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Interaction potential between vortex lines for uniaxial superconductors
in the London approximation
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Two distinct expressions of the interaction potential between arbitrarily oriented curved vortex lines with
respect to the crystal axis are derived within the London approximation. One of these expressions is used to
compute the eigenvalues of the elasticity matrix. We examine the elastic properties of the vortex chain lattice,
recently proposed, concerning shearing deforma{i60163-18206)04821-1

[. INTRODUCTION chains goes as B/ Quite different behavior at high induc-
tion results.
The equilibrium configuration of the vortex lattice for ~ The study of the elastic properties of the vortex lattice
high-T, superconductors has been of great interest sincEeduires not only knowledge of its equilibrium configuration
these materials were discovered. The highsuperconduct- PUt also the expression of the three-dimensid6al) inter-

ors are strongly anisotropic compounds. The anisotropy in‘-"wt'(.)n potent|al_ be_tween t.he vortex lines. In Réf'a ZD.
straight-vortex line interaction has been proposed in recipro-

troduces many mte_rest!ng novelties in the propgrues of th(?:al space and its generalization to the three-dimensional case
vortex lattice, affecting its geometry and introducing strang&, Ref. g for anisotropic uniaxial superconductors and the

and yet unexpected features as the arfgleetween the in-  jnduction B tilted away from the crystat axis by an arbi-
duction B (the average vortex directiprand the crystat  trary angled. In real space, an expression for 3D interactions
axis is changed. A great deal of experimental and theoreticdlas been derived by Sudbg and Brdrfdt the simple ge-
works~* have been dedicated to investigate the shape of themetry §=0. Here we generalize their result for arbitrary
vortex lattice for arbitrarily oriented. 0. We also present an alternative expression for the 3D in-
For isotropic superconductors, the interaction between theeraction potential in reciprocal space by using the fact that
vortices is repulsive. The anisotropy modifies the interactiorthe vorticity is divergence free.
between the vortices as one varies the argyend the an- As an application of this alternative expression for the
isotropy and may even become attracfivehis may affect interaction potential we investigate the elastic properties of
the symmetry of the equilibrium configuration of the vortex the vortex chain lattice with respect to shearing deformation.
lattice. We also analyze the stability of this lattice against uniform
Campbell, Doria, and Kog&rfound that in the regime of Shear deformation.
high induction(well above the lower critical fieldH.,), the
equilibrium configuration of the vortex lattice of an aniso-
tropic superconductor is a deformed triangular lattice in In this section we discuss the interaction potential of any
which the nearest-neighbor distances between the vorticegrangement of curved London vortex lines for an aniso-
vary in a simple manner with the anisotropy, the angle tropic superconductor with uniaxial symmetry. London
and inductionB. theory is valid in the limit in which the fields penetrate over
The study of the elastic properties of the vortex lattice@ distance which is much larger than the size of the vortex
demands knowledge of the correct geometry of the vortex¢ore. Within this approximation, the depression of the super-
lattice. The use of geometries which do not correspond to thEonducting order parameter near the vortex core may be ne-
equilibrium configuration of the vortex lattice may lead to 9/€cted and the second Ginzburg-Landau equation can be

negative values of the elastic moduli. Sudbg and Bréfait, linearized and solved exactly. Thus, the free energy of an

instance, have found that the shear modulus becomes neg%r]semble of curved London vortex lines can be expressed as

tive to sufficient high anisotropy and low induction by using q)é
the deformed triangular lattice mentioned above. This signals F= 8—2 J dri“J drjgva/;(ri —rj)
a structural instability of the vortex lattice. T
Daemen, Campbell, and Koghproposed a type of vortex ®2
lattice for the low-induction regime. The vortex lattice is still = —OJ d3rj A3 v (NVp(r=r" ) wg(r’)
a deformed triangular lattice. However, nearest-neighbor dis- 87
tances vary in a nontrivial form with the anghe the anisot- CI)% d3k _
ropy, and the inductioB. For low induction, the external = —f — 3 VoK)V, 5(K)v4(k), )
magnetic field penetrates the sample in the form of chains of 8m) (2m)
vortices in which the distance between vortices intrachairwhere we have used the usual summation over the indices
does not vary withB and the distance between adjacentrepeated twice and, is the quantum flux. The sum ifi)

II. INTERACTION POTENTIAL
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runs over all vortex elementdr;,dr; including i=j, al- are then recovered. Note also that both the isotréfiand
though in this case a cutoff scheme is required to account faanisotropic(7) parts of(5) are singular at =0. To overcome
the finite vortex corgsee(5)—(9) below]. The Fourier trans- this difficulty one has to use some model for the vortex core.
form of the interactior(tensoy potentialV ,4(r), for super- The expressions for the interaction potential of London
conductors with uniaxial symmetry, is given by vortices(5)—(9) may be very useful in a wide range of physi-
cal applications. Sudbg and Bratfthave evaluated the en-
= i Pe e ergy barrier for mutual cutting of twisted vortex lines and
Vap(k)= (14+ A k%) Oap™ 1+ A k2+A,q°| @ aisofora pair of rigid straight-vortex lines. They assume that
) s .2 the symmetry axis between the vortices is parallel toche
whereq=kXc, A1=Agzp, Ao=Nc—Agp, @ndap,Ac &€  axis[9=0 in (5)—(9)]. They claim that the cutting barrier is
the in- and out-of-plane penetration lengths, respecti(ly. very small and under certain circumstances even negative,
On going from the first to the second line(®) we have used  jngicating that the entangled configuration is more stable.

the following definition for the vorticity: The same problem for the situation in which the symmetry
dri(2) axis is tilted away from the axis will be left to a further
W= 82[r—r(2)]——, (3)  contribution* In addition, (5)~(9) could be very useful to

[ dz determine field and current distribution by using the expres-

wherer;(z) is the position of thaéth vortex line at a certain sion

heightz above thexy plane. Notice that the system of coor-
dinates used in the equations above is the vortex frame in Ha(r)zcboE_ f driﬁ(z’)vaﬁ[r—ri(z’)]. (10
which the average vortex directigthe induction B||z lies in !
the xz plane and is tilted away from the axis by an angle
0.

The interaction potential ofl),

This representation of the interaction potential (8f is
not uniquely defined since the vorticity is divergence free,
that is,k - 7(k) =0, which means that there are no sources or
d3k . sinkholes of vortex line&? By introducing this expression
Vp(r)= j anﬁ(k)e'k'r, (4) into (1) and using(2), we obtain, after length algebra,

has been evaluated in Ref. 9 for the simple geon®lcy In 1+(Ag+Asin?g)k?

the Appendix we present the derivation of this potential ViadK) = (1+A K% (L+A K2+ AL0%) (1)
which is an extension of the result of Ref. 9 for the case of an
inclined average vortex directiord¢0). The result is ~ 1
Vyy(k): (1+A1k2+ Azqz)’ (12)
Vap(1)=VP(r) +V5A(r), (5)
where ~ 1+(A1+A200§0)k2
Vil = e a Ak Ay B
Sus o ab 1 1 24
af — @
Vi) 4mNZ, ot © T 0= (= cosd sindA ,k?
XZ( )_ ZX( )_ - (1+A1k2)(1+A1k2+A2q2) ’
g 1 (14)
V5P (1) = ————=| Gu(r)(Sap—CaCp) , , _
47N ap(rXC) and zero otherwise. These expressions can also be written as
(rXC),(rxc)s ~ A, ~ Sinf 6~
—Gy(r)——— 7 Vo (k) =] 1+ —sirf|U(k) — ——I(k), 1
2(r) (rx0)? ) xx(K) A, (k) A, (k) (15
Gy(r)=e Mab—g" \/(r><f;)2+e_2(r.};)_2/)\(:, ) T/yy(k)zﬁ(k), (16)
2 ~ A, ~ cog b~
Gy = | 24 X ) gy Vodk)=|1+ co$0|U(k) — ——T1(k), (17
)\abr 1 1
22 ~ cos¥ sind ~ ~
|24 (rx©) Vidk) == ———[A0(k-T(k)], (18
AeV(rX©)2+ €X(r-c)? !
here
xXe~ \/(r><f:)§+e§(r~A(jZ/)\C, (9) w
. . ~ 1
and e=\./\,, is the anisotropy. UK =r——g—s, (19
Notice that if we take the particular geometafc 1+ A%+ A50°
(Blc) one has (Xx€)?=x?+y%=p?, (r-¢)?=z> and
(r><c)a(r><c)ﬁ= €ajl €gmnCICnXjXm = €4jz€mXjXm™ 5aﬂP2 T(k): Az ) (20)
—X,Xg, NOW with a, 5=x,y. Equations(5)—(10) of Ref. 9 (1+AK%) (14 A K%+ A,0%)
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Notice that at large wave vectors,(k) falls off as 1k? ~ we use the lattice predicted by Daemen, Campbell, and
wheread (k) goes as K*. Thus,U(r) is not well defined at Kogan? For completeness, we outline the main steps of their
r=0 and a cutoff procedure must be used for the first part offethod of deducing the equilibrium configuration of the vor-
(15—(18). On the other hand, by the same readgn=0) is  tex lattice.
finite and the second part of these equations has nothing to Call Ly and L, the two unit cell sides ang the angle
do with a cutoff procedure to make London theory finite. between them. The side, is along thex axis andL, is in

One has the xy plane orthogonal to the inductioB and makes an
angle ¢ with respect to thex axis. Then, the lattice vectors
1 eV xe2+ed(r % are given by
u(r)= (@ ,
4mNaphc \/(r X ¢)%+ €%(r - C) Rmn= (ML, + nL,cosy)x+ nL,singy, (26)
d3k — wherem,n are integer numbers. The corresponding recipro-
I(r)= f (2_)3|(k)eik-r_ (22 cal lattice vectors are given by
T
] ] ] 2 2 2 1
To remove this short-length scale divergenceJifr) we Qmn nL—x+ mo-- nL—cos// smz,b (27
multiply U(k) of (19) by an elliptical Gaussian cutoff ! 2
e 26() where G(k )= &y(k, X2+ &5(k, -¢)%, where The free energyper unit volumeV) of the vortex lattice

&, and & are the in- and out-of-plane coherence lengthscan be obtained fronil) by takingR;(z) = (X;,Y;,z). One

respectively. The identity éphap=EN. holds, and has

Kk=MN\ap/&ap IS the Ginzburg-Landau parametéihe main

steps on how to build this cutoff scheme are sketched in Ref.
Notlce also that on going from the first to the second

representation we gain in reducing from nine to only fivewhereV, (k) is given by(17). Next, with the help of the flux

elements of the interactioftensoj potential and obtaining quantization conditiorh; L ,sing=®,/B, we can express the

expressions which are less cutoff dependent. However, ifree energy in term of one variable only, namely,

this alternative representation, it seems hardly possible that=L;/L;,

I(r) can be expressed in terms of elementary functions, 2

though its gradient can be calculated exactly as shown in the L :{ % P ]

Appendix. That is to say that a real space expression for this ! B [1—(p/2)?]|

second representation ®f,;(r) cannot be written in terms

of elementary functions like i15)—(9). In the next section D, 1 12

we evaluate the elasticity matrix by using this alternative Lo= B p[1—(p/2)?]|

representation of the interaction potential.

2
(28)

(29

_P
Ill. APPLICATION cosp=73

Suppose that initially the vortex lines are parametrized by
z, the coordinate along the axis orthogonal to xyeplane,
Ri(2)=(X,Y;,2). Let us denote by;(z) the displacement
of theith vortex line from its equilibrium position. The new
position of the ith vortex line is then given by
ri(z)=R;(2) +u;(2). By introducing this expression intd)
and expanding the free energy in powers of small displace
ments, and using nonlocal elasticity thedtyafter length
algebra we find that, up to second order,

Finally one minimizesF/V with respect top. The nu-
merical minimization of the free energy was done by using
the routinecoLDEN.'® In Fig. 1 we plotted the value gf, for
which F/V is a minimum, as a function of for x=60,
e=5, and several values of the inductibr-B/H, in units

of the upper critical fieldH.,. We find agreement with the
results of Ref. 3.

We are now in a position to study the elastic properties of
the vortex chain lattice. Frorf24) we can find all the elastic
moduli. For isotropic superconductors there are three inde-

= EJ ﬁ'ﬁa(—k)d)aﬂ(k)ﬁﬁ(k), (23 pendent elastic constants: a compression, a tilt, and a shear.
(2m) For anisotropic superconductors this number increases
where dramatically**® However, similarly to the isotropic case,
the shear modulus is the elastic constant which holds more
important information about the vortex lattice. The shear
D opk) = Z [fap(k+Q) = Tap(Q], (24) modulus is lattice structure dependent, whereas the other
elastic constants can be obtained within the continuum limit
-y v, _ T in which the lattice is replaced by a liquid of vortic¢Shis
Fap(K) =V ap(K) T KakigVod k)~ 2lckaVag(k), (25 limit is obtained from(24) by considering only theQ=0
where Q are the reciprocal lattice vectors angk) is the  contribution to this equatioh.So we consider only shear
Fourier transform ofu;(z). Notice that fork=0, AF=0, deformations. For anisotropic superconductors there is more
since a uniform displacement costs no energy to the systerthan one shear modulgsne “easy” and one “hard’j and
Although (23) is valid for any arrangement of vortex lines, their definitions art
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FIG. 1. Plot ofp againstd for k=60, e=5, andb=high induc-

tion (solid line), and b=0.005 (dashed ling b=0.0005 (dotted
line), andb=0.0001(dot-dashed ling
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FIG. 2. The easy shear modulug)(e) normalized to its value
at =0 for =50, =5, and b=0.005 (solid line), and
b=0.0005(dashed ling andb=0.0003(dotted line.

Q_(0k,0) change its sign in the high-angle region. In principle, this
cg?(a): IimT, (30  would indicate a structural instability of the vortex chain
k—0 lattice. However, this result should be carefully interpreted
since in the high-angle region London theory, as used in the
0 g | Q,(k,0,0 a7  Presentwork, may not be reliable and inhomogeneity of the
066(9)_km K2 3D material has to be accounted for explicitfy.

whereQ _(k) is the transverse an@ , (k) the longitudinal IV. SUMMARY
eigenmodgeigenvalug of ®,4(k), _

In summary we have found two representations for the
interaction (tensoj potential for London vortex lines,
namely, Eqgs.(5)—(9) which should be used in situations

where it is more appropriate to work in real space and Egs.

Q. (k)= F[Py(k) +Pyy(K)

V[ P(K) = Py () ]2+ 4D, (K) Dy (K) .

(32)
10 T T T T T T T T

In Fig. 2, a plot of the easy shear modulm®rmalized to
its value atd=0) againsté is shown fork=50, e=5, and
several values db. As one can see, by decreasing the induc- 8
tion, the easy shear modulus will no longer have a decreasing :
monotonic behavior fromp=0 to §=90". Instead, it will - o
develop a local maximum and local minimum. Similar be-
havior occurs with the hard shear modu(nsrmalized to its
value atd=0) as can be seen from Fig. 3 where the same
parameters were used; for sufficient low induction a mini-
mum appears in the intervak0<<90°.

This change of behavior may lead the easy and hard shear
moduli to cross with one another. This in fact happens, as
can be seen in Fig. 4 where the values 50, e=5, and
b=0.0002 were used. In a subinterval withirc@<90° the
easy shear modulus becombarder and the hard shear
modulussofter. . . ) )

We also investigated the stability of the vortex chain lat- 0 20 40 60 80
tice. As an indication of instability of the lattice we consider
the existence of negative eigenvalue. In Fig. 5 we depict
ci (6)/c§R(0) for k=50,b=0.0003, and two different val- FIG. 3. The hard shear modula§)(6) normalized to its value
ues of the anisotropy. Fer=>5 this quantity remains always at =0 for =50, e=5, and b=0.005 (solid line), and
positive. Nevertheless, foe=60, the hard shear moduli b=0.0005(dashed ling andb=0.0003(dotted ling.

®e)/c(0)

Cs
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12 r ; . r . r ’ ; don potential is immediate and requires no special technique,
d*k 4 .
aB — aB ik-r
Vi J 2mP 1T AK°
_ 50([% e_r/VWl: 5(15 e—l’/)\ab (Al)
. AmA; T 4w\, T
S5
go The anisotropic part o¥/,4(r) can be calculated via the
< definition of the auxiliary integra{22),
0(0
d3k .9 eik-r
V5h(r)= _Azf 3 2 £ 2 2
(27)° (L+ A k%) (1+ Ak“+ Aq°)
={[VL(VI(r))X¢Cl,]XC}g. (A2)
L /] I i 1 | L 1
0 20 40 60 80 Next we make the following change of variables:
0
k= cosok, — sindk; , (A3)

FIG. 4. The hard and easy shear moduli, solid and dashed lines,
respectively, fork=50, e=5, andb=0.0002. They are normalized ko=k' (A4)
to their values a#=0 which are the same at this angle. yoye

(15-(20) whic_h should be_ useq in situations wh_ere it is k,= singk., + cosgk. . (A5)
more appropriate to work in reciprocal space. This second

representation of the potential was used to evaluate the shear. . . . .
moduli of the vortex chain lattice. Bbr this transformation the volume in reciprocal space,

d®k=d3k’. The idea of this transformation is to bring
ACKNOWLEDGMENTS (1+Alk2)(l+Alk2+ A2q2) into a form which is cylindri-

i cally symmetric. The wave vectay=k X ¢ becomes
The author thanks CNPg-Conselho Nacional de Desen-

volvimento Cientiico e Tecnolgico-Brazil for financial sup-

port. Ox=cosiky, (AB)
APPENDIX ay=kK,, (A7)
We dedicate this appendix to the derivation(6f—(9) in
some detail. The evaluation of the isotropic part of the Lon- q,=sinok! (A8)
yl
" —_———— andq?= (k,)*+ (ky)?=(k])?.
: 1 Now definer’ as
12 | .
] X' =cosYx+sinbz, (A9)
10 | 4
_ y'=y, (A10)
(@] 8 |- D
e ; .
Gl : z' = —sinéx+ coYz. (A11)
= 81 7
,'f Hence, dropping the primes dd the auxiliary integral as-
4r B sumes the form
2 T d3k
~~~~~~~ |(f)=/\2f 23
oF T oM
] . ] A 1 . ] eik~r’
0 20 40 60 80 X > 5 > > .
(1+AKS+HA K1+ (A +AyKT + A kS ]

(A12)
FIG. 5. The hard shear modulus far=50, b=0.0003, and
e=5 (solid line) and e=60 (dashed ling After angular integration one has



I(r)=f+x dk, cogk,z") (A13)

—w (2m)2 1+ A K2

><J dk,
0

_ Alkj_‘]O(kJ_p,)
1+ A+ ALK

(A1t ALK Jok p")
1+ (A +A)KS + Ak

, (A14)

where
(p")?=(x")?+(y")?
= (cosHx + sinfz)%+y?
=x?+y?+ 72— (cosfz— sindx)?

=r2—(r-¢)?>=(rxc)2. (A15)

Performing ak, integration one obtains

+= dk, cogk,z")
|(r):f_w 2m)? W[KO(Zl)_KO(ZZ)]

=11(r)—15(r),
wherez; = q; \/1+A1k22, ai=aip’, a;=1\A{+ A5, anda,

(Al6)

=1/JA;. HereKy(x) is the modified Bessel function of or-
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Ki(x)= 1/ Tex
E(x)— er .
Thus, the last equation can be simplified to
(?li 1 e \/ai2+(z')2/1\1
b amin, w0 A0
so that the gradient becomes
~ 1 Vai ~ _ 2
VIi(r)xe=— —— X e Vai T(Z)TA
477\/A_1 a;
(A21)

According to the definition ofky; above, one can easily
show that

Vey Vai r—(r-9¢

—_———=—, A22
@ 2af  (rx@)? (A22)
which implies
&
VI(r)x¢t=— ! ' f: e Vi +(Z)Ay
477\/A_1(r><c)2
(A23)

der zero. To proceed we need to calculate the gradient of the

auxiliary integral,

Vi) =Va iy yy O A17
i(r)= - z' - (A17)
Sincez’=r-¢, Vz'=¢. Then
A Lol
VI (ryXc=Va;Xc— (A18)
o'?ozi
and
al; 1 fw cogk,z") >
— = K, ————=K (o \1+ Ak
da; EZ 0 zm 1( @ 1 z)
1 71 ’
= o Vo gl
27 \/A_l a;
(2N Ty Vai+(Z)TAL],  (AL9)
where

By inserting this result intdA2) we find Vgﬂ(r).

Notice that the results of Sec. Il could be derived in a
much more direct manner, although not so obvious. The pro-
cedure is as follows. Takdb5)—(9) and (15—(20) with
6=0. Let us denote these expressions\b?)%(r) (Ref. 9
and VSBA(k) (Ref. 12, respectively. Then(5)—(9) and
(15—(20) are related to these expressions through the equa-
tions

V(N=RT-VS8F).R, T=R'-r-R,  (A24)

V(k)=RT-VSPAK).Rk=R"-k-R,  (A25)

whereR is the rotation matrix. Both the interaction potential
and its argumenteitherr or k) are changed:

cos® 0 sing
R=| 0 0 o0 (A26)
—sind 0 co9y
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