic-

ularly interest for those showing a wider variety of ap-

plications. They have been applied to solvable statisti-

cal mechanics models, inverse scattering theory, molec-

ular and nuclear physics, as well as particle and quan-

tum �eld physics [1]. The structure of a quantum group

was developed by mathematicians in order to de�ne

non-commutative geometry. By de�nition, a quantum

group is characterized by a Hopf algebra (Drinfeld [2]).

For a physicist, there are two essential new concepts

related to a quantum group: that of co-multiplication

(one of the Hopf operations) and that of the deformed

quantum algebra. The deformation is obtained through

a parameter q, which is introduced in the commutation

relations de�ning the algebra. In the limit q ! 1, the

original, undeformed Lie algebra, is reproduced.

In this work we will be mainly concerned with

that algebraic part of the Heisenberg quantum group

(Hq(4)), namely the Heisenberg q-algebra (also known

as the Heisenberg-Weyl q-algebra hq(4) or q-oscillator

algebra [1]). It is interesting to mention that there are

several versions of the q-oscillator algebra. Oh and

Singh [3] showed that they are not equivalent. As a

consequence, the Hopf structure found for one of those

versions does not hold for the others, just because of

this inequivalence.

Our aim here is to perform a generalized treatment

of the one-dimensional deformed harmonic oscillator.

This will be done by making use of two di�erent ex-

amples of generalized, inequivalent representations of

the hq(4) algebra which appeared recently in literature.

The �rst one, due to G. Rideau [4], is characterized by

a real parameter �0. In the limit �0 ! 0 it goes to the

ordinary q-deformed representation of the Heisenberg

q-algebra.

It is in this sense that we will be dealing with a

generalized representation. We note that Rideau's rep-

resentation may be constructed from the ordinary rep-

resentation of the Heisenberg q-algebra by means of a

dilatation, as indicated in Ref. [1].

Our second example is that of Z. Chang and Song

[5, 6] and is characterized by an additive constant

c � b�=2, with � = ln q. We note that in the two

cases above we are dealing with inequivalent represen-

tations since they correspond to di�erent values of the



Casimir operator of the Heisenberg q-algebra. On the

other hand, the linear harmonic oscillator is a funda-

mental system in physics. The associated q-deformed

linear harmonic oscillator to the algebra of hq(4), in

terms of bosonic creation and annihilation operators,

was introduced by MacFarlane [7] and Biedenharn [8],

who calculated the corresponding spectrum, assuming

the existence of a ground state. We believe that gener-

alized inequivalent q-formulations of it may have phe-

nomenological interest in possible applications. In this

work we study the fundamental properties of such gen-

eralized q-oscillators.

This work is divided as follows. Section II is concen-

trated on the deformed linear harmonic oscillator con-

structed on the basis of the ordinary q-deformed Heisen-

berg algebra. Results for several q-oscillator properties

such as the energy spectrum, uncertainty relations and

selection rules are recollected. In the same direction,

a realization of the \quantum group" SUq(2) based on

a Jordan-Schwinger construction is carried out [1]. In

section Ill, the results of the previous section are gen-

eralized using the two inequivalent representations re-

ferred to above. Section IV contains our �nal discussion

and remarks. Finally, at the end of this work we have

an appendix, where we present some useful q-number

identities.

II. The Deformed Harmonic Oscillator

Construction and energy levels

In this section we brie
y review the construction

of the one-dimensional q-deformed harmonic oscillator.

After it, in the following section, we will present the

results for the inequivalent representations in a com-

parative way.

The hamiltonian of the one-dimensional q-harmonic

oscillator reads

Hq =
1

2
~!(a+q aq + aqa

+
q ) (2:1)

and the relations among the operators a+q , aq and Nq

de�ne the q-deformed Heisenberg algebra

[Nq; a
+
q ] = a+q

[Nq; aq ] = �aq (2:2)

aqa
+
q � q1=2a+q aq = q�Nq=2:

It is the action of these operators on the Fock-space

states which de�nes the representation. One possible

realization is given by

aq jn >= [n]1=2q jn� 1 >

a+q jn >= [n+ 1]1=2q jn+ 1 > (2:3)

Nq jn >= njn > :

Through eqs.(2.3) aq , a
+
q andNq assume the roles of an-

nihilation, creation and number operators, respectively.

We note the above relations were written in accor-

dance with the de�nition of a q-number which employs

q1=2 factors

[x]q =
qx=2 � q�x=2

q1=2 � q�1=2
: (2:4)

The algebraic structure given by eqs.(2.2) and (2.3)

is completed with one additional relation which de�nes

the number operator in function of aq and a+q . In the

construction of MacFarlane [7] and Biedenharn [8] the

q-deformed version of the number operator is de�ned

by

[Nq] = a+q aq : (2:5)

Then, acting on the ket eigenstates one obtains

a+q aqjn >= [Nq]jn >= [n]jn >;

aqa
+
q jn >= [Nq + 1]jn >= [n+ 1]jn > : (2:6)

Thus, the energy states associated to the hamilto-

nian (2.1) will be given by

E(n) =
1

2
~!([n] + [n+ 1]) =

1

2
~!

[n+ 1

2
]

[1=2]
; (2:7)

where to prove the last step we have made use of a pair

of interesting q-number identities. We made the option

to show them in an appendix at the end of this work.

From eq.(2.7) one sees that the energy of the

ground-state is 1

2
~!, as for the non-deformed oscilla-

tor. In the generalized cases of deformation of non-

equivalent representations we show later, this situation

changes.

From eq.(2.7) the separation between energy levels

is



c

�(n) = E(n+ 1)�E(n) =
1

2
~!([n+ 2]� [n]) =

=
1

2
~!

1

[1=2]

��
n+

3

2

�
�

�
n+

1

2

��
= ~! cosh

�
n+ 1

2
�

�
; (2:8)

d

where � = ln q. For q ! 1 one has equally-spaced

levels: �(n)! ~!, as in the non-deformed oscillator.

Uncertainty relations and selection rules

De�ning the q-position and the q-momentum oper-

ators by

Qq =

�
~

2m!

�1=2

(a+q + aq) (2:9)

Pq = i

�
m!~

2

�1=2

(a+q � aq) (2:10)

the uncertainty principle assumes an analogous form of

that of the non-deformed case

i[Pq ; Qq] = ~[aq; a
+
q ] = ~(aqa

+
q � a+q aq): (2:11)

Under the action on ket states eq. (2.10) gives

i[Pq ; Qq] = ~([n+ 1]� [n]) = ~
[ 1
2
][2n+ 1]�
n+ 1

2

� : (2:12)

Transitions are ruled by

c

< n0jQq jn >=

�
~

2m!

�1=2�
[n+ 1]1=2; for:n0 = n+ 1;

[n]1=2 for:n0 = n� 1;
(2:13)

< n0jPq jn >= i

�
m!~

2

�1=2 �
[n+ 1]1=2; for:n0 = n+ 1;

�[n]1=2; for:n0 = n� 1:
(2:14)

d

Thus we get as selection rules n ! n � 1, that is

only transitions to neighbours levels are allowed.

SUq(2) formulation

To close this section we would like to remind the re-

alization of the \quantum group" SUq(2) from the one-

dimensional q-oscillator. As described by Biedenharn

and MacFarlane, an analogous q-deformed construction

of that of Jordan-Schwinger can be de�ned to realize the

algebra of the generators in the deformed case. Thus,

the angular momentum operators of SUq(2) are de�ned

in function of creation a+iq and annihilation aiq opera-

tors of two (i = 1, 2) linear, commuting, q-harmonic

oscillators in the following way

J+ = a+1qa2q ; J� = a+2qa1q ;

Jz =
1

2
(N1q �N2q): (2:15)

Then, with j = 1=2(n1+n2), m = 1=2(n1�n2), the

action of the above operators on states jj;m >q obey

the relations

J�jj;m >q= ([j �m]q [j �m+ 1]q)
1=2jj;m� 1 >q

Jzjj;m >q= mjj;m >q : (2:16)

These generators verify the commutation relations

in the following way

[J+; J�]jj;m >q= [2Jz]jj;m >q

[Jz; J�]jj;m >q= �J�j;m >q (2:17)



These relations are valid, however, only when acting

on ket states. This situation is fundamentally di�erent

of that in the ordinary su(2) algebra, where the com-

plete realization of the algebra is not dependent on the

way the vacuum is de�ned.

We recall that the Casimir operator for the oscilla-

tor in this case corresponds to the null operator:

Cosc = C(Hq(4)) � 0; (2:18)

what is garanteed by eq.(2.5). A distinct situation will

occur in the cases we study ahead.

The Casimir operator of SUq(2) has the form

C(SUq(2)) = [Jz + 1=2]2 + J�J+ =

= [Jz ][Jz + 1] + [1=2]2 + J�J+; (2:19)

which has an eigenvalue

[j + 1=2]2 = [j][j + 1] + [1=2]2 : (2:20)

In the limit q ! 1 this number becomes (j +1=2)2,

recovering the usual result of the non-deformed case.

III. The inequivalent representations

Construction

In the previous section we saw the construction

of the q-deformed analogue of the Heisenberg algebra.

However, that realization of the q-algebra is not unique.

As we have seen, the quantum (q-deformed) extensions

of the algebraic relations depend on the way Fock-space

states are de�ned, �xing the representation. Due to

this fact, other generalized representations can be con-

structed in the form of inequivalent representations.

One well-known form of an inequivalent representa-

tion has been considered by Rideau [4] and by Bieden-

harn [1], who called it a \dilatation". This representa-

tion is de�ned by

a+q jn >= q��0=4[n+ 1]1=2q jn+ 1 >

aqjn >= q��0=4[n]1=2q jn� 1 > (3:1)

where �0, called the parameter of the inequivalent rep-

resentation, expresses the possibility of a rede�nition

of the vacuum, conducting to a new realization of the

hq(4) algebra.

In this case, the number operator is not equal to

a+q aq ; but is given by

[Nq ] = a+q aq + qNq=2Cosc; (3:2)

where the Casimir operator Cosc associated to the q-

oscillator algebra, di�erently of what occurs in the

usual, deformed, \equivalent" representations, is not a

null operator anymore. Inverting eq.(3.2) one gets

Cosc = q�Nq=2([Nq]� a+q aq); (3:3)

and the Casimir eigenvalue is

Cosc = q��0=2[�0]q: (3:4)

Obviously, for �0 = 0 one has Cosc � 0; as in

eq.(2.18), in the case of ordinary (deformed) represen-

tations. In the present case, the action of Nq under

Fock-space states gives

Nqjn >= (�0 + n)jn >; (3:5)

closing this algebra. Commutation relations as de�ned

by eqs.(2.2) are preserved by this rede�nition of a+q , aq

and Nq operators.

Another interesting example of a quantum-

deformed realization of the Heisenberg algebra found

in literature is that used by Chang [5] and Song [6]. At

�rst sight their approach seems to be the same as the

one of the previous section, with a single modi�cation of

a rede�nition of the number operatorN by N 0 = N+c,

where c is a constant. However, in a deformed algebra

this change provides not only a shift on the spectrum of

Fock states labeled by the quantum number n, but also

conducts to the construction of a new representation,

non-equivalent to the other.

A fundamental di�erence lies on the de�nition of the

number operator. For them, the q-deformed N must

equate the non-deformed operator

N 0

q = a+q aq = N = a+a: (3:6)

Here and henceforth we shall be using a prime ' to

di�erentiate between the operators de�ned in this case

from the previous ones.

Following Chang and Song [5, 6], the representation

is de�ned by



a0qjn >= [n+ c]1=2q jn� 1 >;

a0+q jn >= [n+ 1 + c]1=2q jn+ 1 >;

N 0

qjn >= njn > : (3:7)

Then, provided the relations between deformed and

non-deformed operators are given by

a0q =

r
[N + 1 + c]

N + 1
a;

a0+q = a+
r

[N + 1 + c]

N + 1
; (3:8)

the q-deformed Heisenberg algebra, as de�ned by

eqs.(2.2), is realized. Notice that now the quantum

number n di�ers from the non-deformed one by a con-

stant. This is a distinct situation of that of the Rideau's

representation. Thus, we can distinguish between two

basic types of non-equivalent representations. Those of

the dilatation (or dilation) type, with a multiplying fac-

tor, as in Rideau's representation, and those of the dis-

location (or displacement) type, like the one of Chang,

with an additional constant term.

The Casimir operator for the case of generalized, in-

equivalent representations is given by eq.(3.3). In the

case of Song's representation, it leads to the following

operator (reminding that, in this case, N 0
q = N)

Cosc = q�N=2([N ]� [N + c]): (3:9)

Acting on the states jn > gives

Coscjn
0 >= q�n=2([n]� [n+ c])jn > : (3:10)

Therefore, Cosc is again a non-null operator and we

have two di�erent, inequivalent representations. In the

above expressions, when c = 0; Cosc becomes the null

operator, as in eq.(2.18) again.

Energy levels and uncertainty relations

Now, we wish to comment about the q-oscillator en-

ergy for non-equivalent representations. Starting from

the oscillator hamiltonian, eq.(2.1), one gets new ex-

pressions.

For the dilatation case of Rideau's representation

the oscillator hamiltonian has eigenenergies

E(n) =
1

2
~!q��0=2([n]+[n+1]) =

1

2
~!q��0=2

[n+ 1=2]

[1=2]
;

(3:11)

which is the same as in eq.(2.7), except for the factor

q��0=2:

One sees that this multiplying factor has its physi-

cal consequences. First, it shifts the zero-point energy.

In this case

E0 =
1

2
~!e���0=2: (3:12)

And second, it modi�es the level spacement. Instead

of eq.(2.8), now

�(n) =
1

2
~!

e���0=2

[1=2]
([n+ 3=2]� [n+ 1=2]): (3:13)

In this expression the exponential factor o�ers the

possibility of \balancing" the in
uence of the q-factor

contained in the terms inside the parenthesis, which

didn't happen before.

Selection rules are the same as in eqs.(2.13) and

(2.14), as the de�nition of Pq and Qq are still the same,

eqs.(2.9) and (2.10). But now, due to the factor q��0=4

eqs.(3.1), one also has this multiplying factor in the

right-hand side of the selection rules equations.

In the non-equivalent representation of the dilata-

tion type, uncertainty relation gives

i[Pq ; Qq]jn >= ~q��0=2([n+ 1]� [n])jn >; (3:14)

which can also be rewritten in the following interesting

form

i[Pq ; Qq] = ~
cosh(1=4(2n+ 1)�)

cosh(�=4)
; (3:15)

with � = lnq:

In the case of non-equivalent representations of

the dislocation type, rather di�erent expressions will

come out. The energy states obtained from the one-

dimensional hamiltonian of the q-harmonic oscillator

are now (in Chang's notation, with c = b
 and 
 = �=2)

E(n) =
1

2
~!([n+ b
] + [n+ 1 + b
]) =

=
1

2
~!

sinh
�


�
n+ b
 + 1

2

��
sinh(
=2)

: (3:16)



Eq.(3.16) can be rewritten as

E(n) =
1

2
~!

�
n+ 1

2
+ c

�
�
1

2

� =

=
1

2
~!

sinh
�
�
2

�
n+ b�

2
+ 1

2

��
sinh(�=4)

; (3:17)

with c = b�=2:

And the separation of energy levels in this case is

given by

�(n) =
1

2
~!

1

[1=2]

��
n+

3

2
+ b

�

2

�
�

�
n+

1

2
+ b

�

2

��
=

=
1

2
~!

�h
n+ 2 + b

�

2

i
�
h
n+ b

�

2

i�
=

= ~! cosh
��
2

�
n+ b

�

2
+ 1

��
: (3:18)

Again, for q ! 1 one recovers �(n) = ~!, as ex-

pected. The deformation in this case introduces, how-

ever, not only a non-equally spacing of the energy levels,

but also shifts the zero-point energy

E0 =
1

2
~!

�
1

2
+ b�

2

�
�
1

2

� : (3:19)

The in
uence of the constant, additional term b�
2

will also re
ect in the uncertainty principle. Again, the

expression is de�ned by eq.(2.11), but this time gives

(reminding once more that N 0
q = N)

i[Pq ; Qq] = ~

�h
N + b

�

2
+ 1

i
�
h
N + b

�

2

i�
; (3:20)

which produces, under the action on states, the eigen-

value

c

i[Pq; Qq] = ~

�h
n+ b

�

2
+ 1

i
�
h
n+ b

�

2

i�
= ~

[1=2][2n+ b�+ 1]�
n+ b�

2
+ 1

2

� : (3:21)

d

In this case, the selection rules are the same as in

eqs.(2.13) and (2.14), recalling that n is replaced by

n+ b�
2
.

SUq(2) formulation and the Casimir operator

From the results we have shown, one notices a va-

riety of possibilities, depending on the di�erent type of

inequivalent representation that is used. These fun-

damental di�erences, related to the inequivalence of

representations, are also noticed in what concerns the

Jordan-Schwinger realization of the SUq(2) group in

both cases.

For inequivalent representations of the dislocation

type one may use the same set of generators that we

have reminded in the preceding section. If, as before,

one de�nes J+, J� and Jz through eqs.(2.15), in this

case, due to application of eqs.(3.7), one obtains

J�jj;m >q= [j�m+c]1=2q [j�m+1+c]1=2q jj;m�1 >q;

Jzjj;m >q= mjj;m >q ; (3:22)

where the �rst equations depend on c, in constrast with

eq.(2.16).

Furthermore, the algebra of the SUq(2) generators,

as given by eqs.(2.17), is sustained by this generaliza-

tion. The Casimir operator for the SUq(2) is de�ned in

the usual way, by eq.(2.19), but this time the action of

J-operators on states jj;m > will give

c

Cjj;m >= ([j �m+ c][j +m+ 1 + c] + [m][m+ 1] + [1=2]2)jj;m > : (3:23)

d



Using the q-number identity

[a+ 1=2]2 = [a][a+ 1] + [1=2]2 (3:24)

and applying it to

[j +m+ 1][j �m] = [j][j + 1]� [m][m+ 1] =

= [j + 1=2]2 � [m+ 1=2]2; (3:25)

one then writes

Cjj;m >= ([j + c][j + c+ 1] + [1=2]2)jj;m > : (3:26)

In this expression we notice the dependence on c,

which is equivalent to put j + c = j0. In this way, we

reach to the result

Cjj;m >= ([j0][j0+1]+[1=2]2)jj;m >= [j0+1=2]2jj;m >=

= [j + c+ 1=2]2jj;m > : (3:27)

Then, it is clear that the present de�nition of N ,

done in this case by eq.(3.6), leads to the need of an

associated rede�nition of ~J . We also call attention to

the fact that the term [1=2]2 on the above equations is

sometimes dropped by some authors, depending on the

application, as it is an additive constant. Here we keep

it, as it is fundamental in the last step in eq.(3.27), and

in the use of identity eq.(3.24), to obtain [j0 + 1=2]2,

with the correct limit (j0 + 1=2)2 when q ! 1:

Other interesting consequences are found associated

to the suq(2) algebra realization in the dilatation type

of inequivalent representations. The Jordan-Schwinger

construction with eqs.(2.15) would give an extra fac-

tor q��0=2 in eqs.(2.16). Then, instead of eq.(2.15) one

should use the prescription (Rideau [4])

J+ = q�0=2a+1qa2q;

J� = q�0=2a+2qa1q ;

Jz =
1

2
(N1q �N2q); (3:28)

where the factors q�0=2 compensate for those in

eqs.(3.1) and, consequently, relations (2.16) are reob-

tained.

Proceeding in this way, one gets the following

Casimir operator for the SUq(2)

C(SUq(2)) = q��0([Jz + 1=2]2 + J�J+): (3:29)

This operator is the same as that of eq.(2.19), with

a factor q��0 in front. It now leads to a di�erent eigen-

value, given by

Cjj;m >= q��0 [j + 1=2]2jj;m > : (3:30)

Note that, for �0 = 0 one obtains [j + 1=2]2, as

from eq.(2.19). However, for q ! 1 one gets (j+1=2)2-

directly, as expected.

We would like to call attention to the fact that, if

the rede�nition of J+ and J� in eqs.(3.28) with the

factor q�0=2 was not done, one would reach to the same

Casimir operator, eq.(3.29), but with a di�erent eigen-

value

C(SUq(2)) = (1� e���0)[m+ 1=2]2 + e���0 [j + 1=2]2:

(3:31)

We want to note that the same limiting situations

for �0 ! 0 and q ! 1 are maintained correct by this

expression, but this time C(SUq(2)) of eq.(3.31) would

keep an odd dependence in m.

In reference [10], we have treated triplet states for

quarks and leptons, using the suq(2) as a spectrum gen-

erating algebra. We have applied eq.(3.31), more suc-

cessfully than with eq.(3.30), to describe the masses of

the fundamental fermions. This fact would be com-

prehensible, if the particle states we �nd in the Stan-

dard Model are de�ned according to a construction

which follows equations (2.3) and (2.15), instead of

equations (3.1) and (3.28). In other words, the par-

ticle states of the Standard Model are associated to a

vacuum which, however, in this line of work, depends

on the construction scheme adopted for a certain type

of representation. This point may be relevant, if the

physical states are connected somehow to an underly-

ing algebraic structure of any form which leads to non-

equivalent representations.



IV. Conclusions

It is well known that the Heisenberg algebra h(4)

plays a fundamental role in the analysis of the linear

harmonic oscillator. Recently, models based on the q-

deformed h(4) algebra (hq(4), of the group Hq(4)) have

been studied to describe vibrational spectra of diatomic

molecules [5,9]. We note that when the deformation pa-

rameter q is near to 1, deviations of the H(4) symme-

try will occur, which may contain important physics.

In a similar way, models based on SUq(2) have been

constructed to study the rotational spectra of diatomic

molecules. It was also suggested that the coupling be-

tween vibrational and rotational motions in diatomic

molecules is described by Hq(4) 
 SUq(2), [5,9]. It is

interesting to point out that similar situations occur in

nuclear spectroscopy in connection with nuclear rota-

tions and vibrations [11].

In the present work we performed an extended treat-

ment of the deformed linear harmonic oscillator making

use of two classes of inequivalent irreps of the hq(4) al-

gebra, introduced independently by Rideau [4] and by

Chang and Yan [9]. It is worthwhile to mention that

Rideau's case found interesting applications in an alge-

braic treatment of q-deformed Bose gases [12]. Another

application was done in a calculation of the fundamen-

tal fermion masses from deformed SUq(2) triplets [10].

Expressions of the SUq(2) Casimir operators involved

in our analysis, for �0 6= 0; were discussed at the end

of section III. In the context of Hq(4) we note that

the corresponding Hopf algebra has been explicitly con-

structed, including the quantum Yang-Baxter equation

[5,9].

Last, but not least, we wish to point out two di�er-

ent directions for further work: (i) the q-analogue of the

isotropic n-dimensional harmonic oscillator, as de�ned

in Ref.[1] and (ii) the extension of the present analysis

of the linear harmonic oscillator for values of q beyond q

real. An attractive situation corresponds, for instance,

to q being a primitive root of unity. Study of mod-

els which correspond to quantum mechanical analogues

of q-oscillator problems [13] represent a very promising

and interesting line of work, including the case of imag-

inary q. We also have in mind the analysis of statisti-

cal properties of systems of such q-deformed oscillators,

like the study of Planck distributions for q-boson gases

[14]. This work is in progress and shall appear in a

forthcoming publication.

Appendix

In this appendix we present some q-number iden-

tities which showed to be very useful in rewriting our

main results. Of course, from the ones we have here,

others can be derived and readily applied.

In the last step of eq.(2.7) we have made use of the

following q-number identity

[a][b] =

�
a+ b

2

�2
�

�
a� b

2

�2
(A1)

written for a = n; b = 1=2 and a = n+ 1, b = 1=2; and

then adding up the two relations which are obtained.

Next, we have used the q-number identity

[a]2 � [b]2 = [a+ b][a� b]; (A2)

with a = 1=2(n+ 3=2) and b = 1=2(n� 1=2) to end up

with

[n] + [n+ 1] =
[n+ 1=2]

[1=2]
: (A3)

To write the second equality in eq.(2. 12) we have

used the relation

[a]2 � [b]2 = ([a] + [b])([a]� [b]); (A4)

with a = n+ 1, b = n, to obtain

[n+1]2� [n]2 = ([n+1]+ [n])([n+1]� [n]) = [2n+1]:

(A5)

Then, combining eqs.(A3) and (A5) leads to

eq.(2.12). Furthermore, from (A3) one �nds an expres-

sion for the uncertainty of the n-th energy level state

in terms of the energy

i

~
[Pq ; Qq] =

1

2
~!

[2n+ 1]

E(n)
(A6)

Finally, we would like to note that in the same way

identity (A3) can be used to rewrite the q-deformed

energy expressions, the identities



1

[1=2]
([n+ 3=2]� [n+ 1=2]) = [n+ 2]� [n] (A7)

and

[n+ 2]� [n] = 2 cosh
��
2
(n+ 1)

�
(A8)

can be very useful in rewriting the expressions of the

separation of energy levels �(n), leading to equations

like eqs.(2.8) and (3.18) of the text.
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