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Two distinct expressions of the interaction potential between arbitrarily oriented curved vortex lines with
respect to the crystalc axis are derived within the London approximation. One of these expressions is used to
compute the eigenvalues of the elasticity matrix. We examine the elastic properties of the vortex chain lattice,
recently proposed, concerning shearing deformation.@S0163-1829~96!04821-7#

I. INTRODUCTION

The equilibrium configuration of the vortex lattice for
high-Tc superconductors has been of great interest since
these materials were discovered. The high-Tc superconduct-
ors are strongly anisotropic compounds. The anisotropy in-
troduces many interesting novelties in the properties of the
vortex lattice, affecting its geometry and introducing strange
and yet unexpected features as the angleu between the in-
duction B ~the average vortex direction! and the crystalc
axis is changed. A great deal of experimental and theoretical
works1–4 have been dedicated to investigate the shape of the
vortex lattice for arbitrarily orientedB.

For isotropic superconductors, the interaction between the
vortices is repulsive. The anisotropy modifies the interaction
between the vortices as one varies the angleu and the an-
isotropy and may even become attractive.5 This may affect
the symmetry of the equilibrium configuration of the vortex
lattice.

Campbell, Doria, and Kogan4 found that in the regime of
high induction~well above the lower critical fieldHc1), the
equilibrium configuration of the vortex lattice of an aniso-
tropic superconductor is a deformed triangular lattice in
which the nearest-neighbor distances between the vortices
vary in a simple manner with the anisotropy, the angleu,
and inductionB.

The study of the elastic properties of the vortex lattice
demands knowledge of the correct geometry of the vortex
lattice. The use of geometries which do not correspond to the
equilibrium configuration of the vortex lattice may lead to
negative values of the elastic moduli. Sudbø and Brandt,6 for
instance, have found that the shear modulus becomes nega-
tive to sufficient high anisotropy and low induction by using
the deformed triangular lattice mentioned above. This signals
a structural instability of the vortex lattice.

Daemen, Campbell, and Kogan3 proposed a type of vortex
lattice for the low-induction regime. The vortex lattice is still
a deformed triangular lattice. However, nearest-neighbor dis-
tances vary in a nontrivial form with the angleu, the anisot-
ropy, and the inductionB. For low induction, the external
magnetic field penetrates the sample in the form of chains of
vortices in which the distance between vortices intrachain
does not vary withB and the distance between adjacent

chains goes as 1/B. Quite different behavior at high induc-
tion results.

The study of the elastic properties of the vortex lattice
requires not only knowledge of its equilibrium configuration
but also the expression of the three-dimensional~3D! inter-
action potential between the vortex lines. In Ref. 7 a 2D
straight-vortex line interaction has been proposed in recipro-
cal space and its generalization to the three-dimensional case
in Ref. 8 for anisotropic uniaxial superconductors and the
inductionB tilted away from the crystalc axis by an arbi-
trary angleu. In real space, an expression for 3D interactions
has been derived by Sudbø and Brandt9 for the simple ge-
ometry u50. Here we generalize their result for arbitrary
u. We also present an alternative expression for the 3D in-
teraction potential in reciprocal space by using the fact that
the vorticity is divergence free.

As an application of this alternative expression for the
interaction potential we investigate the elastic properties of
the vortex chain lattice with respect to shearing deformation.
We also analyze the stability of this lattice against uniform
shear deformation.

II. INTERACTION POTENTIAL

In this section we discuss the interaction potential of any
arrangement of curved London vortex lines for an aniso-
tropic superconductor with uniaxial symmetry. London
theory is valid in the limit in which the fields penetrate over
a distance which is much larger than the size of the vortex
core. Within this approximation, the depression of the super-
conducting order parameter near the vortex core may be ne-
glected and the second Ginzburg-Landau equation can be
linearized and solved exactly. Thus, the free energy of an
ensemble of curved London vortex lines can be expressed as
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where we have used the usual summation over the indices
repeated twice andF0 is the quantum flux. The sum in~1!
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runs over all vortex elementsdr i ,dr j including i5 j , al-
though in this case a cutoff scheme is required to account for
the finite vortex core@see~5!–~9! below#. The Fourier trans-
form of the interaction~tensor! potentialVab(r ), for super-
conductors with uniaxial symmetry, is given by

Ṽab~k!5
1

~11L1k
2! Fdab2

L2qaqb

11L1k
21L2q

2G , ~2!

whereq5k3c, L15Lab
2 , L25lc

22Lab
2 , andlab ,lc are

the in- and out-of-plane penetration lengths, respectively.7,8

On going from the first to the second line in~1! we have used
the following definition for the vorticity:

n~r !5(
i

d~2!@r2r i~z!#
dr i~z!

dz
, ~3!

wherer i(z) is the position of thei th vortex line at a certain
heightz above thexy plane. Notice that the system of coor-
dinates used in the equations above is the vortex frame in
which the average vortex direction~the induction! Biz lies in
the xz plane and is tilted away from thec axis by an angle
u.

The interaction potential of~1!,

Vab~r !5E d3k

~2p!3
Ṽab~k!eik•r, ~4!

has been evaluated in Ref. 9 for the simple geometryzic. In
the Appendix we present the derivation of this potential
which is an extension of the result of Ref. 9 for the case of an
inclined average vortex direction (uÞ0). The result is
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ab~r !1V2

ab~r !, ~5!

where
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G2~r !5S 21
~r3 ĉ!2
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ande5lc /lab is the anisotropy.
Notice that if we take the particular geometryzic

(Bic) one has (r3 ĉ)25x21y25r2, (r• ĉ)25z2 and
(r3 ĉ)a(r3 ĉ)b 5 ea j l ebmnclcnxjxm5 ea jzebmzxjxm5dabr2

2xaxb , now with a,b5x,y. Equations~5!–~10! of Ref. 9

are then recovered. Note also that both the isotropic~6! and
anisotropic~7! parts of~5! are singular atr50. To overcome
this difficulty one has to use some model for the vortex core.

The expressions for the interaction potential of London
vortices~5!–~9! may be very useful in a wide range of physi-
cal applications. Sudbø and Brandt10 have evaluated the en-
ergy barrier for mutual cutting of twisted vortex lines and
also for a pair of rigid straight-vortex lines. They assume that
the symmetry axis between the vortices is parallel to thec
axis @u50 in ~5!–~9!#. They claim that the cutting barrier is
very small and under certain circumstances even negative,
indicating that the entangled configuration is more stable.
The same problem for the situation in which the symmetry
axis is tilted away from thec axis will be left to a further
contribution.11 In addition, ~5!–~9! could be very useful to
determine field and current distribution by using the expres-
sion

Ha~r !5F0(
i
E dri

b~z8!Vab@r2r i~z8!#. ~10!

This representation of the interaction potential of~2! is
not uniquely defined since the vorticity is divergence free,
that is,k• ñ(k)50, which means that there are no sources or
sinkholes of vortex lines.12 By introducing this expression
into ~1! and using~2!, we obtain, after length algebra,
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and zero otherwise. These expressions can also be written as
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Notice that at large wave vectors,Ũ(k) falls off as 1/k2

whereasĨ (k) goes as 1/k4. Thus,U(r ) is not well defined at
r50 and a cutoff procedure must be used for the first part of
~15!–~18!. On the other hand, by the same reason,I (r50) is
finite and the second part of these equations has nothing to
do with a cutoff procedure to make London theory finite.
One has

U~r !5
1

4plablc

eA~r3 ĉ!21e2~r• ĉ!2/lc

A~r3 ĉ!21e2~r• ĉ!2
, ~21!

I ~r !5E d3k

~2p!3
Ĩ ~k!eik•r. ~22!

To remove this short-length scale divergence inU(r ) we
multiply Ũ(k) of ~19! by an elliptical Gaussian cutoff
e22G(k') where G(k')5jab

2 (k'3 ĉ)21jc
2(k'•c)

2, where
jab and jc are the in- and out-of-plane coherence lengths,
respectively. The identity jablab5jclc holds, and
k5lab /jab is the Ginzburg-Landau parameter.~The main
steps on how to build this cutoff scheme are sketched in Ref.
13!.

Notice also that on going from the first to the second
representation we gain in reducing from nine to only five
elements of the interaction~tensor! potential and obtaining
expressions which are less cutoff dependent. However, in
this alternative representation, it seems hardly possible that
I (r ) can be expressed in terms of elementary functions,
though its gradient can be calculated exactly as shown in the
Appendix. That is to say that a real space expression for this
second representation ofVab(r ) cannot be written in terms
of elementary functions like in~5!–~9!. In the next section
we evaluate the elasticity matrix by using this alternative
representation of the interaction potential.

III. APPLICATION

Suppose that initially the vortex lines are parametrized by
z, the coordinate along the axis orthogonal to thexy plane,
Ri(z)5(Xi ,Yi ,z). Let us denote byui(z) the displacement
of the i th vortex line from its equilibrium position. The new
position of the i th vortex line is then given by
r i(z)5Ri(z)1ui(z). By introducing this expression into~1!
and expanding the free energy in powers of small displace-
ments, and using nonlocal elasticity theory,14 after length
algebra we find that, up to second order,

DF5
1

2E dk3

~2p!3
ũa~2k!Fab~k!ũb~k!, ~23!

where

Fab~k!5
B2

4p(
Q

@ f ab~k1Q!2 f ab~Q!#, ~24!

f ab~k!5kz
2Ṽab~k!1kakbṼzz~k!22kzkaṼzb~k!, ~25!

whereQ are the reciprocal lattice vectors andũ(k) is the
Fourier transform ofui(z). Notice that fork50, DF50,
since a uniform displacement costs no energy to the system.
Although ~23! is valid for any arrangement of vortex lines,

we use the lattice predicted by Daemen, Campbell, and
Kogan.3 For completeness, we outline the main steps of their
method of deducing the equilibrium configuration of the vor-
tex lattice.

Call L1 and L2 the two unit cell sides andc the angle
between them. The sideL1 is along thex axis andL2 is in
the xy plane orthogonal to the inductionB and makes an
anglec with respect to thex axis. Then, the lattice vectors
are given by

Rmn5~mL11nL2cosc!x1nL2sincy, ~26!

wherem,n are integer numbers. The corresponding recipro-
cal lattice vectors are given by

Qmn5n
2p

L1
x1Sm2p

L2
2n

2p

L1
cosc D 1

sinc
y. ~27!

The free energy~per unit volumeV) of the vortex lattice
can be obtained from~1! by takingRi(z)5(Xi ,Yi ,z). One
has

F

V
5

B2

8p(
Q

Ṽzz~Q!, ~28!

whereṼzz(k) is given by~17!. Next, with the help of the flux
quantization conditionL1L2sinc5F0 /B, we can express the
free energy in term of one variable only, namely,
r5L1 /L2 ,

L15H F0

B

r

@12~r/2!2# J
1/2

,

L25H F0

B

1

r@12~r/2!2# J
1/2

, ~29!

cosc5
r

2
.

Finally one minimizesF/V with respect tor. The nu-
merical minimization of the free energy was done by using
the routineGOLDEN.15 In Fig. 1 we plotted the value ofr, for
which F/V is a minimum, as a function ofu for k560,
e55, and several values of the inductionb5B/Hc2 in units
of the upper critical fieldHc2 . We find agreement with the
results of Ref. 3.

We are now in a position to study the elastic properties of
the vortex chain lattice. From~24! we can find all the elastic
moduli. For isotropic superconductors there are three inde-
pendent elastic constants: a compression, a tilt, and a shear.
For anisotropic superconductors this number increases
dramatically.14,16 However, similarly to the isotropic case,
the shear modulus is the elastic constant which holds more
important information about the vortex lattice. The shear
modulus is lattice structure dependent, whereas the other
elastic constants can be obtained within the continuum limit
in which the lattice is replaced by a liquid of vortices.@This
limit is obtained from~24! by considering only theQ50
contribution to this equation.# So we consider only shear
deformations. For anisotropic superconductors there is more
than one shear modulus~one ‘‘easy’’ and one ‘‘hard’’! and
their definitions are10
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c66
~e!~u!5 lim

k→0

V2~0,k,0!

k2
, ~30!

c66
~h!~u!5 lim

k→0

V1~k,0,0!

k2
, ~31!

whereV2(k) is the transverse andV1(k! the longitudinal
eigenmode~eigenvalue! of Fab(k) ,

V6~k!5 1
2 @Fxx~k!1Fyy~k!

6A@Fxx~k!2Fyy~k!#214Fxy~k!Fyx~k!#.

~32!

In Fig. 2, a plot of the easy shear modulus~normalized to
its value atu50) againstu is shown fork550, e55, and
several values ofb. As one can see, by decreasing the induc-
tion, the easy shear modulus will no longer have a decreasing
monotonic behavior fromu50 to u5900. Instead, it will
develop a local maximum and local minimum. Similar be-
havior occurs with the hard shear modulus~normalized to its
value atu50) as can be seen from Fig. 3 where the same
parameters were used; for sufficient low induction a mini-
mum appears in the interval 0,u,90°.

This change of behavior may lead the easy and hard shear
moduli to cross with one another. This in fact happens, as
can be seen in Fig. 4 where the valuesk550, e55, and
b50.0002 were used. In a subinterval within 0,u,90° the
easy shear modulus becomesharder and the hard shear
modulussofter.

We also investigated the stability of the vortex chain lat-
tice. As an indication of instability of the lattice we consider
the existence of negative eigenvalue. In Fig. 5 we depict
c66
(h)(u)/c66

(h)(0) for k550,b50.0003, and two different val-
ues of the anisotropy. Fore55 this quantity remains always
positive. Nevertheless, fore560, the hard shear moduli

change its sign in the high-angle region. In principle, this
would indicate a structural instability of the vortex chain
lattice. However, this result should be carefully interpreted
since in the high-angle region London theory, as used in the
present work, may not be reliable and inhomogeneity of the
material has to be accounted for explicitly.17

IV. SUMMARY

In summary we have found two representations for the
interaction ~tensor! potential for London vortex lines,
namely, Eqs.~5!–~9! which should be used in situations
where it is more appropriate to work in real space and Eqs.

FIG. 1. Plot ofr againstu for k560, e55, andb5high induc-
tion ~solid line!, and b50.005 ~dashed line!, b50.0005 ~dotted
line!, andb50.0001~dot-dashed line!.

FIG. 2. The easy shear modulusc66
(e)(u) normalized to its value

at u50 for k550, e55, and b50.005 ~solid line!, and
b50.0005~dashed line!, andb50.0003~dotted line!.

FIG. 3. The hard shear modulusc66
(h)(u) normalized to its value

at u50 for k550, e55, and b50.005 ~solid line!, and
b50.0005~dashed line!, andb50.0003~dotted line!.
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~15!–~20! which should be used in situations where it is
more appropriate to work in reciprocal space. This second
representation of the potential was used to evaluate the shear
moduli of the vortex chain lattice.
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APPENDIX

We dedicate this appendix to the derivation of~5!–~9! in
some detail. The evaluation of the isotropic part of the Lon-

don potential is immediate and requires no special technique,

V1
ab~r !5E d3k

~2p!3
dab

11L1k
2e

ik•r

5
dab

4pL1

e2r /AL1

r
5

dab

4plab
2

e2r /lab

r
. ~A1!

The anisotropic part ofVab(r ) can be calculated via the
definition of the auxiliary integral~22!,

V2
ab~r !52L2E d3k

~2p!3
qaqbe

ik•r

~11L1k
2!~11L1k

21L2q
2!

5$@¹@„¹I ~r !…3 ĉ#a#3 ĉ%b . ~A2!

Next we make the following change of variables:

kx5cosukx82sinukz8 , ~A3!

ky5ky8 , ~A4!

kz5sinukx81cosukz8 . ~A5!

For this transformation the volume in reciprocal space,
d3k5d3k8. The idea of this transformation is to bring
(11L1k

2)(11L1k
21L2q

2) into a form which is cylindri-
cally symmetric. The wave vectorq5k3 ĉ becomes

qx5cosuky8 , ~A6!

qy5kx8 , ~A7!

qz5sinuky8 , ~A8!

andq25(kx8)
21(ky8)

25(k'8 )
2.

Now definer 8 as

x85cosux1sinuz, ~A9!

y85y, ~A10!

z852sinux1cosuz. ~A11!

Hence, dropping the primes onk8 the auxiliary integral as-
sumes the form

I ~r !5L2E d3k

~2p!3

3
eik•r8

~11L1k'
21L1kz

2!@11~L11L2!k'
21L1kz

2#
.

~A12!

After angular integration one has

FIG. 4. The hard and easy shear moduli, solid and dashed lines,
respectively, fork550, e55, andb50.0002. They are normalized
to their values atu50 which are the same at this angle.

FIG. 5. The hard shear modulus fork550, b50.0003, and
e55 ~solid line! ande560 ~dashed line!.
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I ~r !5E
2`

1` dkz
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2 ~A13!
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Performing ak' integration one obtains
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5I 1~r !2I 2~r !, ~A16!

wherezi5a iA11L1kz
2, a i5air8, a151/AL11L2, anda2

51/AL1. HereK0(x) is the modified Bessel function of or-
der zero. To proceed we need to calculate the gradient of the
auxiliary integral,
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Thus, the last equation can be simplified to
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so that the gradient becomes
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2
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According to the definition ofa i above, one can easily
show that

¹a i

a i
5

¹a i
2

2a i
2 5

r2~r• ĉ!ĉ

~r3 ĉ!2
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which implies
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1
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r3 ĉ
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e2Aa i

2
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By inserting this result into~A2! we findV2
ab(r ).

Notice that the results of Sec. II could be derived in a
much more direct manner, although not so obvious. The pro-
cedure is as follows. Take~5!–~9! and ~15!–~20! with
u50. Let us denote these expressions byVab

SB(r ) ~Ref. 9!
and Ṽ ab

CDA(k) ~Ref. 12!, respectively. Then,~5!–~9! and
~15!–~20! are related to these expressions through the equa-
tions

VJ~r !5RJT
•VJSB~ r̃ !•RJ , r̃5RJT

•r•RJ , ~A24!

VJ̃~k!5RJT
•VJ̃CDA~ k̃!•RJ ,k̃5RJT

•k•RJ , ~A25!

whereRJ is the rotation matrix. Both the interaction potential
and its argument~either r or k) are changed:

RJ5S cosu 0 sinu

0 0 0

2sinu 0 cosu
D . ~A26!
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