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ABSTRACT

The switched static output feedback control applied to uncertain linear time-invariant
(LTI) systems is addressed in this work.The approach chosen for the design of static
output feedback (SOF) gains is based on the two-stage method, which consists in
obtaining a state feedback gain matrix which is then used as an input parameter for
the design of the desired static output feedback gain at the second stage. The solution
for the investigated problems is presented in terms of linear matrix inequalities (LMIs),
obtained by means of the application of the Finsler’s Lemma. The method proposed was
applied on the design of controllers for an active suspension system. In the practical
experiments the dynamic performance achieved with the implementation of the derived
controllers attests to the potential of the proposed strategy for designing switched static
output feedback controllers. The obtained results are compared with a robust static
output feedback controller design.

Keywords: Static output feedback control; Switching control; Uncertain linear time-
invariant systems; Linear matrix inequalities (LMIs).



RESUMO

Este trabalho aborda o controle chaveado via realimentação estática de saída aplicado
à sistemas lineares incertos invariantes no tempo (no inglês, linear time-invariant -
LTI). O projeto de controle chaveado via realimentação estática de saída (no inglês,
static output feedback, SOF) apresentado neste trabalho é baseado no método dos
dois estágios, o qual consiste em primeiramente obter um ganho de realimentação de
estado ou das variáveis de estado, e então, utilizá-lo como entrada no segundo estágio
para obter os ganhos de realimentação estática de saída desejado. As soluções para
os problemas investigados são apresentadas na forma de desigualdades matriciais
lineares (no inglês, linear matrix inequalities, LMIs), obtidas por meio da aplicação
do Lema de Finsler. Adicionalmente, a solução proposta é aplicada no projeto de
controladores para um sistema de suspensão ativa. Nos experimentos práticos a
performance dinâmica alcançada com a aplicação dos controladores projetados atesta
o potencial do método proposto de controladores chaveado via realimentação estática
de saída. Os resultados obtidos foram comparados com técnicas de controle robusto
via realimentação estática de saída.

Palavras-chave: Controle via realimentação estática de saída; Controle chaveado;
Sistemas lineares incertos invariantes no tempo (LIT); Desigualdades matriciais lineares
(LMIs).
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1 INTRODUCTION

The design of output feedback controller is important to deal with systems in
which not all states are available for measurement, making impractical the use of the
state feedback controller (KIMURA, 1975). There are two methods for development and
control with output feedback. The first one is called dynamic output feedback (DOF)
which is similar to of developing an observer to estimate the missing states for the control
in the state space (ZHAI; LIU, 2021), as the feedback loop presents its own dynamics.
On its turn, in the second method, the static output feedback (SOF), we use gains linked
to the available states or the measured system output, which are directly in the control
by means of an static feedback gain (BERNSTEIN, 1992). The static output feedback
leads to a low-cost control design with relatively simple practical implementation since
no additional sensors are needed and being based on the use of a single gain matrix
(DONG; YANG, 2008). Furthermore, fixed-order DOF can be transformed into SOF by
considering an augmented plant (BERNSTEIN, 1992; SYRMOS et al., 1997; GHAOUI;
OUSTRY; AITRAMI, 1997).

In practical situations in control engineering one must consider the robustness
to parameter uncertainty, which can be present due to imprecise system modeling, a
failure during the application, sensors measurement errors or even disturbances in the
system dynamics, that can generate unwanted outputs or create security risks for the
system users (BARMISH, 1985). Many studies aiming at the design of robust controllers
via output feedback to deal with these practical problems have been published so
far. Among them we can mention Dong and Yang (2013) which synthesizes a robust
static feedback controller with polytopic uncertainties, Manesco (2013) creates a robust
controller design to handle structural failures using static output feedback using, D-
stability and parameter-dependent Lyapunov functions (PDLF), and Chang, Park and
Zhou (2015) presents a robust H∞ SOF controller.

Another control technique that has proven to be efficient, not only in stabilizing,
but also in improving the transient response of the system is the switched control
(SUN; GE, 2005), which consist to design a collection of controllers and a switching law
such that the closed-loop system is asymptotically stable when orchestrating among
the controllers under the switching law (XIAO et al., 2020). This strategy has been
attracting the interest of the research community, as one can see from the development
of interesting studies such as Pettersson (2004) which uses bilinear matrix inequalities
(BMIs) to design the switched controllers, Lin and Antsaklis (2009) that presents an
analysis and stabilization of a switched linear system. Additionally, quadratic stability
to design state feedback controllers can be found in Souza et al. (2013), a switched
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state feedback robust control for continuous-time systems is presented in Geromel and
Deaecto (2009), where is a procedure to find a set of state feedback gains and switching
rule to coordinate them, for all time-varying uncertain parameters under consideration
a guaranteed H2 cost. In this work will consider the practical engineering problems
mentioned before where not all states are available, resulting in the necessity for the
design of switched controllers via output feedback (YANG; LI; NIU, 2015; HE et al.,
2019; HE; ZHU; SWEI, 2020; XIAO et al., 2020; LI et al., 2016; CARNIATO et al., 2020;
OLIVEIRA et al., 2018; OLIVEIRA et al., 2014).

The literature of switched (SOF) control is relatively scarce, and the methods
usually deal with this problem from the DOF controller perspective, in which it seeks the
benefits of switched control by creating several gains or observers via output feedback
and a switching law for the choosing the appropriate controller (YANG; LI; NIU, 2015).
We can also mention a switched DOF controller applied in a highly maneuverable
technology vehicle proposed in Yang, Li and Niu (2015), which uses linear matrix
inequalities (LMIs) to create a problem model that combine Lyapunnov functions and
the average dwell time method, and in He et al. (2019), which demonstrates a smooth-
switching linear parameter-varying dynamic output feedback control, a DOF-switched
controller that combines input covariance constraint (ICC) and H∞ that avoids sudden
variations between controllers and also minimizes H∞ and H2 cost in the switching law,
using parametric linear matrix inequalities (PLMIs) and applying the smooth-switching
linear parameter-varying dynamic output feedback control for the vibration reduction of
a flexible wing of an airplane (HE; ZHU; SWEI, 2020). Also, in Li et al. (2016) a switched
controller DOF for nonlinear systems using the Takagi-Sugeno fuzzy modeling applied
to a mass-spring-damping system, and a control through the construction of an observer
and multiple Lyapunnov functions, estimating the states for switched state-feedback
controller is discussed in Xiao et al. (2020). Furthermore, in Xiao et al. (2020) one can
find two methods for synthesizing switched static output feedback controllers using
LMIs obtained through Finsler’s Lemma and another using a transformation matrix. In
Carniato et al. (2020) the authors proposed the use of a hybrid metaheuristic technique,
called DE–LMI (differential evolution – linear matrix inequality) to solve switched static
output feedback for continuous-time uncertain switched linear systems and Bocca et al.
(2022) propose a designing procedure for a robust guaranteed cost switched SOF that
also uses DE–LMI and with parameter-dependent Lyapunov candidate function.

In this work, LMIs are used to describe the proposed strategy, as it consists of a
powerful tool to solve linear control and optimization problems (SCHERER; GAHINET;
CHILALI, 1997), and which can be easily programmed with the MATLAB® in interfaces
such as the YALMIP (Yet Another LMI Parser) (LOFBERG, 2004) and solved with
SeDuMi (STURM, 1998).

The results proposed in the present text are inspired by the works of Manesco
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(2013) and Sereni (2019) that use the two-stage method to solve the SOF problem
(AGULHARI; OLIVEIRA; PERES, 2010; MEHDI; BOUKAS; BACHELIER, 2004). This
method consists in developing a state feedback gain K, then using this information as
input for calculating the desired SOF gains. The proposed formulation was obtained
using Finsler’s Lemma (BOYD et al., 1994), and the control law was based on the one
proposed in Mainardi Júnior et al. (2015) that considers the addition of switching matrices
Qk on the controller design of switched systems with polytopic uncertainties. Considering
the presented scope, this work investigates the proposition of new LMI conditions for
design a switched control via static output feedback with polytopic uncertainties.

The switched control design technique via static output feedback is applied on
an active suspension system to test and demonstrate the efficacy of our method. The
chapters of this work are presented as follows:

• Chapter 2 addresses the synthesis of robust static output feedback controllers.

• Chapter 3 brings an initial presentation of proposed switched control design
method via static output feedback gain without uncertainties in the output matrix,
the use of minimum decay rate restrictions with the proposed theory, the switching
law and the results of experiments for feasibility and performance analysis in an
active suspension system in comparison with the robust SOF strategy proposed
in Manesco (2013).

• Chapter 4 addresses a switched control design method via static output feedback
gain with the a parameter-dependent state feedback in the first stage, relaxations
methods and the experiments of feasibility and performance in an active suspen-
sion system in relation to the switched SOF proposed in Chapter 3.

• Finally, the concluding remarks and future perspectives on the subject at matter
are presented in Chapter 5.
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2 Robust Control via Static Output Feedback

This chapter is devoted to present some basic, concepts and definitions which
will be considered as a basis for the development of the contributions presented in this
text.

2.1 Finsler’s Lemma

The approach proposed in this work is based on an application of the Finsler’s
Lemma to tackle the control via output feedback problem. Therefore, before properly
addressing the issue, the Finsler’s Lemma is formally presented in the sequence.

Lemma 1. (Finsler’s Lemma). Consider W ∈ Rn, S ∈ Rn×n and R ∈ Rm×n with
(rank(R) < n) where R⊥ is a basis for the null space of R (i.e.RR⊥ = 0).

Then, the following conditions are equivalent:

(i) W ′SW < 0, ∀ W ≠ 0, RW = 0,

(ii) R′⊥SR⊥ < 0,

(iii) ∃η ∈ R : S − ηR′R < 0,

(iv) ∃X ∈ R2n×n : S + X R + R′X ′ < 0

where η and X are additional variables (or multipliers).

Proof. See Skelton, Iwasaki and Grigoriadis (1997) and Oliveira and Skelton (2001)

2.2 Decay Rate

Some systems may demand, besides stability, that also some transient perfor-
mance requirements are meet. In that case, for ensuring such control requirements
we might consider the decay rate, which is an index associated with system’s transient
duration, which can be defined according to Boyd et al. (1994), as the highest δ such
that

lim
t→∞

eδt||x(t)|| = 0 (2.1)

holds for all trajectories of x(t) ̸= 0 the system’s states

Taking into account the Lyapunov’s function V (x(t)) = x′(t)Px(t), a low bound
on the minimum decay rate can be established if

V̇ (x(t)) ≤ −2δV (x(t)) (2.2)



Chapter 2. Robust Control via Static Output Feedback 14

holds for all trajectories of the system’s states x(t) (BOYD et al., 1994).

2.3 System Description and Problem Formulation

Consider an uncertain linear time-invatiant (LTI) system such as:

ẋ(t) = A(α)x(t) +B(α)u(t)
y(t) = C(α)x(t),

(2.3)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rp is the measured output vector, u(t) ∈ Rm

is the control input vector. Moreover, the plant matrix A(α) ∈ Rn×n, and the input matrix
B(α) ∈ Rn×m and output matrix C(α) ∈ Rp×n are uncertain matrices that describe the
system’s dynamics, and can be represented in the polytopic domain D defined as

D =
{
(A,B,C)(α) : (A,B,C)(α) =

N∑
i=1

αi(A,B,C)i, α ∈ ∧N

}
, (2.4)

where Ai, Bi and Ci denote the i-th polytope vertex, and N is the number of vertices
of the polytope. Furthermore, D is parameterized in terms of a vector α = (α1, ..., αN),
whose parameters α are unknown constants belonging to the unitary simplex set ∧N ,
defined as

∧N =
{
α ∈ Rn :

N∑
i=1

αi = 1;αi ≥ 0
}
, (2.5)

for i ∈ KN , where KN is a set of positive integers {1, . . . , N}.

Supposing that the feedback loop is composed by the following control law

u(t) = Ly(t) (2.6)

then the system (2.3) in closed-loop assumes the form

ẋ(t) = [A(α) +B(α)LC(α)]x(t). (2.7)

In these terms, the objective is to find a robust static output feedback gain
L ∈ Rm×p, such that asymptotically stabilizes the system (2.7).

2.4 Robust Stabilization via Static Output Feedback

In this section the two-stage SOF control design method, presented in Sereni
(2019) and in Manesco (2013) is described in terms of the robust stabilization problem.

The first stage is a preliminary state feedback control design. Therefore, consid-
ering the control law as

u(t) = Kx(t), (2.8)
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then the system (2.3) in closed-loop is represented by

ẋ(t) = [A(α) +B(α)K]x(t). (2.9)

To obtain a robust state feedback gain K that asymptotically stabilizes the system (2.9),
we might consider the quadratic stability condition presented in Boyd et al. (1994), which
states that if there are matrices W ∈ Rn×n and Z ∈ Rn×m, such that

W = W ′ > 0
AiW +WA′

i +BiZ + Z ′B′
i < 0

(2.10)

for i = 1, 2, ..., N , then K is given by K = ZW−1.

The state-feedback gain (K) obtained in the first step then used as an input
parameter for the composing the second step, where the switched output feedback
L ∈ Rm×p is designed as proposed in Theorem 1, which is given in terms of sufficient
LMI conditions.

Theorem 1. (MANESCO, 2013) Assuming that there exists a state feedback gain K,
such that A(α) + B(α)K is asymptotically stable, then there exists a stabilizing static
output feedback gain, L , such that A(α) +B(α)LC(α) is asymptotically stable, if there
exist the symmetric matrix P ∈ Rn×n with P > 0 and matrices F , G ∈ Rn×n, H ∈ Rm×m

and J ∈ Rm×p such that
A′

iF
′ + FAi +K ′B′

iF
′ + FBiK ∗ ∗

P − F ′ +GAi +GBiK −G−G′ ∗
B′

iF
′ + JCi −HK B′

iG
′ −H −H ′

 < 0 (2.11)

holds for ∀i ∈ KN .

In the affirmative case, the robust static output feedback gain is given by L =
H−1J .

Proof. See Manesco (2013).

2.5 Decay Rate Bounding in Robust controller via Static Output Feedback

Considering additional systems performance requirements, Manesco (2013)
proposes the use of decay rate bounding in robust controller synthesis via SOF.

The concept of the minimum decay rate is applied on both design stages of the
method. For avoiding confusion, the minimum decay rate associated to each design
stage is referred to as β and γ, respectively. Even though they can assumes different
values, the decay rate in first stage (β) acts as a limiting factor in the design of the
second stage (SERENI, 2019).
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For the first stage, we need to obtain a gain K that asymptotically stabilizes the
system (2.9). The strategy chosen is based on the quadratic stability condition presented
in Boyd et al. (1994), which states that if there are matrices W ∈ Rn×n, Z ∈ Rn×m, and
a positive scalar β such that

W = W ′ > 0
AiW +WA′

i +BiZ + Z ′B′
i + 2βW < 0

(2.12)

hold for i = 1, 2, ..., N , then K is given by K = ZW−1. In the sequence, the K obtained
in the first step is used as an input parameter for the second stage design according to
Theorem 2.

Remark 1. The LMIs (2.10) and (2.12) compose the strategy chosen for the first stage,
but it is important to emphasise that as each design stage is performed separately, any
other state feedback control design can be implemented to derive the first stage gain
matrix K.

Theorem 2. (MANESCO, 2013) Assuming that there exists a state feedback gain K,
such that A(α) +B(α)K is asymptotically stable, with a minimum decay rate greater or
equal to γ > 0, then there exists a stabilizing robust static output feedback gain, L, such
that A(α) +B(α)LC(α) is asymptotically stable, if the symmetric matrix P ∈ Rn×n with
P > 0 and matrices F , G ∈ Rn×n, H ∈ Rm×m and J ∈ Rm×p such that

A′
iF

′ + FAi +K ′B′
iF

′ + FBiK + 2γP ∗ ∗
P − F ′ +GAi +GBiK −G−G′ ∗
B′

iF
′ + JCi −HK B′

iG
′ −H −H ′

 < 0 (2.13)

holds for ∀i ∈ KN . In the affirmative case, the robust static output feedback gain is given
by L = H−1J .

Proof. See Manesco (2013).

2.6 Relaxation Strategies for the Design of Robust controllers via Static Output Feed-
back

In this section more relaxed LMI conditions for obtaining the robust SOF controller,
as proposed in Manesco (2013) and Sereni (2019) are presented. The conservatism in
the robust SOF control problem can be reduced by considering the use of a parameter-
dependent Lyapunov matrix, and Finsler Lemma’s additional variables.
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2.6.1 Parameter-Dependent Lyapunov Function

Theorem 3 presents the LMI formulation to the robust SOF problem with PDLV
as proposed by Manesco (2013). This result was obtained by considering a parameter-
dependent matrix P (α) in order to achieve less conservative restrictions.

Theorem 3. (MANESCO, 2013) Assuming that there exists a state feedback gain K,
such that A(α) +B(α)K is asymptotically stable, with a minimum decay rate greater or
equal to γ > 0, then there exists a stabilizing robust static output feedback gain, L, such
that A(α) + B(α)LC(α) is asymptotically stable, if the symmetric matrices Pi ∈ Rn×n

with Pi > 0 and matrices F , G ∈ Rn×n, H ∈ Rm×m and J ∈ Rm×p such that,
A′

iF
′ + FAi +K ′B′

iF
′ + FBiK + 2γPi ∗ ∗

Pi − F ′ +GAi +GBiK −G−G′ ∗
B′

iF
′ + JCi −HK B′

iG
′ −H −H ′

 < 0 (2.14)

for ∀i ∈ KN , in the affirmative case, the robust static output feedback gains is given by
L = H−1J .

Proof. See Manesco (2013).

2.6.2 Parameter-Dependent Finler’s Variables

In Sereni (2019) even more relaxed conditions are proposed, considering matri-
ces F (α) and G(α) in order to achieve less conservative restrictions, such conditions
are stated in Theorem 4.

Theorem 4. (SERENI, 2019) Assuming that there exists a state feedback gain K, such
that A(α) + B(α)K is asymptotically stable, with a minimum decay rate greater or
equal to γ > 0, then there exists a stabilizing static output feedback gain, L, such that
A(α) + B(α)LC(α) is asymptotically stable, if the symmetric matrices Pi ∈ Rn×n with
Pi > 0 and matrices Fi, Gi ∈ Rn×n, H ∈ Rm×m and J ∈ Rm×p such that,

A′
iF

′
i + FiAi +K ′B′

iF
′
i + FiBiK + 2γPi ∗ ∗

Pi − F ′
i +GiAi +GiBiK −Gi −G′

i ∗
B′

iF
′
i + JCi −HK B′

iG
′
i −H −H ′

 < 0 (2.15)

for ∀i ∈ KN , and
Ωij + Ωji ∗ ∗
Πij + Πji −Gi −G′

i −Gj −G′
j ∗

B′
iF

′
j +B′

jF
′
i + JCi + JCj − 2HK B′

iG
′
j +B′

jG
′
i −2H − 2H ′

 < 0 (2.16)

for i = 1, 2, . . . , N − 1 and j = i+ 1, i+ 2, . . . , N where

Ωij + Ωji = A′
iF

′
j + FiAj +K ′B′

iF
′
j + FiBjK + 2γPi + A′

jF
′
i + FjAi

+K ′B′
jF

′
i + FjBiK + 2γPj

(2.17)
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and

Πij + Πji = Pi − F ′
i +GiAj +GiBjK + Pj − F ′

j +GjAi +GjBiK (2.18)

in the affirmative case, the robust static output feedback gains is given by L = H−1J .

Proof. See Sereni (2019).
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3 Switched Control via SOF

In this chapter, a design methodology for switched controllers via static output
feedback will be proposed considering uncertain linear time-invariant (LTI) systems
defined in (2.3), where the plant matrix A(α) ∈ Rn×n, and the input control matrix
B(α) ∈ Rn×m and output matrix C(α) ∈ Rp×n are uncertain matrices that describe the
system’s dynamics, and can be represented in the polytopic domain D defined in (2.4).

Furthermore, D is parameterized in terms of a vector α = (α1, ..., αN), whose
parameters α are unknown constants belonging to the unitary simplex set ∧N , defined
in (2.5) for i ∈ KN , where KN is a set of positive integers {1, . . . , N}.

Likewise, KS is a set of positive integers {1, . . . , S}, and the set of all vectors
λ = (λ1, ..., λS) such that 1 ≥ λk ≥ 0 and

∑S
k=1 λk = 1 is denoted by ∧S. At last, the

convex combination of a set of matrices (Q1, . . . , QS) is denoted by Q(λ) = ∑S
k=1 λkQk.

Supposing that the feedback loop is composed by the following control law,
presented by Mainardi Júnior et al. (2015)

u(t) = Lσy(t) (3.1)

where σ is the switching strategy defined by

σ = arg min
k∈KS

(y′(t)Qky(t)) = arg min
k∈KS

(x′(t)C ′(α)QkC(α)x(t)) (3.2)

where Qk are switching matrices and Lσ is the switched gain, which is selected among
a set of constant gains Lk ∈ Rm×p, ∀k ∈ KS, such that

Lσ ∈ {L1, L2, . . . , LS}, (3.3)

therefore considering these terms, the system (2.3) in closed-loop assumes the form

ẋ(t) = [A(α) +B(α)LσC(α)]x(t). (3.4)

The objective is to find Lk and Qk, ∀k ∈ KS, such that when the gain Lσ is
selected according to (3.2), it asymptotically stabilizes (3.4).

3.1 Stabilization via Switched SOF

In this section it is proposed a design method for switched static output feedback
controllers. This approach is based upon the strategy presented in Sereni (2019),
Manesco (2013) and in Mehdi, Boukas and Bachelier (2004), which consists of a
two-stage control design.
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The state-feedback gain (K) is obtained in the first step as in the Section 2.4,
and regarding Remark 1, and then used as an input parameter for composing the
second step, where the switched static output feedback gains Lk ∈ Rm×p, for k ∈ KS,
are designed as proposed in Theorem 5, which consists of sufficient LMI conditions for
designing the desired controller.

However, in this method, considering the switching law (3.2), will at some point
imply in a product between two parameter-dependent matrices in the mathematical
formulation of this control problem, which can be exemplified with terms such as

T (α)U(α) (3.5)

where (T, U)(α) are generic parameter-dependent matrices, will produce crossed-
products between the αi as evidenced bellow.

∑N
i=1 αiTi

∑N
i=1 αiUi = ∑N

i=1 αi
∑N

j=1 αjTiUj =
α1α1T1U1 + α1α2T1U2 + · · · + α1αNT1UN + . . .

α2α1T2U1 + α2α2T2U2 + · · · + α2αNT2UN + . . .

αNα1TNU1 + αNα2TNU2 + · · · + αNαNTNUN .

(3.6)

In order to derive an equivalent representation for (3.6) one can observe the
following property.

Property 1. If the following LMIs

Υii < 0, i = 1, 2, 3, . . . , N, (3.7)

and,
Υij + Υji < 0 , 0 ≤ i < j ≤ N (3.8)

holds, then it is true that
N∑

i=1
αi

N∑
j=1

αjΥij < 0. (3.9)

Proof. See Tanaka, Ikeda and Wang (1998).

Theorem 5. Assuming that there exists a state feedback gainK, such that A(α)+B(α)K
is asymptotically stable, then there exists a stabilizing switched static output feedback
controller, Lσ, such that A(α) + B(α)LσC(α) is asymptotically stable, considering the
switching rule (3.2), if there exist λ ∈ ∧S and symmetric matrices, P , Q0i ∈ Rn×n and
Qk ∈ Rp×p, with

P > 0, (3.10)

Q0i + C ′
iQ(λ)Ci < 0 (3.11)



Chapter 3. Switched Control via SOF 21

for ∀ i ∈ KN , and
Q0i + C ′

iQ(λ)Cj +Q0j + C ′
jQ(λ)Ci < 0 (3.12)

for i = 1, 2, . . . , N − 1, j = i+ 1, i+ 2, . . . , N , and matrices F , G ∈ Rn×n, H ∈ Rm×m and
Jk ∈ Rm×p such that,

A′
iF

′ + FAi +K ′B′
iF

′ + FBiK −Q0i − C ′
iQkCi ∗ ∗

P − F ′ +GAi +GBiK −G−G′ ∗
B′

iF
′ + JkCi −HK B′

iG
′ −H −H ′

 < 0, (3.13)

for ∀i ∈ KN , ∀ k ∈ KS, and
Ωij + Ωji ∗ ∗
Πij + Πji −2G− 2G′ ∗

(B′
i +B′

j)F ′
i + Jk(Ci + Cj) − 2HK (B′

i +B′
j)G′

i −2H − 2H ′

 < 0, (3.14)

for i = 1, 2, . . . , N − 1, j = i+ 1, i+ 2, . . . , N and ∀k ∈ KS where

Ωij + Ωji = (A′
i + A′

j)F ′ + F (Ai + Aj) +K ′B′
iF

′ + FBiK

−Q0i − C ′
iQkCj +K ′B′

jF
′ + FBjK −Q0j − C ′

jQkCi

(3.15)

and

Πij + Πji = 2P − 2F ′ +G(Ai + Aj) +GBiK +GBjK (3.16)

In the affirmative case, the switched output feedback gains are given by Lk =
H−1Jk, ∀k ∈ KS.

Proof. Assuming that (3.13) and (3.14) hold, we can see that H is invertible, since
according to Boyd et al. (1994), a non-symmetric matrix M is invertible, if M +M ′ < 0.

Now, splitting the matrix in (3.14) as follows:
Ωij ∗ ∗
Πij −G−G′ ∗

B′
iF

′ + JkCi −HK B′
iG

′ −H −H ′



+


Ωji ∗ ∗
Πji −G−G′ ∗

B′
jF

′ + JkCj −HK B′
jG

′ −H −H ′

 < 0

(3.17)

for i = 1, 2, . . . , N − 1, j = i+ 1, i+ 2, . . . , N and ∀k ∈ KS, one can observe that (3.13),
(3.17), (3.11) and (3.12) can be represented as Υii and Υij + Υji, so regarding Property
1 and considering the switching law (3.2), we have
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∑N

i=1 αi
∑N

j=1 αj(A′
iF

′ + FAi +K ′B′
iF

′ + FBiK −Q0i − C ′
iQσCj)∑N

i=1 αi
∑N

j=1 αj(P − F ′ +GAi +GBiK)∑N
i=1 αi

∑N
j=1 αj(B′

iF
′ + JσCi −HK)

∗ ∗∑N
i=1 αi

∑N
j=1 αj(−G−G′) ∗∑N

i=1 αi
∑N

j=1 αj(B′
iG

′) ∑N
i=1 αi

∑N
j=1 αj(−H −H ′)

 < 0,

(3.18)

N∑
i=1

αi

N∑
j=1

αj(Q0i + C ′
iQ(λ)Cj) < 0. (3.19)

Expanding the terms in (3.18) and (3.19) and regarding that
∑N

i=1 αi = ∑N
j=1 αj =

1, we obtain
A′(α)F ′ + FA(α) +K ′B′(α)F ′ + FB(α)K −Q0(α) − C ′(α)QσC(α)
P − F ′ +GA(α) +GB(α)K
B′(α)F ′ + JσC(α) −HK

∗ ∗
−G−G′ ∗
B′(α)G′ −H −H ′

 < 0

(3.20)

and
Q0(α) + C ′(α)Q(λ)C(α) < 0. (3.21)

Using the idea presented by Mehdi, Boukas and Bachelier (2004), pre- and post-
multiplying (3.20) by Tσ and T ′

σ, where Tσ is

Tσ =
I 0 S ′

σ(α)
0 I 0

 (3.22)

it follows that ψσ(α) ϕσ(α)
ϕσ(α) −G−G′

 < 0, (3.23)

where

ψσ(α) = A′(α)F ′ +K ′B′(α)F ′ + S ′
σ(α)B′(α)F ′ + S ′

σ(α)JσC(α) − S ′
σ(α)HK

+FA(α) + FB(α)K + FB(α)Sσ(α) + C ′(α)J ′
σSσ(α) −K ′H ′Sσ(α)

+S ′
σ(α)(−H −H ′)Sσ(α) −Q0(α) − C ′(α)QσC(α)

(3.24)

and,
ϕσ(α) = P − F + A′(α)G′ +K ′B′(α)G′ + S ′

σ(α)B′(α)G′. (3.25)
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Replacing Sσ(α) = H−1JσC(α) − K, in (3.24) and (3.25), then ψ(α) and ϕσ(α)
can be rewritten as

ψ(α) = A′(α)F ′ +K ′B′(α)F ′ − C ′(α)QσC(α) + (C ′(α)J ′
σH

′−1 −K ′)B′(α)F ′ + FA(α)

+(C ′(α)J ′
σH

′−1 −K ′)JσC(α) − (C ′(α)J ′
σH

′−1 −K ′)HK + FB(α)K −Q0(α)

+FB(α)(H−1JσC(α) −K) + C ′(α)J ′
σ(H−1JσC(α) −K) −K ′H ′(H−1JσC(α) −K)

+(C ′(α)J ′
σH

′−1 −K ′)(−H −H ′)(H−1JσC(α) −K)
(3.26)

and

ϕσ(α) = P − F + A′(α)G′ +K ′B′(α)G′ + (C ′(α)J ′
σH

′−1 −K ′)B′(α)G′. (3.27)

Expanding the products in (3.26)

ψσ(α) = A′(α)F ′ + C ′(α)J ′
σH

′−1B′(α)F ′ + C ′(α)J ′
σH

′−1JσC(α)

−K ′JσC(α) −Q0(α) − C ′(α)QσC(α) − C ′(α)J ′
σH

′−1HK + FA(α)

+FB(α)H−1JσC(α) + C ′(α)J ′
σH

−1JσC(α) − C ′(α)J ′
σK −K ′H ′H−1JσC(α)

−C ′(α)J ′
σH

′−1HH−1JσC(α) + C ′(α)J ′
σH

′−1HK − C ′(α)J ′
σH

′−1H ′H−1Jσ

+C ′(α)J ′
σH

′−1H ′K +K ′HH−1JσC(α) +K ′H ′H−1JσC(α).

(3.28)

Considering the following equivalent relation

H−1H = HH−1 = I = H ′−1H ′ = H ′H ′−1, (3.29)

then, (3.28) assumes the below form

ψσ(α) = (A(α) +B(α)H−1JσC(α))′F ′ + F (A(α) +B(α)H−1JσC(α))

−Q0(α) − C ′(α)QσC(α).
(3.30)

Now, making Lσ = H−1Jσ in (3.27) and (3.30), we obtain

ψσ(α) = (A(α) +B(α)LσC(α))′F ′ + F (A(α) +B(α)LσC(α)) −Q0(α) − C ′(α)QσC(α)
(3.31)

and,
ϕσ(α) = P − F + (A(α) +B(α)LσC(α))′G′. (3.32)

Considering (3.31) and (3.32), we can rewrite (3.23) in terms of a sum of matrices
as follows: −Q0(α) − C ′(α)QσC(α) + F (A(α) +B(α)LσC(α)) P − F

P +G(A(α) +B(α)LσC(α)) −G


+

(A(α) +B(α)LσC(α))′F ′ (A(α) +B(α)LσC(α))′G′

−F ′ −G′

 < 0
(3.33)



Chapter 3. Switched Control via SOF 24

then, splitting the first matrix in (3.33), and rearranging properly, we have−Q0(α) − C ′(α)QσC(α) P

P 0

 +
F
G

 [
(A(α) +B(α)LσC(α)) −I

]

+
(A(α) +B(α)LσC(α))′

−I

 [
F ′ G′

]
< 0.

(3.34)

Considering the following definitions:F
G

 =
X1

X2

 = X , (3.35)

Sσ(α) =
−Q0(α) − C ′(α)QσC(α) P

P 0

 (3.36)

and
Rσ(α) =

[
(A(α) +B(α)LσC(α)) −I

]
(3.37)

we can rewrite (3.34) as

∃X ∈ R2n×n,Sσ(α) + X Rσ(α) + R′
σ(α)X ′ < 0. (3.38)

Futhermore, note that (3.38) corresponds to the condition, (iv), of Finsler’s Lemma
as stated on Lemma 1. Thus, considering the condition, (i), of Finsler’s Lemma, which
is W ′Sσ(α)W < 0, ∀W ̸= 0, Rσ(α)W = 0, and assuming that W =

[
x′(t) ẋ′(t)

]′
, we

can derive regarding (3.37), (3.36) and (3.35) the following expressions:

[
(A(α) +B(α)L(α)C(α)) −I

] x(t)
ẋ(t)

 = 0 (3.39)

[
x′(t) ẋ′(t)

] −Q0(α) − C ′(α)QσC(α) P

P 0

 x(t)
ẋ(t)

 < 0. (3.40)

Therefore, according to (3.39) we have

ẋ(t) = (A(α) +B(α)LσC(α))x(t), (3.41)

which corresponds to the closed-loop system equation (3.4).

Furthermore, (3.40) leads to

ẋ′(t)Px(t) + x′(t)Pẋ(t) < x′(t)(Q0(α) + C ′(α)QσC(α))x(t). (3.42)

Making V (x(t)) = x′(t)Px(t) and rearranging, we can conclude that (3.42) becomes

V̇ (x(t)) < x′(t)(Q0(α) + C ′(α)QσC(α))x(t) (3.43)
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Pre- and post-multiplying (3.21) by x′(t) and x(t), we have by initial assumption that

x′(t)(Q0(α) + C ′(α)Q(λ)C(α))x(t) < 0. (3.44)

As shown in Souza et al. (2013), the minimum of a set of real numbers is less than or
equal to an arbitrary convex combination of these numbers. Therefore, we have that

x′(t)(Q0(α) + C ′(α)QσC(α))x(t) = min
∀k∈KS

(x′(t)(Q0(α) + C ′(α)QkC(α))x(t))

≤ x′(t)(Q0(α) + C ′(α)Q(λ)C(α))x(t) < 0
(3.45)

so, finally, we can conclude that
V̇ (x(t)) < 0, (3.46)

for x(t) ̸= 0, which is Lyapunov’s equation for stability (BOYD et al., 1994).

3.2 Decay Rate Bounding in Switched Output Feedback Controller

Some systems may demand, besides stability, that also some transient per-
formance requirements are meet. In that case, we see that Theorem 5, presented
in Section 3.1, is not able to properly address this issue. For ensuring such control
requirements we might consider the minimum decay rate.

In this section, we apply the concept of the minimum decay rate on the Theorem
5 presented in Section 3.1, in the both of the stages of the proposed method. For
avoiding confusion, the minimum decay rate associated to each design stage is referred
to as β and γ, respectively.

The state-feedback gain (K) obtained in the first step as described in Section
2.5 is then used as an input parameter for the composing the second step, where the
switched output feedback gains Lk ∈ Rm×p, for k ∈ KS, are designed according to
Theorem 6, in which sufficient LMI conditions for deriving the desired controller are
proposed.

Theorem 6. Assuming that there exists a state feedback gainK, such that A(α)+B(α)K
is asymptotically stable, then there exists a stabilizing switched static output feedback
controller, Lσ, such that A(α) + B(α)LσC(α) is asymptotically stable with a minimum
decay rate higher than or equal to γ > 0, considering the switching rule (3.2), if there
exist λ ∈ ∧S and symmetric matrices, P , Q0i ∈ Rn×n and Qk ∈ Rp×p, with

P > 0, (3.47)

Q0i + C ′
iQ(λ)Ci < 0 (3.48)

for ∀ i ∈ KN , and
Q0i + C ′

iQ(λ)Cj +Q0j + C ′
jQ(λ)Ci < 0 (3.49)
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for i = 1, 2, . . . , N − 1, j = i+ 1, i+ 2, . . . , N , and matrices F , G ∈ Rn×n, H ∈ Rm×m and
Jk ∈ Rm×p such that,

A′
iF

′ + FAi +K ′B′
iF

′ + FBiK −Q0i + 2γP − C ′
iQkCi ∗ ∗

P − F ′ +GAi +GBiK −G−G′ ∗
B′

iF
′ + JkCi −HK B′

iG
′ −H −H ′

 < 0,

(3.50)
for ∀ i ∈ KN , ∀ k ∈ KS, and

Ωij + Ωji ∗ ∗
Πij + Πji −2G− 2G′ ∗

(B′
i +B′

j)F ′
i + Jk(Ci + Cj) − 2HK (B′

i +B′
j)G′

i −2H − 2H ′

 < 0, (3.51)

for i = 1, 2, . . . , N − 1, j = i+ 1, i+ 2, . . . , N and ∀k ∈ KS where

Ωij + Ωji = (A′
i + A′

j)F ′ + F (Ai + Aj) +K ′B′
iF

′ + FBiK + 4γP

−Q0i − C ′
iQkCj +K ′B′

jF
′ + FBjK −Q0j − C ′

jQkCi

(3.52)

and

Πij + Πji = 2P − 2F ′ +G(Ai + Aj) +GBiK +GBjK (3.53)

In the affirmative case, the switched output feedback gains are given by Lk =
H−1Jk, ∀k ∈ KS.

Proof. Given the similarity between the Theorem 5 and 6, and considering the Lemma
1 (Finsler’s Lemma), we have such that

[
(A(α) +B(α)LσC(α)) −I

] x(t)
ẋ(t)

 = 0 (3.54)

[
x′(t) ẋ′(t)

] 2γP −Q0(α) − C ′(α)QσC(α) P

P 0

 x(t)
ẋ(t)

 < 0. (3.55)

Therefore, according to (3.54) we have

ẋ(t) = (A(α) +B(α)LσC(α))x(t), (3.56)

which corresponds to the closed-loop system equation (3.4).

Furthermore, (3.55) leads to

ẋ′(t)Px(t) + x′(t)Pẋ(t) < x′(t)(Q0(α) + C ′(α)QσC(α) − 2γP )x(t). (3.57)

Making V (x(t)) = x′(t)Px(t) and rearranging, we can conclude that (3.57) becomes

V̇ (x(t)) + 2γV (x(t)) < x′(t)(Q0(α) + C ′(α)QσC(α))x(t). (3.58)



Chapter 3. Switched Control via SOF 27

Pre- and post-multiplying (3.48) by x′(t) and x(t), we have by initial assumption that

x′(t)(Q0(α) + C ′(α)Q(α)C(α))x(t) < 0. (3.59)

As shown in Souza et al. (2013), the minimum of a set of real numbers is less
than or equal to an arbitrary convex combination of these numbers. Therefore, we have
that

x′(t)(Q0(α) + C ′(α)QσC(α))x(t) = min
∀k∈KS

(x′(t)(Q0(α) + C(α)′QkC(α))x(t))

≤ x′(t)(Q0(α) + C ′(α)Q(λ)C(α))x(t) < 0
(3.60)

then we can affirm that

x′(t)(Q0(α) + C ′(α)QσC(α))x(t) < 0 (3.61)

so, finally, we can conclude that

V̇ (x(t)) < −2γV (x(t)), (3.62)

for x(t) ̸= 0, which is Lyapunov’s equation for stability, considering the minimum decay
rate as defined in (2.2) (BOYD et al., 1994).

3.3 Relaxation Strategies for the Design of Switched SOF Controllers

In this section, the development of more relaxed LMI conditions for obtaining the
switched SOF controller is presented. The conservatism in the switched SOF control
problem can be reduced by considering the use of a parameter-dependent Lyapunov
matrix, and parameter-dependent Finsler Lemma’s additional variables.

3.3.1 Parameter-dependent Lyapunov Functions

The strategy in Sections 3.1 and 3.2 is based on the existence of a common
quadratic Lyapunov function (CQLF), i.e. the Lyapunov’s matrix P is assumed to be
fixed in Theorems 5 and 6. As discussed in Chapter 1, CDLF is an efficient way to
solve many convex optimization problems, however its use has restrictive effects when
dealing with uncertain systems (OLIVEIRA; PERES, 2006).

With the intend of obtaining more relaxed LMI conditions, it is proposed a for-
mulation based on parameter-dependent Lyapunov functions (PDLFs). Basically, the
Lyapunov’s matrix P is considered to be dependent on the system’s uncertain parameter
α, and thus, belongs to the unitary simplex given by (2.5), as proposed in Theorem 7.
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Theorem 7. Assuming that there exists a state feedback gainK, such that A(α)+B(α)K
is asymptotically stable, then there exists a stabilizing switched static output feedback
controller, Lσ, such that A(α) +B(α)LσC(α) is asymptotically stable with a decay rate
higher than or equal to γ > 0, considering the switching rule (3.2), if there exist λ ∈ ∧S

and symmetric matrices, Pi, Q0i ∈ Rn×n and Qk ∈ Rp×p, with

Pi > 0, (3.63)

Q0i + C ′
iQ(λ)Ci < 0 (3.64)

for ∀ i ∈ KN , and
Q0i + C ′

iQ(λ)Cj +Q0j + C ′
jQ(λ)Ci < 0 (3.65)

for i = 1, 2, . . . , N − 1, j = i+ 1, i+ 2, . . . , N , and matrices F , G ∈ Rn×n, H ∈ Rm×m and
Jk ∈ Rm×p such that,

A′
iF

′ + FAi +K ′B′
iF

′ + FBiK −Q0i + 2γPi − C ′
iQkCi ∗ ∗

Pi − F ′ +GAi +GBiK −G−G′ ∗
B′

iF
′ + JkCi −HK B′

iG
′ −H −H ′

 < 0,

(3.66)
for ∀ i ∈ KN , ∀ k ∈ KS, and

Ωij + Ωji ∗ ∗
Πij + Πji −2G− 2G′ ∗

(B′
i +B′

j)F ′
i + Jk(Ci + Cj) − 2HK (B′

i +B′
j)G′

i −2H − 2H ′

 < 0, (3.67)

for i = 1, 2, . . . , N − 1, j = i+ 1, i+ 2, . . . , N and ∀k ∈ KS where

Ωij + Ωji = (A′
i + A′

j)F ′ + F (Ai + Aj) +K ′B′
iF

′ + FBiK + 2γPi

+2γPj −Q0i − C ′
iQkCj +K ′B′

jF
′ + FBjK −Q0j − C ′

jQkCi

(3.68)

and

Πij + Πji = Pi + Pj − 2F ′ +G(Ai + Aj) +GBiK +GBjK. (3.69)

In the affirmative case, the switched output feedback gains are given by Lk =
H−1Jk, ∀k ∈ KS.

Proof. As mentioned in Theorem’s 5 demonstration, the matrix H is invertible if (3.66)
and (3.67) have a solution.

Regarding Property 1 and considering the switching law (3.2), we have
∑N

i=1 αi
∑N

j=1 αj(A′
iF

′ + FAi +K ′B′
iF

′ + FBiK + 2γPi −Q0i − C ′
iQσCj)∑N

i=1 αi
∑N

j=1 αj(Pi − F ′ +GAi +GBiK)∑N
i=1 αi

∑N
j=1 αj(B′

iF
′ + JσCi −HK)

∗ ∗∑N
i=1 αi

∑N
j=1 αj(−G−G′) ∗∑N

i=1 αi
∑N

j=1 αj(B′
iG

′) ∑N
i=1 αi

∑N
j=1 αj(−H −H ′)

 < 0,

(3.70)
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N∑
i=1

αi

N∑
j=1

αj(Q0i + C ′
iQ(λ)Cj) < 0. (3.71)

Expanding the terms in (3.70) and (3.71) and regarding that
∑N

i=1 αi = ∑N
j=1 αj =

1, we obtain
A′(α)F ′ + FA(α) +K ′B′(α)F ′ + FB(α)K + 2γP (α) −Q0(α) − C ′(α)QσC(α)
P (α) − F ′ +GA(α) +GB(α)K
B′(α)F ′ + JσC(α) −HK

∗ ∗
−G−G′ ∗
B′(α)G′ −H −H ′

 < 0

(3.72)
and

Q0(α) + C ′(α)Q(λ)C(α) < 0. (3.73)

The remaining part of the proof follows similarly as for Theorem 6, taking into
account that the quadratic stability condition considering a lower bound γ for the system
decay rate is as defined in (2.2).

3.3.2 Parameter-Dependent Finsler’s Variables

In order to obtain even less conservative conditions for the design of Switched
SOF controllers, a second relaxation strategy is proposed in this work. In this new
approach, the additional variables introduced by Finsler’s Lemma are considered de-
pendent on the uncertain parameter α, as is the Lyapunov matrix (P (α)).

Therefore, the Finsler’s Lemma additional variables are assumed to be defined
as F (α)

G(α)

 =
X1(α)
X2(α)

 = X (α) (3.74)

In Theorem 8, based on Sereni (2019), the new and more relaxed LMI conditions
for the design of Switched SOF controllers are proposed, as a result of the assumption
made in (3.74).

Theorem 8. Assuming that there exists a state feedback gainK, such that A(α)+B(α)K
is asymptotically stable, then there exists a stabilizing switched static output feedback
controller, Lσ, such that A(α) +B(α)LσC(α) is asymptotically stable with a decay rate
higher than γ > 0, considering the switching rule (3.2), if there exist λ ∈ ∧S and
symmetric matrices, Pi, Q0i ∈ Rn×n and Qk ∈ Rp×p, with

Pi > 0, (3.75)
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Q0i + C ′
iQ(λ)Ci < 0 (3.76)

for ∀ i ∈ KN , and
Q0i + C ′

iQ(λ)Cj +Q0j + C ′
jQ(λ)Ci < 0 (3.77)

for i = 1, 2, . . . , N − 1, j = i + 1, i + 2, . . . , N , and matrices Fi, Gi ∈ Rn×n, H ∈ Rm×m

and Jk ∈ Rm×p such that,
A′

iF
′
i + FiAi +K ′B′

iF
′
i + FiBiK + 2γPi −Q0i − C ′

iQkCi ∗ ∗
Pi − F ′

i +GiAi +GiBiK −Gi −G′
i ∗

B′
iF

′
i + JkCi −HK B′

iG
′
i −H −H ′

 < 0

(3.78)
and ∀ i ∈ KN and ∀k ∈ KS, and

Ωij + Ωji ∗ ∗
Πij + Πji −Gi −G′

i −Gj −G′
j ∗

B′
iF

′
j +B′

jF
′
i + JkCi + JkCj − 2HK B′

iG
′
j +B′

jG
′
i −2H − 2H ′

 < 0, (3.79)

for i = 1, 2, . . . , N − 1, j = i+ 1, i+ 2, . . . , N and ∀k ∈ KS where

Ωij + Ωji = A′
iF

′
j + FiAj +K ′B′

iF
′
j + FiBjK + 2γPi −Q0i

+A′
jF

′
i + FjAi +K ′B′

jF
′
i + FjBiK + 2γPj −Q0j − C ′

jQkCi − C ′
iQkCj

(3.80)

and

Πij + Πji = Pi − F ′
i +GiAj +GiBjK + Pj − F ′

j +GjAi +GjBiK (3.81)

In the affirmative case, the switched output feedback gains are given by Lk = H−1Jk,
∀k ∈ KS.

Proof. As mentioned in Theorem’s 5 demonstration, the matrix H is invertible if (3.75),
(3.78), (3.76) and (3.79) have a solution.

Now, splitting the matrix in (3.79)
Ωij ∗ ∗
Πij −Gi −G′

i ∗
B′

iF
′
j + JkCi −HK B′

iG
′
j −H −H ′



+


Ωji ∗ ∗
Πji −Gj −G′

j ∗
B′

jF
′
i + JkCj −HK B′

jG
′
i −H −H ′

 < 0

(3.82)

for i = 1, 2, . . . , N − 1, j = i+ 1, i+ 2, . . . , N and ∀k ∈ KS,

Regarding Property 1 and considering the switching law (3.2), we have
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∑N

i=1 αi
∑N

j=1 αj(A′
iF

′
j + FiAj +K ′B′

iF
′
j + FiBjK + 2γPi −Q0i − C ′

iQσCj)∑N
i=1 αi

∑N
j=1 αj(Pi − F ′

j +GiAj +GiBjK)∑N
i=1 αi

∑N
j=1 αj(B′

iF
′
j + JσCi −HK)

∗ ∗∑N
i=1 αi

∑N
j=1 αj(−Gi −G′

i) ∗∑N
i=1 αi

∑N
j=1 αj(B′

iG
′
j)

∑N
i=1 αi

∑N
j=1 αj(−H −H ′)

 < 0,

(3.83)

N∑
i=1

αi(Q0i + C ′
iQ(λ)Cj) < 0. (3.84)

Then, developing the terms in (3.83) and (3.84), and regarding that
∑N

i=1 αi =∑N
j=1 αj = 1, we obtain
A′(α)F ′(α) + F (α)A(α) +K ′B′(α)F ′(α) + F (α)B(α)K + 2γP (α) −Q0(α) − C ′(α)QσC(α)
P (α) − F ′(α) +G(α)A(α) +G(α)B(α)K
B′(α)F ′(α) + JσC(α) −HK

∗ ∗
−G(α) −G′(α) ∗
B′(α)G′(α) −H −H ′

 < 0

(3.85)
and

Q0(α) + C ′(α)Q(λ)C(α) < 0. (3.86)

The remaining part of the proof follows similarly as Theorem’s 6, taking into account
that the quadratic stability condition considering a lower bound γ for the system decay
rate is as defined in (2.2).

3.4 Analysis

Intending to investigate the efficiency of the proposed theorems and to compare
with the strategy proposed in Manesco (2013), some practical experiments were ex-
ecuted. In this section, feasibility and performance analysis are presented using the
active suspension system.

3.4.1 Active Suspension System

Intending to study the practical applicability of the proposed method, the Active
Suspension System is presented, which represents a quarter-car model, formed by
three parts: the vehicle body, that is suspended over the tire assembly by springs and
the active suspension mechanism. The tire assembly is in contact with the tire through
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springs, and the tire has to be able to pass through different types of terrain without the
compromising of the passenger’s comfort. In the performed experiment the equipment
used was a Quanser® Active Suspension system as shown in Figure 1, in which the
parts of the car are replaced by plates, or floors, and the active suspension mechanism
is emulated by a DC motor, and the road profiles are simulated by another motor DC
(QUANSER, 2009).

Figure 1 – QUANSER® Active Suspension. Property of the Laboratory of Research in
Control at FEIS-UNESP.

Source: Own Autor.

In Figure 2 the schematic diagram of the system is presented, where Ms is
representing 1/4 of the vehicle body mass, Mus is acting as the mass of the tire, and ks,
kus, bs and bus, are the springs and dampers in the model assembly. zs(t) and zus(t) are
the related position of the body floor and tire assembly floor. Finally, zr(t) is the input of
the system, which represents as the surface profile of the road, and Fc(t) is the active
suspension control command (SERENI, 2019).
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Figure 2 – Schematic diagram of an active suspension system.

Source: Adapted from Silva (2012).

The system illustrated in the Figure 2 can be described in a state-space model
presented by QUANSER (2009) as

ẋ(t) =


0 1 0 −1

−ks

Ms

−bs

Ms
0 bs

Ms

0 0 0 −1
ks

Mus

bs

Mus

−kus

Mus

−(bs+bus)
Mus

x(t) +


0
ρ

Ms

0
−ρ

Mus

u(t), (3.87)

where 0 < ρ ≤ 1 is an uncertain parameter that acts as a possible fault in the actuator.
Furthermore, the state and the input vectors in (3.87) are defined as

ẋ(t) =


zs(t) − zus(t)

żs(t)
zus(t) − zr(t)

żus(t)

 (3.88)

And using the parameters presented in Table 1 to work on the experiments (QUANSER,
2009).

Table 1 – Active Suspension Parameters.

Parameter Value Parameter Value
Ms 2.45 Kg Mus 1.0 Kg
ks 900 N/m kus 2500 N/m
bs 7.5 Ns/m bus 5.0 Ns/m

Source: Adapted from QUANSER (2009).

Experiment 3.1. In this experiment we consider that the Active Suspension System
may present a fault of up to 75% power loss (i.e. 0.25 ≤ ρ ≤ 1). Also, it is supposed
that only the measurement of (zs(t) − zus(t)) and żs(t) are available. Regarding that
the control input signal is Fc(t), the active suspension may be described in terms of a
polytope with two vertices:
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• Vertex 1 (without fault)

ẋ(t) =


0 1 0 −1

−367.347 −3.061 0 3.061
0 0 0 −1

900 7.5 −2500 −12.5

x(t) +


0

0.408
0

−1

u(t),

y(t) =
1 0 0 0
0 1 0 0

x(t),

(3.89)

• Vertex 2 (with fault - 75% of power loss)

ẋ(t) =


0 1 0 −1

−367.347 −3.061 0 3.061
0 0 0 −1

900 7.5 −2500 −12.5

x(t) +


0

0.102
0

−0.25

u(t),

y(t) =
1 0 0 0
0 1 0 0

x(t)

(3.90)

The objective of this experiment is compare the feasibility of the Theorem 6, which
is based on a fixed matrix P , Theorem 7, which considers the matrix P as dependent
on the uncertain parameter α and, Theorem 8, which considers the Finsler’s variables
(F and G) as dependent on the uncertain parameter α, considering the specification of
a minimum decay in both stages.

This analysis was performed considering a range for the minimum decay rates in
the first and second stage of the project as 0 ≤ β ≤ 20 and 0 ≤ γ ≤ 20, and requiring a
design of two gains for the switched SOF (S = 2), with λ1 = λ2 = 0.5.

Programming the LMIs via MATLAB® software, and solving via YALMIP interface
(LOFBERG, 2004) and the solver SeDuMi (STURM, 1998), one can obtain the results
presented in Figure 3, which represents the feasibility region obtained by each of the
three considered theorems.
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Figure 3 – Feasibility region obtained with Theorems 6, 7 and 8 changing the minimum
decay rate.

Source: Own Autor.

In the Figure 3 is possible to observe that Theorem 7, which considers the matrix
P (α), have a slightly better feasibility of the theorem 6, considering the specification of
a minimum decay. Also, Figure 3 shows that Theorem 8 provides an even larger result
than Theorem 7.

Experiment 3.2. An additional analysis with same conditions of the Experiment 3.1 is
compare the feasibility of Theorems 4 and 8, considering the specification of a minimum
decay in both stages. This experiment was performed considering a range for the
minimum decay rates in the first and second stage of the project as 0 ≤ β ≤ 20 and
0 ≤ γ ≤ 20, and still requiring a design of two gains for the switched SOF (S = 2), with
λ1 = λ2 = 0.5.

The conditions were solved similarly as in previous analysis, we can obtain the
results presented in Figure 4, which represents the feasibility region obtained by each
of the two considered theorems.

In the Figure 4 is possible to observe that Theorem 8, which is the switched
SOF that considers the Finsler’s variables (F and G) as dependent on the uncertain
parameter α, has a have a better feasibility than Theorem 4, which is the robust SOF
that contemplate F (α) and G(α), considering the specification of a minimum decay, this
must have occurred due to the use of switching matrices Qk and matrices Q0i which
brought a larger area of feasibility, making the switched SOF more feasible.
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Figure 4 – Feasibility region obtained with Theorems 4 and 8 changing the minimum
decay rate.

Source: Own Autor.

Experiment 3.3. In this experiment the Active Suspension System will be examined
from the politopic uncertain perspective, evaluating the performance of the Theorems 6,
7 and 8 when the power loss and vehicle body mass may have an uncertain, thus the
system can be represented in therms of convex combination of the following vertices

• Vertex 1 (without fault and vehicle maximum mass)

ẋ(t) =


0 1 0 −1

−900
Mmax

−7.5
Mmax

0 7.5
Mmax

0 0 0 −1
900 7.5 −2500 −12.5

x(t) +


0
1

Mmax

0
−1

u(t),

y(t) =
1 0 0 0
0 1 0 0

x(t),

(3.91)

• Vertex 2 (with fault and vehicle maximum mass)

ẋ(t) =


0 1 0 −1

−900
Mmax

−7.5
Mmax

0 7.5
Mmax

0 0 0 −1
900 7.5 −2500 −12.5

x(t) +


0
ρ

Mmax

0
−ρ

u(t),

y(t) =
1 0 0 0
0 1 0 0

x(t)

(3.92)
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• Vertex 3 (without fault and vehicle minimum mass)

ẋ(t) =


0 1 0 −1

−900
Ms

−7.5
Ms

0 7.5
Ms

0 0 0 −1
900 7.5 −2500 −12.5

x(t) +


0
1

Ms

0
−1

u(t),

y(t) =
1 0 0 0
0 1 0 0

x(t),

(3.93)

• Vertex 4 (with fault and vehicle minimum mass)

ẋ(t) =


0 1 0 −1

−900
Ms

−7.5
Ms

0 7.5
Ms

0 0 0 −1
900 7.5 −2500 −12.5

x(t) +


0
ρ

Ms

0
−ρ

u(t),

y(t) =
1 0 0 0
0 1 0 0

x(t)

(3.94)

where Mmax = 2.45, 0 ≤ ρ ≤ 0.60 and 1.45 ≤ Ms ≤ 2.4.

The proposed LMIs were solved similarly as in previous analysis, but now fixing
the decay rates of the first and second stage of the project as β = γ = 3, respectively,
and still requiring a design of two gains for the switched SOF (S = 2), with λ1 = λ2 = 0.5.
Regarding the values of ρ and Ms in the specified ranges, the obtained feasibility regions
wit each theorem is presented in Figure 5.

Figure 5 – Feasibility region obtained with Theorems 6, 7 and 8 changing the polytope’s
vertex.

Source: Own Autor.

One can observe that by using Theorem 7, which considers the matrix P as
dependent on the uncertain parameter α, results in a larger feasibility region when
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compared to Theorem 6, which is based on a fixed matrix P . Also, Figure 5 shows that
Theorem 8 provides an even better result than Theorem 7.

Experiment 3.4. To compare the Theorems 4 and 8 this test with the same conditions
from the Experiment 3.3. Regarding the values of power loss and Ms in the specified
ranges, the obtained feasibility regions from each theorem is presented in Figure 6.

Figure 6 – Feasibility region obtained with Theorems 4 and 8 changing the polytope’s
vertex.

Source: Own Autor.

In the Figure 6 is possible to observe that Theorem 8, which is the switched
SOF that considers the Finsler’s variables (F and G) as dependent on the uncertain
parameter α, has a have a better feasibility than the Theorem 4, which is the robust
SOF that contemplate F (α) and G(α), changing one of the polytope’s vertex.

Experiment 3.5. Intending to compare the performance of Theorem 4 and the Theorem
8, in this experiment the Active Suspension System is considered to present a fault
of up to 50% power loss (i.e. 0.5 ≤ ρ ≤ 1) and vehicle body mass may vary between
1.455 ≤ Ms ≤ 2.45. Also, it is suppose that only the measurement of state variable żs(t)
is available, the active suspension may be described in terms of a polytope with four
vertices:

• Vertex 1 (without fault and vehicle maximum mass)

ẋ(t) =


0 1 0 −1

−367.347 −3.061 0 3.061
0 0 0 −1

900 7.5 −2500 −12.5

x(t) +


0

0.408
0

−1

u(t),

y(t) =
[
0 1 0 0

]
x(t),

(3.95)
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• Vertex 2 (with fault and vehicle maximum mass)

ẋ(t) =


0 1 0 −1

−367.347 −3.061 0 3.061
0 0 0 −1

900 7.5 −2500 −12.5

x(t) +


0

0.204
0

−0.5

u(t),

y(t) =
[
0 1 0 0

]
x(t)

(3.96)

• Vertex 3 (without fault and vehicle minimum mass)

ẋ(t) =


0 1 0 −1

−618.557 −5.155 0 5.155
0 0 0 −1

900 7.5 −2500 −12.5

x(t) +


0

0.687
0

−1

u(t),

y(t) =
[
0 1 0 0

]
x(t),

(3.97)

• Vertex 4 (with fault and vehicle minimum mass)

ẋ(t) =


0 1 0 −1

−618.557 −5.155 0 5.155
0 0 0 −1

900 7.5 −2500 −12.5

x(t) +


0

0.344
0

−0.5

u(t),

y(t) =
[
0 1 0 0

]
x(t)

(3.98)

The LMIs were solved similarly as in previous analysis, but now fixing the decay
rates of the first and second stages of the project as β = γ = 0.75, we obtain the state
feedback gain

K =
[
−189.76 −78.178 −201.25 −17.994

]
(3.99)

And, in the second stage, using the Theorem 4 proposed by Manesco (2013) and the
first-stage state feedback gain, the designed static output feedback gain is

LRobust = −109.94 (3.100)

On its turn, conditions in Theorem 8, the first-stage state feedback gain and design two
gains in second stage (S = 2), with λ1 = λ2 = 0.5, the designed switched static output
feedback gains were

L1 = −112.09481
L2 = −112.09479

(3.101)

with Q1 and Q2:
Q1 = −0.014098
Q2 = −0.014096

(3.102)

The observed behavior of the active suspension system with the designed
controllers is shown in Figure 7. During the experiment, the road zr(t) was set to square
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wave with 0.02 m in amplitude and a period of 4s. In the first 8 seconds of experiment,
works in nominal conditions, then the system is subject to a 50% power loss in the
actuator. It can be observed that the switched controller proposed in this work has a
similar response, even when we have the experience the actuator failure.

Figure 7 – Active suspension system behavior using Theorem 4 and 8 controllers with
fault: 50% power loss in the actuator (8 − 16s), for Ms = 2.45kg and p = 1.

Source: Own Autor.

However in the Figure 7 it is possible to see that there was no switching during
this experiment. Due to the relationship between the size of the output matrix C and
the size of the Q switching matrices which, as in this experiment, can be considered as
scalar, there will be no switching along the process. Therefore, the number of outputs
available for static output feedback must be considered for controller design, because if
p = 1, the only matrix Q possible to be chosen will be the

min
∀ k ∈KS

Q(k). (3.103)

Experiment 3.6. To analyze whether there is improvement in behavior when switching is
possible, we considered in this experiment the Active Suspension System is considered
to present a fault of up to 50% power loss (i.e. 0.5 ≤ ρ ≤ 1) and vehicle body mass
may vary between 1.455 ≤ Ms ≤ 2.45. Also, it is supposed that only the measurement
of (zs(t) − zus(t)) and żs(t) are available. Taking that into account, and the parameters
presented in Table 1 (QUANSER, 2009), the active suspension may be described in
terms of a polytope with four vertices where the matrices Ai and Bi are similar as in the
Experiment 3.5 and the output matrix in both vertex is :

Ci =
1 0 0 0
0 1 0 0

 . (3.104)

The LMI (2.12) was solved similarly as in previous analysis, fixing the decay rates
of the first and second stage of the project as β = γ = 0.75, we obtain the same state



Chapter 3. Switched Control via SOF 41

feedback gain (3.99). And, in the second stage, using the LMIs in Theorem 4 and the
first-stage state feedback gain, the designed static output feedback gain is

LRobust =
[
−197.99 −89.124

]
(3.105)

Finally, in the second stage, using the LMIs in Theorem 8, the first-stage state
feedback gain and design two gains in second stage (S = 2), with λ1 = λ2 = 0.5, the
designed switched static output feedback gains were

L1 =
[
−218.8597 −101.45606

]

L2 =
[
−218.8676 −101.45625

] (3.106)

with Q1 and Q2:

Q1 =
 1.9571 0.41453
0.41453 0.099156



Q2 =
 1.9577 0.41458
0.41458 0.099148


(3.107)

According to Figure 8 the designed switched controller from Theorem 8, which
considers the Finsler’s variables (F and G) as dependent on the uncertain parameter α,
offered an improvement when compared with the controllers from Theorem 4, which
is the robust SOF that contemplate F (α) and G(α), the improvement can be seen in
the values of overshoot and the suppression of the oscillations in the system, and it
is possible to see that there was switching during this experiment. Figure 8 shows
an increase in control command Fc(t) with the switched SOF control. However the
amplitude of the control signal is less than 20N , which does not lead to the saturation of
the control of the system.
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Figure 8 – Active suspension system behavior using Theorem 4 and 8 controllers with
fault: 50% power loss in the actuator (8 − 16s), for Ms = 2.45kg and p = 2.

Source: Own Autor.

Figure 9 – Control command Fc(t) generated by the designed switched SOF controllers
during the executed experiments with using Theorem 4 and 8 for Ms =
2.45kg.

Source: Own Autor.

Experiment 3.7. Another analysis were made aiming to evaluate the system perfor-
mance with the controllers design from the Theorems 8 with different minimum decay
rate, we considered in this experiment that the Active Suspension System may present
the same conditions from the last experiment.

The LMI (2.12) was solved similarly as in previous analysis, fixing the decay rates
of the first and second stage of the project as β = γ = 0.75, we obtain the same state
feedback gain (3.99). And, in the second stage, using the LMIs in Theorem 8 and the
first-stage state feedback gain, the designed static output feedback gain are expressed
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in (3.106) and with the matrix Q1 and Q2 are described in (3.107).

Finally, fixing the decay rates of the first and second stage of the project as
β = γ = 0, we obtain the state feedback gain:

K =
[
86.351 − 31.163 − 55.768 − 8.104

]
(3.108)

and, in the second stage, using the LMIs in Theorem 8, and the first-stage state feedback
gain, the designed switched static output feedback gain was

L1 =
[
87.36978 −38.26167

]

L2 =
[
87.36933 −38.2627

] (3.109)

with the matrix Q1 and Q2:

Q1 =
−0.14426 0.41542

0.41542 −0.0048393



Q2 =
−0.14441 0.4154

0.4154 −0.0047983

 .

(3.110)

According to Figure 10 the controller with higher minimum decay rate a better
dynamic response was achieved. Also, Figure 10 shows that the σ presented less
switching when compared to the controller with γ = β = 0.

Figure 10 – Active suspension system behavior using Theorem 8 controllers with γ = 0
and γ = 0.75 fault: 50% power loss in the actuator (8−16s), for Ms = 2.45kg.

Source: Own Autor.

Figure 11 shows that the control input Fc(t) with β = γ = 0.75 presented higher
amplitudes when compared to the results of controller with lower minimum decay rate.
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Figure 11 – Control command Fc(t) generated by the designed switched SOF controllers
during the executed experiments with decay rates β = γ = 0 (top) and
β = γ = 0.75 (bottom) for Ms = 2.45kg.

Source: Own Autor.

3.5 Partial Conclusion

In this chapter, a new design strategy for switched SOF controllers was proposed,
using the two-stage method and for the control law, a relationship between the measured
output vector y and the switching matrix Qk was used. During feasibility experiments it
was shown that the Theorem 8 has a better feasibility region than Theorem 4 found in
Sereni (2019). Furthermore, it showed a superior performance, that can be credited the
use of the switching matrix and the switching law, when compared to use of a controller
with a single feedback gain.
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4 Parameter-dependent state-feedback gain in the first stage

In this chapter, the development of LMI conditions for obtaining the switched SOF
controller considering the design with pole allocation in circle by parameter-dependent
state-feedback gain in the fist stage is presented.

As in Chapter 3 the objective is to find Lk and Qk, ∀k ∈ KS, such that when the
gain Lσ is selected according to (3.2), it asymptotically stabilizes (2.3) and (3.4).

4.1 Stabilization via switched SOF considering a parameter-dependent state-feedback
design

This section presents the Theorem 9, in which we propose new LMIs conditions
for deriving a switched SOF controller. The results obtained are based on the studies
presented in Sereni (2019), Manesco (2013) and in Mehdi, Boukas and Bachelier (2004),
which have been intensively discussed in Chapters 2 and 3. Moreover, Theorem 9 has
as input a state-feedback K(α) is considered to be dependent on the system’s uncertain
parameter α, and thus, belongs to the unitary simplex given by (2.5).

For this, we must consider the first stage control law as

u(t) = K(α)x(t), (4.1)

then the system (2.3) in closed-loop is represented by

ẋ(t) = [A(α) +B(α)K(α)]x(t). (4.2)

To obtain a parameter-dependent state feedback gain K(α), we might consider the
condition presented by Leite, Montagner and Peres (2002), which states that if there
are matrices W ∈ Rn×n, Zi and r such that

W = W ′ > 0AiW +WA′
i +BiZi + Z ′

iB
′
i + 2βW ∗

WA′
i + Z ′

iB
′
i + βW rW

 < 0
(4.3)

for i = 1, 2, ..., N , andAiW +WA′
j +BiZj + Z ′

iB
′
j + AjW +WA′

i +BjZi + Z ′
jB

′
i + 4βW ∗

WA′
i +WA′

j + Z ′
iB

′
j + Z ′

jB
′
i + 2βW 2rW

 < 0 (4.4)

for i = 1, 2, ..., N and j = i+ 1, i+ 2, ..., N

In the affirmative case, a parameter-dependent state feedback vertices are given
by Ki = ZiW

−1 ∀i ∈ KN , which is contained within a circular region represented by
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Figure 12. Note that the region in Figure 12 is a circle defined in terms of its centre
(−q, 0) and radius r, where q = r + β.

Figure 12 – Region circular for pole placement of K(α).

Source: Adapted from Sereni et al. (2022).

The parameter-dependent state feedback gains obtained in the first step are
used as an input parameter for the second step in Theorem 9, where the switched
output feedback gains Lk ∈ Rm×p, for k ∈ KS are designed, which consists of sufficient
LMI conditions for designing the desired controller.

Theorem 9. Assuming that there exists a state feedback gain K(α), such that A(α) +
B(α)K(α) is asymptotically stable, then there exists a stabilizing switched static output
feedback controller, Lσ, such that A(α) +B(α)LσC(α) is asymptotically stable, consider-
ing the switching rule (3.2), if there exist λ ∈ ∧S and symmetric matrices, P , Q0i ∈ Rn×n

and Qk ∈ Rp×p, with

P > 0, (4.5)

Q0i + C ′
iQ(λ)Ci < 0 (4.6)

for ∀ i ∈ KN , and
Q0i + C ′

iQ(λ)Cj +Q0j + C ′
jQ(λ)Ci < 0 (4.7)

for i = 1, 2, . . . , N − 1, j = i+ 1, i+ 2, . . . , N , and matrices F , G ∈ Rn×n, H ∈ Rm×m and
Jk ∈ Rm×p such that,

A′
iF

′ + FAi +K ′
iB

′
iF

′ + FBiKi −Q0i − C ′
iQkCi ∗ ∗

P − F ′ +GAi +GBiKi −G−G′ ∗
B′

iF
′ + JkCi −HKi B′

iG
′ −H −H ′

 < 0 (4.8)

for ∀ i ∈ KN and ∀k ∈ KS, and
Ωij + Ωji ∗ ∗
Πij + Πji −2G− 2G′ ∗

(B′
i +B′

j)F ′ + Jk(Ci + Cj) −H(Ki +Kj) (B′
i +B′

j)G′ −2H − 2H ′

 < 0, (4.9)

for i = 1, 2, . . . , N − 1, j = i+ 1, i+ 2, . . . , N and ∀k ∈ KS where

Ωij + Ωji = (A′
i + A′

j)F ′ + F (Aj + Ai) + (K ′
iB

′
j +K ′

jB
′
i)F ′ + F (BjKi +BiKj)

−Q0i −Q0j − C ′
jQkCi − C ′

iQkCj

(4.10)



Chapter 4. Parameter-dependent state-feedback gain in the first stage 47

and

Πij + Πji = 2P − 2F ′ +G(Ai + Aj) +G(BjKi +BiKj) (4.11)

In the affirmative case, the switched output feedback gains are given by Lk = H−1Jk,
∀k ∈ KS.

Proof. As mentioned for Theorem 5 demonstration, the matrix H is invertible if (4.8)
and (4.9) have a solution.

Now, splitting the matrix in (4.9)
Ωij ∗ ∗
Πij −G−G′ ∗

B′
iF

′ + JkC −HKj B′
iG

′ −H −H ′



+


Ωji ∗ ∗
Πji −G−G′ ∗

B′
jF

′ + JkC −HKi B′
jG

′ −H −H ′

 < 0

(4.12)

for i = 1, 2, . . . , N − 1, j = i+ 1, i+ 2, . . . , N and ∀k ∈ KN ,

Regarding Property 1 and considering the switching law (3.2), we have


∑N

i=1 αi
∑N

j=1 αj(A′
iF

′ + FAj +K ′
iB

′
jF

′ + FBiKj −Q0i − C ′
iQσCj)∑N

i=1 αi
∑N

j=1 αj(P − F ′ +GAj +GBiKj)∑N
i=1 αi

∑N
j=1 αj(B′

iF
′ + JσCi −HKj)

∗ ∗∑N
i=1 αi

∑N
j=1 αj(−G−G′) ∗∑N

i=1 αi
∑N

j=1 αj(B′
iG

′) ∑N
i=1 αi

∑N
j=1 αj(−H −H ′)

 < 0,

(4.13)

N∑
i=1

αi(Q0i + C ′
iQ(λ)Cj) < 0. (4.14)

Then, developing the terms in (4.13) and (4.14), and regarding that
∑N

i=1 αi =∑N
j=1 αj = 1, we obtain
A′(α)F ′ + FA(α) +K ′(α)B′(α)F ′ + FB(α)K(α) −Q0(α) − C ′(α)QσC(α)
P − F ′ +GA(α) +GB(α)K(α)
B′(α)F ′ + JσC(α) −HK(α)

∗ ∗
−G−G′ ∗
B′(α)G′ −H −H ′

 < 0

(4.15)

and
Q0(α) + C ′(α)Q(λ)C(α) < 0. (4.16)

The remaining part of the proof follows similarly as for Theorem 5.
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4.2 Decay Rate Bounding via switched SOF considering a parameter-dependent
state-feedback design

Similarly as presented for the switched or robust SOF case, the inclusion of a
performance improvement requirement via decay rate restriction may also be achieved
in the design of the switched SOF considering a parameter-dependent state-feedback
design, with a slight change on the problem’s LMIs, as state Theorem 10.

Theorem 10. Assuming that there exists a state feedback gain K(α), such that A(α) +
B(α)K(α) is asymptotically stable, then there exists a stabilizing switched static output
feedback controller, Lσ, such that A(α) + B(α)LσC(α) is asymptotically stable with a
decay rate higher than γ > 0, considering the switching rule (3.2), if there exist λ ∈ ∧S

and symmetric matrices, P , Q0i ∈ Rn×n and Qk ∈ Rp×p, with

P > 0, (4.17)

Q0i + C ′
iQ(λ)Ci < 0 (4.18)

for ∀ i ∈ KN , and
Q0i + C ′

iQ(λ)Cj +Q0j + C ′
jQ(λ)Ci < 0 (4.19)

for i = 1, 2, . . . , N − 1, j = i+ 1, i+ 2, . . . , N , and matrices F , G ∈ Rn×n, H ∈ Rm×m and
Jk ∈ Rm×p such that,

A′
iF

′ + FAi +K ′
iB

′
iF

′ + FBiKi + 2γP −Q0i − C ′
iQkCi ∗ ∗

P − F ′ +GAi +GBiKi −G−G′ ∗
B′

iF
′ + JkCi −HKi B′

iG
′ −H −H ′

 < 0

(4.20)
for ∀i ∈ KN and ∀k ∈ KS, and

Ωij + Ωji ∗ ∗
Πij + Πji −2G− 2G′ ∗

(B′
i +B′

j)F ′ + Jk(Ci + Cj) −H(Ki +Kj) (B′
i +B′

j)G′ −2H − 2H ′

 < 0, (4.21)

for i = 1, 2, . . . , N − 1, j = i+ 1, i+ 2, . . . , N and ∀k ∈ KS where

Ωij + Ωji = (A′
i + A′

j)F ′ + F (Aj + Ai) + (K ′
iB

′
j +K ′

jB
′
i)F ′ + F (BjKi +BiKj)

+4γP −Q0i −Q0j − C ′
jQkCi − C ′

iQkCj

(4.22)

and

Πij + Πji = 2P − 2F ′ +G(Ai + Aj) +G(BjKi +BiKj) (4.23)

In the affirmative case, the switched output feedback gains are given by Lk = H−1Jk,
∀k ∈ KS.

Proof. The demonstration follows similarly as for Theorem 9, taking into account that
the quadratic stability condition considering a lower bound γ for the system decay rate
is as defined in (2.2).
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4.3 Relaxation Strategies for design switched SOF controller considering a parameter-
dependent state-feedback design

As a consequence of the similarities in the LMI formulation, the strategies based
on the PDLF and PDFV, as proposed on Section 3.3, can be extended.

4.3.1 Parameter-Dependent Lyapunov’s Function

In Theorem 11 the LMI formulation to the switched SOF problem with problem
with PDLF approach is proposed. This result was obtained by considering matrix P (α)
in order to achieve less conservative restrictions.

Theorem 11. Assuming that there exists a state feedback gain Kσ, such that A(α) +
B(α)K(α) is asymptotically stable, then there exists a stabilizing switched static output
feedback controller, Lσ, such that A(α) + B(α)LσC(α) is asymptotically stable with a
decay rate higher than γ > 0, considering the switching rule (3.2), if there exist λ ∈ ∧S

and symmetric matrices, Pi, Q0i ∈ Rn×n and Qk ∈ Rp×p, with

Pi > 0, (4.24)

Q0i + C ′
iQ(λ)Ci < 0 (4.25)

for ∀ i ∈ KN , and
Q0i + C ′

iQ(λ)Cj +Q0j + C ′
jQ(λ)Ci < 0 (4.26)

for i = 1, 2, . . . , N − 1, j = i+ 1, i+ 2, . . . , N , and matrices F , G ∈ Rn×n, H ∈ Rm×m and
Jk ∈ Rm×p such that,

A′
iF

′ + FAi +K ′
iB

′
iF

′ + FBiKi + 2γP −Q0i − C ′
iQkCi ∗ ∗

Pi − F ′ +GAi +GBiKi −G−G′ ∗
B′

iF
′ + JkCi −HKi B′

iG
′ −H −H ′

 < 0

(4.27)
for ∀ i ∈ KN and ∀k ∈ KS, and

Ωij + Ωji ∗ ∗
Πij + Πji −2G− 2G′ ∗

(B′
i +B′

j)F ′ + Jk(Ci + Cj) −H(Ki +Kj) (B′
i +B′

j)G′ −2H − 2H ′

 < 0, (4.28)

for i = 1, 2, . . . , N − 1, j = i+ 1, i+ 2, . . . , N and ∀k ∈ KS where

Ωij + Ωji = (A′
i + A′

j)F ′ + F (Aj + Ai) + (K ′
iB

′
j +K ′

jB
′
i)F ′ + F (BjKi +BiKj)

+2γPi + 2γPj −Q0i −Q0j − C ′
jQkCi − C ′

iQkCj

(4.29)

and

Πij + Πji = Pi + Pj − 2F ′ +G(Ai + Aj) +G(BjKi +BiKj) (4.30)
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In the affirmative case, the switched output feedback gains are given by Lk = H−1Jk,
∀k ∈ KS.

Proof. The demonstration of Theorem 11 is omitted since it follows similarly as the proof
of Theorem 9, regarding the parameter-dependent Lyapunov’s function P (α) and taking
into account that the quadratic stability condition considering a lower bound γ for the
system decay rate is as defined in (2.2).

4.3.2 Parameter-Dependent Finsler’s Variables

In order to obtain even less conservative conditions with PDFV as in Chapter 3
for the design of Switched SOF controllers, the conditions will at some point imply the
product between three parameter-dependent matrices in the mathematical formulation
of this control problem, which can be exemplified with terms such as

T (α)U(α)V (α) (4.31)

where (T, U, V )(α) are generic parameter-dependent matrices, will produce crossed-
products between the αi similarly as evidenced in (3.6).

In order to derive an equivalent representation one can observe the following
property.

Property 2. If the following LMIs

Υiii < 0, i = 1, 2, 3, . . . , N, (4.32)

Υiij + Υiji + Υjii < 0,

 i, j = 1, 2, 3, . . . , N
i ̸= j

(4.33)

and,

Υhij + Υhji + Υijh + Υihj + Υjhi + Υjih < 0,


h = 1, 2, 3, . . . , N − 2
i = h+ 1, h+ 2, . . . , N − 1
j = i+ 1, i+ 2, . . . , N

(4.34)

hold, then it is true that
N∑

h=1
αh

N∑
i=1

αi

N∑
j=1

αjΥhij < 0. (4.35)

Proof. See OLIVEIRA et al. (2004).

In Theorem 12 the new and more relaxed LMI conditions for the design of
switched SOF controllers considering a parameter-dependent state-feedback design
are proposed, as a result of the assumption made in (3.74) and the application of
Property 2.
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Theorem 12. Assuming that there exists a state feedback gain K(α), such that A(α) +
B(α)K(α) is asymptotically stable, then there exists a stabilizing switched static output
feedback controller, Lσ , such that A(α) +B(α)LσC(α) is asymptotically stable with a
decay rate higher than γ > 0, considering the switching rule (3.2), if there exist λ ∈ ∧S

and symmetric matrices, Ph, Q0h ∈ Rn×n and Qk ∈ Rp×p, with

Ph > 0, (4.36)

Q0h + C ′
hQ(λ)Ch < 0 (4.37)

for ∀h ∈ KN , and
Q0i + C ′

hQ(λ)Ci +Q0h + C ′
iQ(λ)Ch < 0 (4.38)

for h = 1, 2, . . . , N − 1, i = h+ 1, h+ 2, . . . , N , and matrices Fh, Gh ∈ Rn×n, H ∈ Rm×m

and Jk ∈ Rm×p such that,
A′

hF
′
h + FhAh +K ′

hB
′
hF

′
h + FhBhKh + 2γP −Q0h − C ′

hQkCh ∗ ∗
Ph − F ′

h +GhAh +GhBhKh −Gh −G′
h ∗

B′
hF

′
h + JkCh −HKh B′

hG
′
h −H −H ′

 < 0

(4.39)
for ∀ i ∈ KN and ∀k ∈ KS, and

Ωhi
11 ∗ ∗

Ωhi
21 −2(Gh +G′

h) −Gi −G′
i ∗

Ωhi
31 B′

h(G′
i +G′

h) +B′
iG

′
h −3(H +H ′)

 < 0 (4.40)

for h, i = 1, 2, . . . , N , and h ̸= i, and ∀k ∈ KS where

Ωhi
11 = A′

h(F ′
h + F ′

i ) + A′
iF

′
h +K ′

h(B′
hF

′
i +B′

iF
′
h) +K ′

iB
′
hF

′
h

+Fh(Ah + Ai) + FiAh + Fh(BhKi +BiKh) + FiBhKh

4γPh + 2γPi − 2Q0h −Q0i − C ′
hQk(Ch + Ci) − C ′

iQkCh,

(4.41)

Ωhi
21 = 2Ph + Pi − (2F ′

h + F ′
i ) +Gh(Ah + Ai) +GiAh

+Gh(BhKi +BiKh) +GiBhKh

(4.42)

and

Ωhi
31 = B′

h(F ′
h + F ′

i ) +B′
iF

′
h + 2JkCh + JkCi − 2HKh −HKi (4.43)

and, 
Θhij

11 ∗ ∗
Θhij

21 −2(Gh +G′
h) − 2(Gi +G′

i) − 2(Gj +G′
j) ∗

Θhij
31 (B′

h +B′
i)G′

j + (B′
i +B′

j)G′
h + (B′

j +B′
h)G′

i −6(H +H ′)

 < 0 (4.44)
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for h = 1, 2, . . . , N − 2, i = h+ 1, i+ 2, . . . , N − 1, j = i+ 1, i+ 2, . . . , N , and ∀k ∈ KS

where

Θhij
11 = (A′

h + A′
i)F ′

j + (A′
i + A′

j)F ′
h + (A′

h + A′
i)F ′

j

+Fh(Ai + Aj) + Fi(Aj + Ah) + Fj(Ah + Ai) + (K ′
hB

′
i +K ′

iB
′
h)F ′

j

+(K ′
iB

′
j +K ′

jB
′
i)F ′

h + (K ′
jB

′
h +K ′

hB
′
j)F ′

i + Fh(BiKj +BjKi)

+Fi(BjKh +BhKj) + Fj(BhKi +BiKh)4γPh + 4γPi + 4γPj − 2Q0h

−2Q0i − 2Q0j − C ′
hQk(Ci + Cj) − C ′

iQk(Cj + Ch) − C ′
jQk(Ch + Ci),

(4.45)

Θhij
21 = 2(Ph + Pi + Pj) − 2(F ′

h + F ′
i + F ′

i ) + (Gh +Gi)Aj

+(Gi +Gj)Ah + (Gj +Gh)Ai +Gh(BiKj +BjKi)

+Gi(BjKh +BhKj) +Gj(BhKi +BiKh)

(4.46)

and

Θhij
31 = (B′

h +B′
i)F ′

j + (B′
i +B′

j)F ′
h + (B′

j +B′
h)F ′

i

+2JkCh + 2JkCi + 2JkCj − 2HKh − 2HKi − 2HKj

(4.47)

In the affirmative case, the switched output feedback gains are given by Lk = H−1Jk,
∀k ∈ KS.

Proof. As mentioned for Theorem 5 demonstration, the matrix H is invertible if (4.39),
(4.40) and (4.44) have a solution.

One can observe that (4.39), (4.40) and (4.38) are in the form of (4.32), (4.33)
and (4.34), from Property 1 and 2 and considering the switching law (3.2), we have


∑N

h=1 αh
∑N

i=1 αi
∑N

j=1 αj(A′
hF

′
i + FhAi +K ′

hB
′
iF

′
j + FhBiKj + 2γPh −Q0h − C ′QσC)∑N

h=1 αh
∑N

i=1 αi
∑N

j=1 αj(Ph − F ′
i +GhAi +GhBiKj)∑N

h=1 αh
∑N

i=1 αi
∑N

j=1 αj(B′
hF

′
i + JσC −HKi)

∗ ∗∑N
h=1 αh

∑N
i=1 αi

∑N
j=1 αj(−Gh −G′

h) ∗∑N
h=1 αh

∑N
i=1 αi

∑N
j=1 αj(B′

hG
′
i)

∑N
h=1 αh

∑N
i=1 αi

∑N
j=1 αj(−H −H ′)

 < 0,

(4.48)
and

N∑
h=1

αh

N∑
i=1

αi(Q0i + C ′
hQ(λ)Ci) < 0. (4.49)

Then, developing the terms in (4.48) and (4.49), and regarding that
∑N

h=1 αh =
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∑N
i=1 αi = ∑N

j=1 αj = 1, we obtain
Γσ(α)
P (α) − F ′(α) +G(α)A(α) +G(α)B(α)K(α)
B′(α)F ′(α) + JσC(α) −HK(α)

∗ ∗
−G(α) −G′(α) ∗
B′(α)G′(α) −H −H ′

 < 0

(4.50)

where

Γσ(α) = A′(α)F ′(α) + F (α)A(α) +K ′(α)B′(α)F ′(α) + F (α)B(α)K(α)

+2γP (α) −Q0(α) − C ′(α)QσC(α)
(4.51)

and
Q0(α) + C ′(α)Q(λ)C(α) < 0. (4.52)

The demonstration follows similarly as for Theorem 5, taking into account that
the quadratic stability condition considering a lower bound γ for the system decay rate
is as defined in (2.2).

4.4 Analysis

Intending to investigate the efficiency of the proposed theorems and to compare
with the strategy proposed in Chapter 3, some practical experiments were executed.
In this section, feasibility and performance analysis are presented using the active
suspension system.

Experiment 4.1. In this experiment with same conditions of the Experiment 3.1 is
compare the feasibility of Theorems 10, 11 and 12, considering the specification of a
minimum decay in both stages. This experiment was performed considering a range
for the minimum decay rates in the first and second stage of the project as 0 ≤ β ≤ 20,
2 ≤ γ ≤ 20 and r = 1000, and still requiring a design of two gains for the switched
SOF (S = 2), with λ1 = λ2 = 0.5. The proposed LMIs were solved similarly as in
previous analysis, one can obtain the results presented in Figure 13, which represents
the feasibility region obtained by each of theorems.
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Figure 13 – Feasibility region obtained with Theorems 10, 11 and 12 changing the
minimum decay rate.

Source: Own Autor.

In the Figure 13 is possible to observe that Theorem 12, which is the switched
SOF with K(α) that contemplate F (α) and G(α), has a bigger feasibility area than
Theorem 10, which is the switched SOF with K(α) that is based on a fixed matrix P ,
when considering the specification of a minimum decay in both stages. Theorem 11
showed no improvement in Figure 13 compared to Theorem 10.

Experiment 4.2. Another analysis with same conditions of the Experiment 3.1 is
compare the feasibility of Theorems 8 and 12, considering the specification of a minimum
decay in both stages. This experiment was performed considering a range for the
minimum decay rates in the first and second stage of the project as 0 ≤ β ≤ 20,
2 ≤ γ ≤ 20 and r = 1000, and still requiring a design of two gains for the switched SOF
(S = 2), with λ1 = λ2 = 0.5.

The proposed LMIs were solved similarly as in previous analysis, one can obtain
the results presented in Figure 14, which represents the feasibility region obtained by
each of the two considered theorems.
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Figure 14 – Feasibility region obtained with Theorems 8 and 12 changing the minimum
decay rate.

Source: Own Autor.

One can observe in Figure 14 that Theorem 8 has a better feasibility region
when compared to Theorem 12, given the distance of the values of K(α), having higher
restrictions.

Experiment 4.3. An additional analysis with same conditions of the Experiment 3.1 is
compare the feasibility of Theorem 12 with r = 100 and r = 1000 in the first stage design,
considering the specification of a minimum decay in both stages. This experiment was
performed considering a range for the minimum decay rates in the first and second
stage of the project as 0 ≤ β ≤ 20, 2 ≤ γ ≤ 20, and still requiring a design of two gains
for the switched SOF (S = 2), with λ1 = λ2 = 0.5.

The proposed LMIs were solved similarly as in previous analysis, one can obtain
the results presented in Figure 15, which represents the feasibility region obtained by
each of the two considered theorems.

One can observe in Figure 15 that Theorem 12 with r = 100 in the first stage
design has a better feasibility region, given the proximity of the values of K(α) reducing
the restrictions, allowing larger values in the minimum decay rate.
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Figure 15 – Feasibility region obtained with r = 100 and r = 1000 in the first stage design
changing the minimum decay rate.

Source: Own Autor.

Experiment 4.4. In this experiment the Active Suspension System will be examined
from the politopic uncertain perspective, evaluating the perform of the Theorems 10, 11
and 12 with same conditions of the Experiment 3.3, however the power loss has range
80 to 100% and r = 1000, and still requiring a design of two gains for the switched SOF
(S = 2), with λ1 = λ2 = 0.5.

The proposed LMIs were solved similarly as in previous analysis, regarding the
values of ρ and Ms in the specified ranges, the obtained feasibility regions wit each
theorem is presented in Figure 16.

One can observe that by using Theorem 11, which considers the matrix P as
dependent on the uncertain parameter α, results in a larger feasibility region when
compared to Theorem 10, which is based on a fixed matrix P . Also, Figure 16 shows
that Theorem 12 provided a better result than Theorem 11 in this experiment.



Chapter 4. Parameter-dependent state-feedback gain in the first stage 57

Figure 16 – Feasibility region obtained with Theorems 10, 11 and 12 changing the
polytope’s vertex.

Source: Own Autor.

Experiment 4.5. To compare the Theorems 8 and 12 this test with the same conditions
from the Experiment 3.3, however the power loss has range 80 to 100% and r = 1000.
Regarding the values of power loss and Ms in the specified ranges, the obtained
feasibility regions with each theorem is presented in Figure 17, and still requiring a
design of two gains for the switched SOF (S = 2), with λ1 = λ2 = 0.5.

Figure 17 – Feasibility region obtained with Theorems 8 and 12 changing the polytope’s
vertex.

Source: Own Autor.

One can observe in Figure 17 that Theorem 12 has a better feasibility region
when compared to Theorem 8, K(α) allowed larger uncertainties.

Experiment 4.6. An additional comparison the Theorem 12 with r = 100 and r = 1000
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in the first stage design this test with the same conditions from the Experiment 3.3,
however the power loss has range 80 to 100%, and still requiring a design of two gains
for the switched SOF (S = 2), with λ1 = λ2 = 0.5.Regarding the values of power loss
and Ms in the specified ranges, the obtained feasibility regions wit each theorem is
presented in Figure 18.

Figure 18 – Feasibility region obtained with r = 100 and r = 1000 in the first stage
changing the polytope’s vertex.

Source: Own Autor.

One can observe in Figure 18 that r = 1000 has a better feasibility region
when compared to r = 100, given the distance of the values of K(α) allowed larger
uncertainties.

Experiment 4.7. To analyze whether there is improvement in behavior when switched
SOF considering a parameter-dependent state-feedback design, we considered in this
experiment with the same conditions from the Experiment 3.6.

The LMI (2.12) was solved similarly as in previous analysis, fixing the decay rates
of the first and second stage of the project as β = γ = 0.75 and r = 100, we obtain the
same state feedback gain (3.99). And, in the second stage, using the LMIs in Theorem
8 and the first-stage state feedback gain, the designed static output feedback gain are
expressed in (3.106) and with the matrix Q1 and Q2 are described in (3.107).

The LMIs (4.3) and (4.4) was solved similarly as the robust state feedback, we
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obtain the state feedback gains:

K1 =
[
658.347 − 29.385 42.051 19.945

]

K2 =
[
1032 −80.293 448.79 52.629

]

K3 =
[
657.31 −26.096 78.079 18.331

]

K4 =
[
1231.6 −52.911 229.1 45.062

]
(4.53)

Finally, in the second stage, using the LMIs in Theorem 12, the first-stage state
feedback gain and design two gains in second stage(S = 2), with λ1 = λ2 = 0.5, the
designed switched static output feedback gains were

L1 =
[
739.63 −65.196

]

L2 =
[
739.49 −65.221

] (4.54)

with the matrix Q1 and Q2:

Q1 =
 2.9802 × 1010 −2.4932 × 109

−2.4932 × 109 2.006 × 1010



Q2 =
 2.9794 × 1010 −2.4927 × 109

−2.4927 × 109 2.0079 × 1010


(4.55)

According to Figure 19 the controller designed with Theorem 12 offered an
improvement when compared with Theorem 8. The Figure 20 illustrates that during the
experiment the controller with the Theorem 12 have higher Fc than Theorem 8.
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Figure 19 – Active suspension system behavior and control signal using Theorems 8
and 12 controllers with fault: 50% power loss in the actuator (8 − 16s), for
Ms = 2.45kg

Source: Own Autor.

Figure 20 – Control command Fc(t) generated by the designed switched SOF controllers
during the executed experiments with using Theorem 8 (top) and 12 (bottom)
for Ms = 2.45kg.

Source: Own Autor.

Experiment 4.8. Another analysis were made aiming to evaluate the system perfor-
mance with the controllers design from the Theorems 12 with different r in the first stage,
we considered in this experiment that the Active Suspension System may present the
same conditions from the last experiment.

The LMI (2.12) was solved similarly as in previous analysis, fixing the decay rates
of the first and second stage of the project as β = γ = 0.75 and r = 100, we obtain the
same state feedback gain (4.53). And, in the second stage, using the LMIs in Theorem
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12 and the first-stage state feedback gain, the designed static output feedback gain are
expressed in (4.54) and with the matrix Q1 and Q2 are described in (4.55).

Finally, fixing the decay rates of the first and second stage of the project as
β = γ = 0.75 and r = 1000, we obtain the state feedback gains:

K1 =
[
−114.69 −276.81 3419.2 171.83

]

K2 =
[
−506.4 −507.45 6282.1 319.69

]

K3 =
[
140.98 −196.79 2431.4 134.88

]

K4 =
[
−154.9 −434.55 5594.8 314.71

]
(4.56)

and, in the second stage, using the LMIs in Theorem 12, and the first-stage state
feedback gain, the designed switched static output feedback gain was

L1 =
[
−10.665 −122.9

]

L2 =
[
−10.454 −122.86

] (4.57)

with the matrix Q1 and Q2:

Q1 =
−6.6658 × 1010 −8.201 × 1010

−8.201 × 1010 1.8315 × 1011



Q2 =
−6.6658 × 1010 −8.2035 × 1010

−8.2035 × 1010 1.8308 × 1011

 .

(4.58)

According to Figure 19 the controller with r = 1000 had a better dynamic response.
Also, Figure 19 shows that the σ presented less switching when compared to the
controller with r = 100.
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Figure 21 – Active suspension system behavior using Theorem 12 controllers with
r = 100 and r = 1000 fault: 50% power loss in the actuator (8 − 16s), for
Ms = 2.45kg.

Source: Own Autor.

Figure 20 shows that the control input Fc(t) with r = 100 presented higher
amplitudes when compared to the results of controller with higher r.

Figure 22 – Control command Fc(t) generated by the designed switched SOF controllers
during the executed experiments with decay rates r = 100 (top) and r = 1000
(bottom) for Ms = 2.45kg.

Source: Own Autor.

4.5 Partial Conclusion

In this chapter, a new design strategy for switched SOF controllers was proposed,
using the two-stage method, with pole allocation in circle by parameter-dependent state
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feedback, which bring less conservatism in the second stage. In addition, the controllers
developed in the second stage with the Theorem 12 brought a superior performance
in the dynamics of the system during the experiments, note that the control input was
higher, where we can observe a rapid change between the controllers (Shattering).
Another factor when using a with pole allocation in circle by parameter-dependent
state-feedback in the first stage is a parameter r, that could influence the feasibility,
control input and performance of the controller designed with Theorems, and a more
extensive theoretical study to assess whether there really is a relationship between SOF
performance and design specifications in the first stage, can help to understand the
results.
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5 CONCLUSIONS AND PERSPECTIVES

This work proposes the study of switching control via static output feedback
control. As an overall conclusion, the outcome of the performed studies corroborates
with the fact that this line of research can provide interesting and useful contributions to
control theory.

The Chapter 3 compiled the LMI conditions for design switched SOF controllers
for uncertain LTI systems. The feasibility tests shown that the conditions in Theorem
8, which involves the design of switched SOF that considers the Finsler’s variables (F
and G) as dependent on the uncertain parameter α, has an improvement if compared
with Theorem 4, which is the robust SOF that contemplate F (α) and G(α), presented
by Sereni (2019). The results of a practical implementation of a switched SOF controller
conditions for the QUANSER® Active Suspension in Experiment 3.5 highlighted a
limitation in switching law used on the proposed theorem, which is the size of the
switching matrices Qi that should not be smaller than 2 to be able to change between
the gains. Although, in Experiment 3.6 showed that the controller was able to suppress
the oscillations, even during the occurrence of 50% power loss on the system actuator,
and has a switching between the gains during the experiment. Additionally the system
dynamic performance was slightly better using the switched controllers, when compared
with the robust strategy, however such performance improvement comes with increases
the control input.

In Chapter 4 a new design strategy for switched SOF controllers was proposed,
using the two-stage method, with parameter-dependent state-feedback, which the
controllers developed in the second stage with the Theorem 12, which is the switched
SOF with K(α) that contemplate F (α) and G(α), brought a superior performance in
the dynamics of the system during the experiments. Note the control input was higher,
where we can observe a shattering between the gains. However this results is empirical,
there is no mathematical prove yet, to say that switched SOF with K(α) in the first stage
can brought a superior performance. Another factor when using a pole allocation in circle
by parameter-dependent state feedback in the first stage is a parameter r, that could
influence the feasibility, control input and performance of the controller designed with
Theorems from this Chapter, and a more extensive theoretical study to assess whether
there really is a relationship between SOF performance and design specifications in the
first stage, can help to understand the results.

Research perspectives

As future perspectives we can mention:



Chapter 5. CONCLUSIONS AND PERSPECTIVES 65

• Include requirements of H∞ in the LMIs conditions, so that the controllers can
work with disturbance robustness.

• Search for a smooth switching law to avoid cases of increased cost of control due
to shattering.

• Insertion of D-stability into LMIs to determine a controller that best fits for more
practical design requirements.

• Expand to more practical systems, that is, more complex, such as those with
saturation or nonlinearity.

• Expand the results for discrete-time systems.

• A more in-depth theoretical study to assess whether there really is a relationship
between SOF performance and design specifications in the first stage, can help to
understand the results.

• Improve switching conditions also so that it is possible to switch between gains
when only one system output variable is available.
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