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We propose a new way to obtain polynomial dynamical invariants of the classical
and quantum time-dependent harmonic oscillator from the equations of motion. We
also establish relations between linear and quadratic invariants, and discuss how the
quadratic invariant can be related to the Ermakov invariant. C© 2012 American Institute
of Physics. [http://dx.doi.org/10.1063/1.3702824]

Dedicated to Professor Ruben Aldrovandi on the occasion of his 70th birthday.

I. INTRODUCTION

Dynamical invariants are constants of motion related to the temporal evolution of dynamical
systems. They constitute a very important chapter in the study of classical and quantum dynamics,
since they can be associated with special symmetries of the physical systems, as in the case of
Noether invariants.1 In most systems the equations of motion reveal dynamical invariants related to
fundamental group structures that may also define their own integrability. In general, this is the case
of conservative systems, whose equations of motion are not explicitly time-dependent.

Time-dependent systems, specially in quantum mechanics, also provide important applications
for the theory of dynamical invariants. Some examples are the Paul traps,2 which are ion traps where
charged particles are confined with time-variating potentials. Because the Hamiltonian is explicitly
time-dependent, a well defined spectrum cannot be found. This problem is dealt with by finding
the dynamical invariants of the system and studying the relationship between these quantities and
time evolution of the quantum states of the particles within the trap,3 or by finding its coherent
states, looking for the most classical behavior.4, 5 Other important applications take place in optical
cavities with moving mirrors, such as the quantization of the electromagnetic radiation,6, 7 the study of
dynamical Casimir effect,8 and laser physics.9, 10 In general, dynamical invariants are of fundamental
importance in solving problems in optics and condensed matter physics.

Non-stationary quantum systems face problems in time operator ordering, and for these systems
eigenvalue problems are not well defined. However, the knowledge of their dynamical invariants
can still provide information of their fundamental algebraic structure and solutions. The theoretical
developments on this field were performed by many authors using fundamental tools introduced back
to the 19th century by Ermakov11 in the study of integrability of second-order differential equations.
In his works, Ermakov introduced the so-called Ermakov invariant, which is a fundamental quadratic
conserved quantity used since then to analyze classical12 and quantum systems.13, 14

In this paper we present a new approach to classical and quantum polynomial invariants of
the one-dimensional time-dependent harmonic oscillator, using nothing more than its equation of
motion. The use of this system is not only a matter of simplicity, since all the above cited physical
applications, and others, can be modeled by this simple system. We begin in Sec. II, where we perform
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the derivation of general linear and quadratic invariants of the classical oscillator, proceeding in
Sec. III to the related quantum system. In Sec. IV we build general relations between first and
second order invariants in both classical and quantum case. At last, we discuss the relation of the
general second-order quadratic invariant to the Ermakov’s invariant.

II. THE CLASSICAL TIME-DEPENDENT HARMONIC OSCILLATOR

Let us start with the equation of motion of the one-dimensional harmonic oscillator,

d2q

dt2
+ ω2 (t) q = 0, (1)

whose frequency is time dependent. This is a second-order ordinary differential equation (ODE),
and we may redefine it as a set of two first-order ODEs by introducing the variable

p = dq

dt
. (2a)

In this case (1) becomes

dp

dt
= −ω2 (t) q. (2b)

Equations (2) represent the motion of the oscillator in a state-space spanned by the variables
(q, p). To find a unique solution to this problem it is necessary and sufficient to provide two initial
conditions: the values of the coordinates (q, p) at a given instant of time in the case of (2), or the
values of the coordinates q and velocities q̇ at a given instant of time, in the case of (1). In any case,
the general theory of ordinary differential equations tells us that any complete solution must contain
two independent constants of integration, also called first integrals of motion.

A. Linear invariants

Now let us introduce two arbitrary time-dependent functions α(t) and β(t). Multiplying (2a) by
α and (2b) by β, and making the summation of both equations, we obtain

β
dp

dt
+ α

dq

dt
= αp − βω2q.

Collecting terms with total time derivatives we have

d

dt
(βp + αq) =

(
α + dβ

dt

)
p +

(
dα

dt
− βω2

)
q.

Suppose that the functions α and β obey the following set of ODE

α + dβ

dt
= 0, (3a)

dα

dt
− βω2 = 0. (3b)

In this case the quantity

IL = βp + αq

is a dynamical invariant, i.e., dIL/dt = 0.
Derivating (3a) and subtracting (3b) from the result we obtain

d2β

dt2
+ ω2β = 0. (4)
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Therefore, we may describe the linear invariant with a single parameter, let it be β, and in this case
we write

IL = βp − dβ

dt
q. (5)

The equation for α is second-order, but its form is more complicated, what makes β the simplest
choice of parameter. We notice that β has the same general solution of the equation of motion (1),
but without the requirement of being a real valued function. Therefore, the invariant IL becomes two
independent functions

IL = βp − dβ

dt
q, (6a)

I ∗
L = β∗ p − dβ∗

dt
q, (6b)

where β∗ is the complex conjugation of β.

B. Quadratic invariants

At the same way, quadratic invariants can be derived as linear combinations of the equations of
motion. However, in this case we may consider superposition of quadratic products of Eqs. (2a) and
(2b).

Let us consider the following combinations:

p
dp

dt
= −ω2 pq,

q
dq

dt
= qp,

dq

dt
p + dp

dt
q = p2 − ω2q2.

Other combinations are possible, but these ones are sufficient to give us the most general second-
order invariant. Multiplying these equations by arbitrary time-dependent functions γ , ε, and ζ , and
taking the sum

γ p
dp

dt
+ ε

(
dq

dt
p + dp

dt
q

)
+ ζq

dq

dt
= ε

(
p2 − ω2q2

) + (
ζ − γω2

)
pq.

Making explicit total time derivatives, we find the following structure:

d

dt

(
γ p2 + 2εqp + ζq2

) =
(

2ε + dγ

dt

)
p2 +

(
dζ

dt
− 2εω2

)
q2

+2

(
dε

dt
+ ζ − γω2

)
pq.

Therefore, if the coefficients obey the set of equations

2ε + dγ

dt
= 0, (7a)

dζ

dt
− 2εω2 = 0, (7b)

dε

dt
+ ζ − γω2 = 0, (7c)
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we have that the time derivative of the quadratic polynomial

IQ = γ p2 + 2εqp + ζq2 (8)

is identically zero, then IQ is also an invariant. Equations (7) can be written by the single third-order
ODE

d3γ

dt3
+ 4ω2 dγ

dt
+ 2

dω2

dt
γ = 0. (9)

This equation is equivalent to

1

2

d2γ

dt2
+ ω2γ = W 2

γ
+ 1

4γ

(
dγ

dt

)2

, (10)

in which W 2 is the integration constant.

III. THE QUANTUM TIME-DEPENDENT HARMONIC OSCILLATOR

The equation of motion for the one-dimensional quantum harmonic oscillator with time-
dependent frequency has the same functional form of the classical case

d2q̂

dt2
+ ω2 (t) q̂ = 0,

where q̂ is the linear operator related to the generalized coordinate q. The equivalent first-order
equations are also the same as (2), but with the variables (q, p) substituted by the operators (q̂, p̂).
In the quantum case we have to observe the ordering problem of the operators, since q̂ p̂ − p̂q̂ �= 0.
However, the derivation of the linear invariants is not modified by this restriction. Then we have the
functional operators

ÎL = β p̂ − dβ

dt
q̂, (11a)

Î †
L = β∗ p̂ − dβ∗

dt
q̂, (11b)

as the linear invariants of the system, if the function β is solution of the ODE (4).
The quadratic invariant, on the other hand, needs some caution. In this case all possible quadratic

combinations of products of the first-order equations are given by{
p̂,

d p̂

dt

}
= d p̂2

dt
= −ω2 {q̂, p̂} ,

d

dt
{q̂, p̂} = 2 p̂2 − 2ω2q̂2,

{
q̂,

dq̂

dt

}
= dq̂2

dt
= {q̂, p̂} ,

where
{

Â, B̂
} = Â B̂ + B̂ Â is the anti-commutator. Taking the set of c-functions (γ , ε, ζ ) we build

the following expression:

γ
d p̂2

dt
+ ε

d

dt
{q̂, p̂} + ζ

dq̂2

dt
= (

ζ − γω2) {q̂, p̂} + ε
(
2 p̂2 − 2ω2q̂2) .

Making explicit total time derivatives yield

d

dt

(
γ p̂2 + ε {q̂, p̂} + ζ q̂2

) =
(

dγ

dt
+ 2ε

)
p̂2 +

(
dζ

dt
− 2εω2

)
q̂2

+
(

dε

dt
+ ζ − γω2

)
{q̂, p̂} .
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Therefore, we see that the same conditions (7) must be satisfied for the function

ÎQ ≡ γ p̂2 + ε {q̂, p̂} + ζ q̂2 (12)

to be a dynamical invariant of the quantum system.

IV. THE ALGEBRA OF THE DYNAMICAL INVARIANTS

A. The classical mechanical case

In Sec. II we showed that simple linear combinations of the first-order equations of motion of
the classical time dependent harmonic oscillator yield the linear dynamical invariants

IL = βp − dβ

dt
q, (13a)

I ∗
L = β∗ p − dβ∗

dt
q, (13b)

for a time dependent complex function β (and β∗) that obeys the second-order equation(
d2

dt2
+ ω2

)(
β

β∗

)
= 0. (14)

On the other hand, the quadratic form

IQ =
(

γω2 + 1

2

d2γ

dt2

)
q2 − dγ

dt
qp + γ p2 (15)

is a second-order invariant if γ obeys

d3γ

dt3
+ 4ω2 dγ

dt
+ 2

dω2

dt
γ = 0. (16)

We may rise the question if the quadratic invariant is somehow related to the linear ones. In other
words, can we generate the quadratic form from the linear ones, and still have consistent equations
for the parameters? In the classical case, where the ordering problem is absent, we may build all the
quadratic products, but it is sufficient to consider

I ∗
L IL = IL I ∗

L = β∗βp2 − d

dt

(
β∗β

)
qp + dβ∗

dt

dβ

dt
q2. (17)

This product is a quadratic invariant since IL and I ∗
L are invariants. It coincides with IQ if we identify

γ = β∗β, (18a)

γω2 + 1

2

d2γ

dt2
= dβ∗

dt

dβ

dt
. (18b)

Equation (18b) has no new information. It is identically satisfied since β and β∗ obey (14).
Therefore, the quadratic invariant IQ can be naturally generated by the linear invariants IL when
(18a) is obeyed.

Let us consider the polar form β = ρeiφ , so we may write γ = ρ2. In this case, (14) results in

d2ρ

dt2
+ ω2ρ = ρφ̇2, (19)

also entailing

d

dt

[
ρ2φ̇

] = 0 ⇒ φ̇ = W

ρ2
, (20)
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where W is the same constant that appears in (10). Therefore,

d2ρ

dt2
+ ω2ρ = W 2

ρ3
. (21)

This is the Ermakov equation.
On the other hand, Eq. (18a) implies that γ is a real non-negative number. Equation (16) then

yields

d

dt

[
ρ3

(
d2ρ

dt2
+ ω2ρ

)]
= 0,

which also gives the Ermakov equation (21). Taking (15) it is straightforward to see that

IQ = IE = W 2

ρ2
q2 +

(
dρ

dt
q − ρp

)2

. (22)

This is known as the Ermakov invariant.

B. The quantum case

Considering the quantum mechanical time-dependent harmonic oscillator we may perform the
products

Î †
L ÎL = β∗β p̂2 − β

dβ∗

dt
q̂ p̂ − β∗ dβ

dt
p̂q̂ + dβ∗

dt

dβ

dt
q̂2, (23a)

ÎL Î †
L = β∗β p̂2 − β∗ dβ

dt
q̂ p̂ − β

dβ∗

dt
p̂q̂ + dβ

dt

dβ∗

dt
q̂2. (23b)

We have two possible combinations: the antisymmetric case

ÎA ≡ 1

2

(
ÎL Î †

L − Î †
L ÎL

)
=

(
β

dβ∗

dt
− dβ

dt
β∗

)
(q̂ p̂ − p̂q̂) ,

and the symmetric product

ÎS ≡ 1

2

(
ÎL Î †

L + Î †
L ÎL

)
= β∗β p̂2 − 1

2

dβ∗β
dt

{q̂, p̂} + dβ∗

dt

dβ

dt
q̂2. (24)

The invariant ÎA is not really a quadratic form. Aside the fact that the relation [q̂, p̂] ≡ q̂ p̂
− p̂q̂ = i� is postulated in quantum mechanics, it can be shown by the quantum equations of
motion

p̂ = dq̂

dt
,

d p̂

dt
= −ω2 (t) q̂

that
d

dt
(q̂ p̂ − p̂q̂) = 0,

therefore the commutation (q̂ p̂ − p̂q̂) is actually a c-number.
On the other hand, ÎS is a legitimate quadratic invariant. Let us compare it with (12),

ÎQ =
(

γω2 + 1

2

d2γ

dt2

)
q̂2 − 1

2

dγ

dt
{q̂, p̂} + γ p̂2, (25)

where (7) are explicitly used. It is straightforward to see that ÎS = ÎQ if γ = β∗β, and

γω2 + 1

2

d2γ

dt2
= dβ∗

dt

dβ

dt
.

These conditions are the same ones of the classical case. Then, the Ermakov equation (21) and the
Ermakov invariant (22) follow from the same calculations.
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V. FINAL REMARKS

In this work we showed how linear and quadratic dynamical invariants of the classical and
quantum one-dimensional harmonic oscillator can be derived exclusively from the equations of
motion.

In the case of the linear invariants (6) and (11), they arise directly from linear combinations of
the first-order equations, and are parameterized by a β function that obeys a second-order ODE (4).
Quadratic invariants, on the other hand, arise with linear combinations of quadratic products of the
equations of motion. In this case the ordering problem must be taken account in the quantum case.
They have the general forms (8) and (12) in the classical and quantum systems, respectively, with
the functions γ , ε, and ζ obeying the ODE (7). These equations define dependency between these
functions, so the most general quadratic invariant takes the form (15) in the classical case, and (25)
in the quantum system. The function γ is then solution of the ODE (9).

In Sec. IV we used the linear invariants to build quadratic ones, and analyze under which
conditions these invariants coincide with the quadratic ones derived in Secs. II and III. In the
classical case, the usual product of functions of q and p is sufficient, and the product of two linear
invariants becomes the quadratic invariant (15) if (18a) is satisfied.

In the quantum case, the ordering problem of the operators q̂ and p̂ forced us to consider
antisymmetric and symmetric products of the linear invariants (11). We saw that the antisymmetric
product is not really a quadratic invariant, so we are left with the symmetric product (24). This
invariant becomes equal to (25) under the same conditions derived in the classical case.

In both classical and quantum systems, since the equations of the parameter γ are the same,
the Ermakov invariant arise by making γ a positive real function (γ = β∗β = ρ2). Therefore, the
Ermakov invariant becomes a special case of the quadratic invariants (15) and (25).
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