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Abstract

Background: Hepatitis C is a disease spread throughout the world. Hepatitis C virus (HCV), the etiological agent of this
disease, is a single-stranded positive RNA virus. Its genome encodes a single precursor protein that yields ten proteins after
processing. NS5A, one of the non-structural viral proteins, is most associated with interferon-based therapy response, the
approved treatment for hepatitis C in Brazil. HCV has a high mutation rate and therefore high variability, which may be
important for evading the immune system and response to therapy. The aim of this study was to analyze the evolution of
NS5A quasispecies before, during, and after treatment in patients infected with HCV genotype 3a who presented different
therapy responses.

Methods: Viral RNA was extracted, cDNA was synthesized, the NS5A region was amplified and cloned, and 15 clones from
each time-point were sequenced. The sequences were analyzed for evolutionary history, genetic diversity and selection.

Results: This analysis shows that the viral population that persists after treatment for most non-responder patients is
present in before-treatment samples, suggesting it is adapted to evade treatment. In contrast, the population found in
before treatment samples from most end-of-treatment responder patients either are selected out or appears in low
frequency after relapse, therefore changing the population structure. The exceptions illustrate the uniqueness of the
evolutionary process, and therefore the treatment resistance process, in each patient.

Conclusion: Although evolutionary behavior throughout treatment showed that each patient presented different
population dynamics unrelated to therapy outcome, it seems that the viral population from non-responders that resists the
treatment already had strains that could evade therapy before it started.
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Introduction

Hepatitis C is a world-wide disease. The World Health

Organization estimate is that 3% of the world’s population has

been infected with the hepatitis C virus (HCV), which is the

etiological agent of this disease [1].

HCV is a single-stranded positive RNA virus member of the

Flaviviridae family. Its genome is 9.6 Kb long and encodes for

a single precursor protein with approximately 3,000 amino acid

residues. This polypeptide is processed by viral and host proteins,

resulting in 10 individual proteins: core, E1, E2, p7, NS2, NS3,

NS4A, NS4B, NS5A and NS5B [2].

NS5A, one of the viral non-structural proteins, is the protein

most associated with interferon-based therapy, the accepted

treatment for hepatitis C. NS5A is multifunctional, and although

not all of its functions are clearly established yet, it is known to be

involved in viral replication and interactions with cell signaling

pathways [3,4,5].

Some studies have identified regions in NS5A that have specific

functions. At the amino terminal end there is a 27 amino acid

cytoplasmic retention signal (CRS) responsible for keeping NS5A

in the cytoplasm [6]. Another region, called the PKR-binding

region, is responsible for binding to cellular protein kinase R

(PKR), inhibiting it, and ultimately resulting in the suppression of

interferon (IFN) antiviral activity [7]. Within the PKR-binding

region there is an IFN sensitivity-determining region (ISDR),

which some studies correlated the accumulation of mutations to

therapy response [8,9]. Despite the CRS, NS5A also contains
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a nuclear localization signal (NLS) that, in the absence of CRS,

results in the translocation of NS5A to the nucleus [6,10]. In the

C-terminal portion of NS5A the genetic variability of a region

called V3 is also associated with IFN therapy response [11,12].

Owing to the lack of proof-reading activity of the viral RNA-

dependent RNA polymerase (NS5B protein), HCV has a high

mutation rate and therefore high variability. This variation

happens at different levels, including genotypes (30% to 35%

difference), subtypes (20% to 25% difference) and different but

closely related genomes called quasispecies [13,14,15]. Although

mutations can be prejudicial for the virus when they result in non-

viable strains, having a pool of slightly different strains with

mutations that are initially neutral or quasi-neutral can increase

fitness after changes in the initial condition, and be useful for

evading the immune response and treatment [16,17,18,19].

The aim of this study was to analyze the evolution of NS5A

quasispecies before, during, and after treatment of patients

infected with HCV genotype 3a, which presents different therapy

responses. This is the first study to analyze the evolutionary

history, genetic diversity and selection of full-length NS5A

quasispecies from HCV genotype 3a throughout treatment.

Results

Sequences
This study generated 435 sequences of full length NS5A

(1,356 bp) from samples collected during and after interferon plus

ribavirin treatment from 8 patients,4 Non-responder (NR) and 4

End-of-treatment responder (ETR). The sequences were sub-

mitted to GenBank; their accession numbers are JN689511–
JN689930. Sequences from samples collected before treatment

from these 8 patients and also from 4 Sustained virological

response patients that were previously published [20] were used in

analysis in order to analyze the evolutionary behavior throughout

time-points (see Materials and Methods section for more details).

The total population of study used on the analysis is 12 patients.

Quasispecies Analysis
Sequences were analyzed to address quasispecies variability at

each time point in each patient. Figure 1 shows a graphic

representation of the results; each tile represents a different amino

acid sequence and colored tiles represent a persistent sequence

through time points. The viral quasispecies analysis from patient

P75 at 24 weeks (w) of treatment and in patient P145 at 28 days (d)

after treatment, both non-responder patients, shows that amino

acid sequences from strains that were circulating before treatment

were also found during and after treatment (Figure 1). Patients

P07, P60 and P75 had sequences that were sampled at more than

one time-point after treatment. Patient P07 presented two strains

that were sampled at the 28 days (d) and 5 month (m) time-points,

patient P60 presented one sequence that was found at both 2

months and 5 months, and patient P75 had the same sequence at

the 21 day and 2 month time-points. Patient P145 presented one

sequence that was first sampled at 12 weeks (w) during the

treatment, then later sampled at 5 months.

In contrast, most end-of-treatment responder patients had

a different profile. No variants from before treatment were found

during or after treatment. However, it was shown that a strain that

arises at the relapse time-point, or close to the relapse point, such

as in patient P109 (2 m), is sampled until the end of the follow-up,

with the exception of patient P82. In two patients, P109 and P119,

this sequence increased in frequency with increasing time

(Figure 1).

Genetic Distance
Genetic distance data, calculated within each time-point, shows

that the non-responder patients presented a more homogeneous

quasispecies during treatment than the end-of-treatment respond-

er patients, except for patient P60 whose the genetic distance was

0.0081 before treatment, and then rose through follow-up to

0.0205 at 5 months (Figure 2). Quasispecies in the end-of-

treatment responder patients showed variable genetic distances

and different behaviors depending upon the patient. Patient P20,

for example, although presenting quasispecies with similar

distances in before-treatment (0.0289) and 5 month time-points

(0.0296) – difference was not statistically significant, showed much

lower distances at 3 and 4 months (0.0046 and 0.0069,

respectively). In patient P82, the genetic distance rose significantly

from 0.0097 to 0.0207, stabilizing at 3 and 5 months (no

significance); in contrast, in patient P119 it decreased from 0.0144

to 0.0034 (statistically significant). Patient P109 also showed

a significant decrease in genetic distance from the before-

treatment (0.0211) to 5 month (0.0047) time-points. However, at

21 days after treatment (relapse point) the distance was higher

(0.0261) than before treatment; at 2 months it started falling

(0.0170) and remained constant until 4 months, then it showed

a drastic decrease at the 5 month time-point (0.0047) (For detailed

statistics see Table S1).

Global and site-by-site Selective Pressure (v) Estimation
The estimates of the overall selective pressure (v=dN/dS) of

each of the responder groups showed that non-responder patients

have a similar v (0.2828) to the end-of-treatment responders

(0.2234). This analysis was also carried out for the sequences from

the sustained virological responder group (EU826189 to
EU826218; EU826249 to EU826263; EU826294 to
EU826307), which presented lower v values (0.1494) (Figure 3),

although the differences were not statistically significant.

When v was analyzed by patient, the values varied from 0.20 to

0.46, suggesting that NS5A is under a relaxed purifying selection

in the quasispecies circulating in the patients. However, by

analyzing each time-point separately, variations could be detected.

Patient P145 was the only individual who showed evidence of

positive selection at 2 months, with v=1.63, but by 5 months this

had decreased to 0.7. Evidence of neutral evolution was found in

time-points from two patients, P82– BT (Before treatment) and

P07–2 m, with v values of 1.03 and 1.01 respectively (Figure 4).

The estimation of the dN/dS rates for each site showed

negatively selected sites in the NS5A sequences of all patients, in

agreement with the above results. Figure 5 indicates the locations

of these sites in the sequence and their percentages in each patient.

However, evidence for positive selection was found in two amino

acids, 122 and 408 of the strains from patient P109. Negatively

selected sites were identified in all patients. The results are shown

in Figure 5. End-of-treatment responder patients had more

negatively selected sites (n2163; 9.02%) than non-response

patients (n2101; 5.59%), and the difference was statistically

significant (p,0.001). Some sites were negatively selected in more

than one sequence.

Stop Codons
During the analysis of all the sequences generated in this study

and considered together with those obtained by Bittar et al (2010),

23 occurrences of stop codons were detected [20]. The majority of

them, 73.9% (17/23), were found in NR sequences, and no stop

codon was identified in SVR. Some of these non-sense mutations

were found at the same site in different patients and, in one case

(P145), through different time-points. The sites where the stop
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codons occurred are shown in Figure 6. Most of the stop codons

(15) were TAG, followed by TGA (5) and TAA (3). The amino

acids that were most associated with mutating to a stop codon

were glutamine (Gln) at four sites, and tryptophan (Trp) and lysine

(Lys) at three sites each; these mutations correspond to 20 of the 23

mutations found. All of the sites where these codons were found

were highly conserved. Some stop codons at the same site in

different patient sequences were encoded by different codons

(Figure 6).

Relative Genetic Diversity
The relative genetic diversity analyses can be seen in the skyride

plots shown in Figure 7. In these plots the quasispecies diversity in

most patients shows an exponential growth before the beginning of

the treatment, except for patient P119, who seems to be constant

and patient P60, who shows variation with time. Around the

beginning of the treatment (represented by the red line for the

approximate BT time-point), all patients show a major oscillation

in quasispecies diversity, with the exception of patient P82

samples, which remained almost constant with only a slight

variation. Most patients presented a decrease in genetic diversity

after the beginning of the treatment (P07, P75, P20, P109 and

P119). Patient P145 showed an initial increase in diversity followed

by a fluctuation, which is in accordance with the distance data for

this patient.

Phylogenetic Relationships and Correlation with Other
Data
A phylogenetic tree was constructed with the sequences from

this study together with before treatment sequences from the

previous study [20] (Accession numbers: EU826174 to EU826233

and from EU826249 to EU826352), totalizing 600 sequences, and

the reference sequence for genotype 3a NZL1 (Accession number:

D17763) (Figure 8). All sequences from the same patient grouped

on a monophyletic branch with significant supporting values,

showing there was no cross-contamination among patients.

Sequences from P60 and P82 from before the treatment

clustered together, away from the other time-points, in a mono-

phyletic branch with bootstrap of 98 and 86 respectively (Figures 9

and 10).

Figure 1. Eschematic representation of quasispecies. Left Y axis - graphic representation of different amino acid variants. Colored tiles
represent the same variant. w-weeks; d-days; m-months. SVR data previously published in Bittar et al 2010 [20].
doi:10.1371/journal.pone.0062393.g001
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Figure 2. Genetic distance. Genetic distances calculated by the number of base differences per site from between sequences within each time
point for each patient. BT-Before treatment; w-weeks; d-days; M-months.
doi:10.1371/journal.pone.0062393.g002
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From the phylogenetic tree for patient P20 (Figure10), the viral

population at 5 months seems to be derived from two separate

before-treatment populations. Interestingly, one of these popula-

tions, which was the most prevalent before treatment, is not

present in any of the 3 and 4 months time-point samples. This data

supports the genetic distance data that show a major decrease in 3

and 4 month time-point sequences when only one population was

sampled. At 5 months, the second viral population reappears,

which increases the genetic distance. The v values at 5 months can

be explained not by an increase in selective pressure, but is

probably a result of an increase in the synonymous changes due to

the presence of two different populations. Ultimately patient P20

viral population changed converging towards a previously existing,

but not predominant, population and, after failing treatment, both

populations were able to reestablish themselves.

Figure 3. Overall v. Overall v of each response group. ETR: end-of-treatment responder; NR: non-responder; SVR: sustained virological responder.
doi:10.1371/journal.pone.0062393.g003

Figure 4. v per patient. v rates for each patient (Total) and for each time point. BT-Before treatment; w-weeks; d-days; m-months.
doi:10.1371/journal.pone.0062393.g004
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The phylogenetic tree also demonstrated some interesting

evolutionary behaviors of the viral population of patient P60

(Figure 9). After-treatment sequences from patient P60 were

grouped on two different branches with significant support. The

first group comprises one sequence from the 28 day time-point,

one at 2 months, and nine sequences from the 5 month time-point.

The second group, which contains all other P60 after-treatment

sequences time-points together with the six remaining sequences

from the 5 month time point, grouped on a terminal monophyletic

branch along with three sequences from the 28 day time-point and

eight sequences from 2 months. The first group had a low

prevalence in the first two time-points after treatment, having only

one strain in each, but became the most prevalent at the last time

point. This scenario corroborates the genetic distance results

where P60 showed an increase at 5 months, probably due to the

existence of quasispecies that evolved from two different lineages.

The phylogenetic tree for patient P07 shows all of the sequences

from the 2 month time-point clustering as a monophyletic group,

with a bootstrap of 93, indicating a recent common ancestor with

a before-treatment strain (Figure 9). All samples from the 28 day

time-points are clustered in two different branches together with

some 5 month strains. The remaining strains from the 5 month

time-point are grouped on a third outer monophyletic branch

separated from all other after-treatment time-points that share

a common ancestor with a before-treatment strain. These data

explain why the genetic distance rises in the fifth month (Figure 2).

Phylogenetic data on patient P109 show that sequences

clustered on two major branches (Figure 10). This indicates that

the majority of the after-treatment population is derived from

a population that is not sampled in a before- treatment time-point.

Conversely, all after-treatment strains from patient P119 are

derived from the before-treatment samples.

Discussion

This study characterizes hepatitis C evolution, based on NS5A

protein, throughout treatment in patients infected with HCV

genotype 3a who show different treatment outcomes.

The high mutation rate of RNA viruses, such as HCV, provides

a pool of closely related variants, the quasispecies, which offers the

virus with many possibilities for evading the immune system and

therapy. It is interesting that in two of the non-response patients,

the same variants that were sampled before the treatment were

also sampled during (P75) or after treatment (P145). This is

unlikely to occur randomly since these samples were collected

more than six months apart, and HCV is estimated to produce

1012 copies of its genome per day [21] with a high mutation rate,

suggesting that these strains provided some advantage to the virus

enabling it to survive the treatment, and were therefore selected.

In contrast, the virus circulating in end-of-treatment responder

patients was not initially successful in evading the treatment, so the

virus was not detected using the PCR technique. Presumably, in

order to reestablish the infection, it replicates at low rates and at

Figure 5. Negative selection. Sites under negative selection for each patient. Measured by v rates considering p,0.1. Vertical lines link sites
negatively selected in more than one patient.
doi:10.1371/journal.pone.0062393.g005

Figure 6. Stop Codon. Graphic representation of sites where stop codons were identified. Pink – more than one occurrence; purple-one
occurrence. NZL1 (GenBank accession number D17763) – reference sequence for genotype 3 was used for the graphic representation. CRS –
cytoplasmic retention site; PKR-Bd – PKR binding region; ISDR – IFN sensitivity determining region; NLS – nuclear localization signal; V3– variable
region 3.
doi:10.1371/journal.pone.0062393.g006
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some point produces strains with a better fitness to the new

condition, and because they are capable of evading the treatment,

are selected, resulting in the relapse. After the best adapted pool of

strains for the new condition has been selected, the different

sequences would be expected to converge to the most favorable

genetic composition for survival. This is the case for patients P109

and P119. In the distance data at the time-point where a pre-

dominant strain arises, the genetic divergence between the

sequences falls, even though it still has a low frequency. It is also

expected that through time the virus population would recover its

variability.

The analysis of selective pressure by site showed some sites that

are negatively selected in more than one patient, suggesting

a functional constraint of the protein. However, as this does not

apply for all patients, and one site, site 408, was both positively and

negatively selected in two different patients (P109 and P20,

respectively), it seems that evolutionary processes are different in

each patient and are guided by the interaction of virus and host.

Viral samples from patients who had an end-of-treatment response

have more sites undergoing negative selection than samples found

in non-responder patients, and this difference is statistically

significant. Since this group passed through a recent bottleneck

due to a strong selective event (Interferon/Ribavirin administra-

Figure 7. Bayesian Skyride. Skyride plots showing the relative genetic diversity. Black solid lines represent the median posterior distribution, blue
shaded areas are the 95% Bayesian credible intervals, vertical red lines represent the approximate time at which the treatment started (BT time-point).
doi:10.1371/journal.pone.0062393.g007

Figure 8. Phylogenetic tree. Unrooted Maximum-Likelihood phylogenetic tree was constructed with HKY85 substitution model including Gamma
distribution parameter (HKY+G). Bootstrap was performed with 500 replicates. Values above 70% were considered significant.
doi:10.1371/journal.pone.0062393.g008
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tion), it probably conserved the amino acids that proved most

effective in evading both treatment and the immune system, thus

allowing the infection to be reestablished. It is interesting,

however, that the ETR group, despite having more negatively

selected sites, presented an overall v close to that of the NR group.

A possible explanation for this is that the remaining sites have

more relaxed constraints.

The occurrence of stop codons at the same site in different

patients, and in one case persisting through all time-points of the

same patient, is quite interesting. One explanation could be that

during translation the ribosome jumps or reads through the stop

codon. However, this hypothesis does not explain why they are

being found in the same site in different patients. Since NS5A is

a multifunctional protein and its functions are not fully un-

derstood, the proteins resulting from this RNA that encode stop

codons could have a specific function during the infection,

different from the one achieved by full-length NS5A. One of the

known functions of NS5A is an important role in viral replication,

and it has been shown that defective NS5A impairs HCV

replication. Though it is also known that NS5A is the only HCV

protein that can act in trans complementation, meaning it is acting

on a viral RNA other than the one from which it has been

translated [22,23]. These characteristics make it possible that the

defective genomes could persist by being encapsulated with the

help of normal NS5A acting in trans. Other studies have shown

that defective genomes circulate during HCV infection and also

during other Flavivirus infections [24,25,26]. Another point to

consider is that having NS5A sequences with stop codons do not

Figure 9. Non-responders individual phylogenetic trees. Unrooted Maximum-Likelihood phylogenetic trees from NR patients were
constructed with HKY85 substitution model including Gamma distribution parameter (HKY+G). Bootstraps were performed with 1000 replicates.
Values above 70% were considered significant. BT - Before treatment; w - weeks; d - days; m - months.
doi:10.1371/journal.pone.0062393.g009
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seem to be disadvantageous for viral survival. No nonsense

mutations were identified in sequences from SVR patients, while

73.9% of them were found in sequences from non-responders

[20]. These defective variants could give the virus some advantage

and play an important role in evading the therapy response.

Another issue that suggests some kind of viral fitness enhancement

by these mutations is that most of the stop codons that were found

at the same site in different patients were not encoded by the same

codon. For example, site 111 (originally TGG) mutated into three

different stop codons in three different patients, two of them

changed to TGA and the other to TAG. In the case of site 166

(originally AAG), two clones from the same patient and same time-

point presented two different stop codons (TAA and TGA), and in

two other patients the nonsense mutation was due to TAG. This

site (166) presented all three codons that stop translation. Site 386

had mutated from CAG to TAG in patient P60 at 5 months and

from CAA to TAA in patient P119. These sites converged to

nonsense mutations in different ways both in the same patient and

in different patients, suggesting that stopping translation at these

points may provide some kind of evolutionary advantage to the

virus.

Some insights on evolution. Well-adapted viruses do not

kill their hosts, at least not in the short term, as by doing so they

would ultimately be killing themselves and have less time to spread

viral particles to other hosts. The Human Immunodeficiency Virus

(HIV), for example, has adapted to infect, survive and replicate in

humans, but it also can kill its host very quickly. As HIV is

considered a virus of recent origin, thought to have been

introduced into humans between 1884 and 1924 [27], it has

probably had insufficient time to establish the most adapted

Figure 10. End-of-treatment responders individual phylogenetic trees. Unrooted Maximum-Likelihood phylogenetic trees from ETR
patients were constructed with HKY85 substitution model including Gamma distribution parameter (HKY+G). Bootstraps were performed with 1000
replicates. Values above 70% were considered significant. BT - Before treatment; d - days; m - months.
doi:10.1371/journal.pone.0062393.g010

Hepatitis C Virus Evolution and Treatment Outcome

PLOS ONE | www.plosone.org 10 April 2013 | Volume 8 | Issue 4 | e62393



scenario through co-evolution. The hepatitis C virus, on the other

hand, can be considered a successful virus in evolutionary terms. It

causes a persistent infection and remains silent, presenting no

clinical symptoms, for decades. Hepatitis C virus genotypes have

been co-evolving with the human host for a long time; they are

thought to have diverged 500 to 2000 years ago, leading to a better

fitness [28].

The samples used in this study were obtained from chronically

infected patients who had been through interferon and Ribavirin

treatment and had not responded. These viruses not only evaded

the host immune system, but also evaded therapy. What can be

seen in this study is that, although HCV is adapted to infect Homo

sapiens in general, each individual specimen represents a different

environment, leading to different evolutionary processes. In some

cases persistence is achieved by strains that were not initially the

best adapted for survival, and therefore were not sampled before

the treatment started, but after a new selective environment – the

treatment - was introduced the strain gained fitness. The opposite

can also be found, where all after-treatment strains are derived

from a unique before-treatment population or viral population

changed by converging to a previously existing, but not pre-

dominant, population and, after evading treatment, both popula-

tions were reestablished. Finally, the after-treatment strains were

all derived from before-treatment samples in some patients.

Despite the differences in population dynamics of each host, this

analysis show that before-treatment samples from most of the non-

responder patients (except P60) presented a viral population that

persisted after treatment, suggesting they were adapted to evade

the treatment. In contrast, the population found in before

treatment samples from most ETR patients (except P119) either

are selected out or appears in low frequency after relapse,

therefore changing the population structure. The exceptions

illustrate the uniqueness of the evolutionary process, and therefore

the treatment resistance process in each patient. No specific

relationship between genetic composition and therapy response

could be established.

Conclusion
Hepatitis C virus is a highly variable virus, which confers a range

of possibilities for it to evolve and adapt to new conditions. The

evolution of this virus during and after treatment is linked to the

environment to which it is subjected, that is the patient. The

analysis of evolutionary behavior throughout treatment showed

that each patient presented different population dynamics un-

related to therapy outcome. However it seems that the viral

population from non-responders that resists the treatment already

had strains that could evade therapy before it started. No specific

pattern was found in viral strains that could determine therapy

response. Although this is a small sample size study it shows there

appears to be different mechanisms that should be further studied

in larger studies.

Methods

Ethics Statement
This study was approved by the Ethics Committee of the

Hospital de Base from São José do Rio Preto, and all participants

signed an informed consent.

Population and Samples
In order to address the evolutionary pattern of the NS5A region

in HCV genotype 3a patients throughout treatment, blood

samples were collected from genotype 3a-positive patients at the

Blood Center of São José do Rio Preto, State of São Paulo, Brazil.

The collection of the samples was scheduled to be performed

before treatment, during (12 weeks or 24 weeks) and after

treatment (21 days, 28 days, 2 months, 3 months, 4 months and 5

months) to provide treatment response data and a complete

overview of the evolutionary behavior. Patients were classified into

three groups according to treatment response: sustained virological

responders (SVR), i.e. the virus was not detected after treatment or

during the 5-months follow-up; non-responders (NR), since they

showed no virological response; and end-of-treatment responders

(ETR), i.e. a virological response was detected, but during the 5-

months follow-up there was a relapse. Owing to availability of

patients, some samples could not be collected since the patient did

not attend the facility on the day it was schedule. In order to

establish the population of study patients with a history of

alcoholism and co-infection with other agents that could cause

liver damage were excluded. Also, patients from the three response

groups that had a more complete set of collections according to the

pre-determined time-points were chosen. The final study popula-

tion is 4 SVR patients, 4 NR patients and 4 ETR patients.

Samples from the SVR group and before treatment samples from

most patients enrolled in this study were analyzed in a previous

study and were used in this study for comparative analyses of the

evolutionary behavior (EU826189 to EU826218; EU826249 to
EU826263; EU826294 to EU826307) [20]. The exception was

patient P82; before-treatment samples from patient P82 were

analyzed in this work as they had not been analyzed in the

previous study. Treatment consisted of Interferon-a (IFN-a) and
Ribavirin administration for 24 weeks. Based on the samples from

during and after treatment time-points that were available the ones

that would be used in the analysis were determined. Time-points

for each patient were considered as presented in Figure S1.

Extraction of HCV RNA and Amplification of the NS5A
Region
Viral RNA was extracted from blood serum samples using

a QIAamp Viral RNA Mini Kit (QIAgen), and cDNA was

synthesized using a High-Capacity cDNA Archive Kit (Applied

Biosystems) according to the manufacturer’s instructions. For the

PCR and NESTED-PCR reactions, three sets of forward and

reverse primers for the NS5A region were designed (Table S2,

supplementary material). The amplification mix for both PCR and

NESTED-PCR reactions contained 1 ml (5 U) of a proofreading

polymerase (Long PCR Enzyme Mix; Fermentas) together with

5 ml of 10X Long PCR Buffer with MgCl2, 4 ml of DMSO, 1 ml of
dNTP (10 mM), 1 ml of each primer (20 pmol), 10 ml of

synthesized cDNA for the PCR reaction and 5 ml of PCR product

for the NESTED-PCR reaction, plus nuclease-free water provided

with the enzyme kit to a final volume of 50 ml. The amplified

products were analyzed on a 1% agarose gel.

Cloning and Sequencing
Cloning was performed using a TOPO XL Cloning TM Kit

(Invitrogen). Fragments of 15 clones at each time-point from each

patient were purified using a GeneJET Plasmid Purification Kit

(Fermentas). The entire NS5A region was sequenced using eight

primers: the vector primers M13F and M13R, and six inner

primers: three sense and three anti-sense (Sense: H.NS5AI-F1,

H.NS5AI-F2 and H.NS5AI-F3, antisense: H.NS5AI-R1, H.NS5AI-

R2 and H.NS5AI-R3) [20]. The sequencing reaction was

performed with BigDye Terminator (Applied Biosystems) and

the products were sequenced in an ABI 3130XL sequencer

(Applied Biosystems). The reaction mixture consisted of 2.2 ml of
Milli-Q autoclaved water, 2 ml of 56Sequencing Buffer (Applied

Biosystems), 0.8 ml of primer (5 pmol/ml), 2 ml of Big ET Dye

Hepatitis C Virus Evolution and Treatment Outcome

PLOS ONE | www.plosone.org 11 April 2013 | Volume 8 | Issue 4 | e62393



Terminator, plus 3 ml of sample. Sequencing reactions consisted of

a ‘‘hot start ‘‘step of 10 min at 95uC, followed by 96uC for 1

minute, then 25 cycles of 96uC for 15 s, 50uC for 15 s and 60uC
for 4 min.

Sequence Analysis
In order to analyze viral evolution over time, sequences from

samples collected before treatment, and previously published

(Accession numbers: EU826174 to EU826233 and from

EU826249 to EU826352), were also used in the analyses [20].

The sequences obtained in this study were subjected to BioMol -

Electropherogram quality analysis (http://adenina.biomol.unb.

br/phph/) [29], a phred phrap [30,31] analysis site, for quality

checking and contig construction. The contigs obtained for each

clone were aligned, along with the reference sequence NZL1 for

genotype 3 (GenBank accession number D17763), using Clustal W

software nested in the BioEdit 7.0.9.0 package [32,33]. All

sequences were edited on Bio Edit [32] to remove the vector

fragments, leaving only the complete sequence of the NS5A

region.

Evolutionary Analysis
Quasispecies were analyzed using LOCSPEQ 1.0 software [34].

The genetic distances were calculated using MEGA 5.0 software

by the number of base differences per site from between sequences

within each time point [35]. Results were plotted in a graphic for

each patient (Figure 2). The overall dN/dS ratios (v) were

calculated with HyPhy 2.0 using MG94xHKY85_3x4 substitution

model and global parameters. Site per site v was calculated by

Single Likelihood Ancestor Counting (SLAC) method using

HyPhy [36]. Bayesian skyride plots were performed using the

BEAST package [37]. Phylogenetic analysis was performed using

PhyML [38]. A Maximum-Likelihood tree was constructed using

the HKY85 substitution model including a Gamma distribution

parameter (HKY+G). Bootstrap was performed with 500 repli-

cates for the tree containing all the sequences and 1000 replicates

for individual trees from each patient. Values above 70% were

considered significant.

Statistics
Statistical analyses for the genetic distance and v data were

performed by Mann-Whitney tests, and a Chi-square test was used

for negatively selected sites. p-values lower than 0.005 were

considered significant.

Supporting Information

Figure S1 Graphic representation of the time-points used for

treatment follow-up. The red circles represent the time-points

when the sequences were used for the analysis from this study.

Before treatment sequences from P07, P20, P60, P75, P109, P119,

P145 were from a previous study detailed in Bittar et al (2010).

(TIF)

Table S1 Mann-Whitney statistical test on distances between

each time-point. A. P07; B. P60; C P75; D. P145; E. P20; F. P82;

G. P109; H. P119. In red differences that were not significant

(significance p,0.005).

(TIF)

Table S2 Primers used on PCR and NESTED-PCR reactions.

*published in Bittar et al (2010).

(TIF)
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