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According to the Liu and Baranger [Phys. Rev. B 84, 201308(R) (2011)], an isolated Majorana state

bound to one edge of a long enough Kitaev chain in the topological phase and connected to a

quantum dot, results in a robust transmittance of 1/2 at zero-bias. In this work, we show that the

removal of such a hallmark can be achieved by using a metallic surface hosting two adatoms in a

scenario where there is a lack of symmetry in the Fano effect, which is feasible by coupling the

Kitaev chain to one of these adatoms. Thus in order to detect this feature experimentally, one should

apply the following two-stage procedure: (i) first, attached to the adatoms, one has to lock AFM tips

in opposite gate voltages (symmetric detuning of the levels De) and measure by an STM tip, the

zero-bias conductance; (ii) thereafter, the measurement of the conductance is repeated with the gates

swapped. For jDej away from the Fermi energy and in the case of strong coupling tip-host, this

approach reveals in the transmittance, a persistent dip placed at zero-bias and immune to the

aforementioned permutation, but characterized by an amplitude that fluctuates slightly around 1/2.

However, in the case of a tip acting as a probe, the adatom decoupled from the Kitaev chain

becomes completely inert and no fluctuation is observed. Therefore, the STM tip must be considered

in the same footing as the “hostþadatoms” system. As a result, we have found that despite the small

difference between these two Majorana dips, the zero-bias transmittance as a function of the

symmetric detuning yields two distinct behaviors, in which one of them is unpredictable by the

standard Fano’s theory. Therefore, to access such a non trivial pattern of Fano interference, the

hypothesis of the STM tip acting as a probe should be discarded. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4865503]

I. INTRODUCTION

Majorana fermions are particles that constitute their own

antiparticles. Such a proposal was made almost a century ago

by Ettore Majorana in the context of high-energy physics. In

solid state systems, these exotic particles are not fundamental

but emerge as quasiparticle excitations.1 This species of exci-

tation is ranked as non-Abelian anyons and obeys an unusual

quantum statistics. Its most remarkable property lies on the

possibility of bounding two far apart Majoranas that define an

unique nonlocal Dirac fermion. Once this spatially delocal-

ized state is occupied, it yields a robust qubit decoupled from

the surroundings, thus avoiding decoherence due to perturba-

tions. This protected qubit then enlarges the feasibility to

make these blocks as essential to the accomplishment of a

topological quantum computer. Thus, in the last few years,

the quest for devices nesting Majorana fermions has received

much attention from the community of researchers working

with quantum computing.2–6

To the best knowledge, the superconductor state is con-

sidered suitable for the emergence of Majorana excitations.

Superconductivity lies on Cooper-pair condensation and spon-

taneous breaking of charge conservation, thus leading to the

superposition of electrons and holes. However, s-wave super-

conductivity arises from electrons with opposite spins that

result in distinct operators for creation and annihilation of qua-

siparticles, thus preventing the realization of Majorana bound

states (MBSs). To support them, a spinless superconductor is

indeed required. Such conditions can be found in the topologi-

cal phase of the Kitaev chain,7 which offers the proper envi-

ronment to sustain Majoranas. The Majoranas are zero-energy

modes, in particular, placed at the edges of this chain.

The engineering of a sample with p-wave superconduc-

tivity can be achieved experimentally by proximity effect. It

is known that a s-wave superconductor nearby a semicon-

ducting nanowire with strong spin-orbit interaction and

crossed by a magnetic field, induces p-wave superconductiv-

ity on the latter system.8–16 Additionally, the existence of

Majoranas are predicted in the fractional quantum Hall state

with filling factor �¼ 5/2,17 in three-dimensional topological

insulators18 and at the core of superconducting vortices.19–21

In this scenario, quantum transport becomes a sensible tool

for detecting Majorana quasiparticles. Particularly in Ref. 22,

it was predicted for the experimental setup of a single quan-

tum dot (QD) side-coupled to a Majorana state, that the zero-

bias peak (ZBP) for the conductance should be given by the

robust Majorana hallmark G ¼ 0:5G0, where G0 ¼ e2=h is the

background conductance. We highlight that in Ref. 23,

Vernek et al. have determined that such an amplitude arises

from the leaking of the Majorana state into the QD.

Experimentally, a persistent ZBP has been observed in

transport measurements through a setup composed by a nano-

wire of indium antimonide merged to gold and niobium tita-

nium nitride.24 In this aforementioned system, Majoranas are
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supposed to exist due to the ZBP that stands up to a wide

range of magnetic fields and gate voltages. Such a robustness

of the ZBP has also been found in the analogous system of a

superconductor of aluminium close to a nanowire of indium

arsenide.25 Moreover, we stress that the ZBP feature may also

have another physical origin, for instance, the Kondo

effect.26–33

In this context, an apparatus based on Fano effect34,35

becomes an alternative approach to detect a Majorana state.

Here, we benefit of this mechanism, an interference phenom-

enon found in systems where tunneling channels compete for

the electron transport. This effect can be detectable by the

Scanning Tunneling Microscope (STM), a device made by a

metallic tip that detects, for low enough temperatures, the

transmittance through a system by measuring the differential

conductance.29–33 Thus, we have studied theoretically the con-

ductance probed by an STM tip of a metallic surface coupled

to two adatoms, in which one of them is coupled to a MBS

hosted by a long enough Kitaev chain in the topological phase.

We should remark that nowadays such a chain is achievable

experimentally as found in Ref. 24, whose system becomes

the most promising candidate to our proposal [see Fig. 1].

Additionally, we have considered in the model two

Atomic Force Microscope (AFM) tips capacitively coupled

to the adatoms, just in order to tune their levels as proposed

in Ref. 36. Our approach employs the spinless Hamiltonian

of Ref. 22 in combination with the equation-of-motion pro-

cedure for the Green’s functions.

By determining the transmittance of this setup, we have

found Fano profiles due to the coupling between the setup of

the adatoms and an isolated MBS. For the setup decoupled

from this MBS, the direct and the mixed Green’s functions

are symmetric with respect to the labels 1 and 2 that desig-

nate the parameters of the adatoms. In the opposite limit, this

symmetry property is broken and the swap of the indexes

1$ 2 leads to a lack of symmetry in the Fano profile.

This lack of symmetry can be accessed experimentally
by performing the following proposed two-stage procedure:
(i) first, attached to the adatoms, one has to lock AFM tips in
opposite gate voltages (symmetric detuning of the levels De)
and measure by an STM tip, the zero-bias conductance; (ii)
thereafter, the measurement of the conductance is repeated
with the gates swapped.

As a result of this method and the Fano regime as well,

the transmittance for jDej away from the Fermi energy exhibits

a zero-bias dip persistent against the permutation of the gate

voltages. For the case in which the STM acts as a probe of the

LDOS (local density of states) for the “hostþadatoms” system,

the adatom decoupled from the Kitaev chain plays no role and

the typical Majorana hallmark is verified: a robust zero-bias

transmittance characterized by an amplitude of 1/2 as that

found in Ref. 22 for a single QD setup. On the other hand, for

the STM in the same footing as the “host þ adatoms” system,

a slight fluctuation around the amplitude of 1/2 manifests as a

straight aftermath of the two-stage procedure in combination

with the adatom free of the MBS. However, despite the small

difference between these two Majorana dips, each one leads to

a particular Fano lineshape for the zero-bias transmittance as a

function of the symmetric detuning. Therefore, we demon-

strate in this work that the assumption of the STM as a probe

tip is not enough to reveal the unexpected pattern of Fano in-

terference for the proposed setup of Fig. 1.

This paper is organized as follows. In Sec. II, we show

the theoretical model for the system sketched in Fig. 1 as

well as the derivation of the transmittance. The Green’s

functions of the adatoms are also presented in this section.

The results appear in Sec. III and in Sec. IV, we summarize

the conclusions.

II. THEORETICAL MODEL

A. Hamiltonian

The system we investigate is described according to the

Hamiltonian

Htotal ¼ Hhostþads þHtip þHtun: (1)

In order to mimic the system outlined in Fig. 1, we follow

the spinless Hamiltonian proposed by Liu et al.,22 taking two

adatoms into account, which reads

Hhostþads ¼
X

k

ðek � lhostÞc†
kck þ

X
j

ejd
†
j dj

þV
X

jk

c†
kdj þ H:c:

� �
þ i�Mg1g2

þkðd1 � d†
1Þg1; (2)

FIG. 1. Two perspectives of the same apparatus: in panel (a) we have the

top view, while (b) represents the front view. In both, Majorana bound states

(MBSs) appear lying on a long enough Kitaev chain within the topological

phase [right side of panels (a) and (b)], which can be accomplished as pro-

posed experimentally in Ref. 24: s-wave superconductivity (SC) inducing p-

wave pairing in a semiconducting wire with strong spin-orbit interaction

(SO) and crossed by a perpendicular magnetic field ~B. Here we follow such

a proposal by adding an STM tip nearby a metallic surface coupled to two

adatoms, in which one of them is hybridized with a MBS 1 (a half-electron

state). The MBS 1 is connected far apart to a MBS 2. The AFM tips are

employed to tune the levels of the adatoms. This device explores the lack of

symmetry in Fano interference, which is detectable via the zero-bias con-

ductance. The parameters q0 and qb are Fano factors due to the interference

between the different paths taken by the electrons from the tip to the surface.

When qb � 1 the hybridization between the tip and the adatoms is stronger

than the hybridization to the surface. In this case the electrons tunnel to the

surface throughout the adatoms. In contrast, for q0¼ 0 the electrons tunnel

directly to the surface. The green-circle represents the site of the host

side-coupled to the adatoms.

063706-2 Seridonio et al. J. Appl. Phys. 115, 063706 (2014)
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where the electrons in the host are described by the operator

c†
k (ck) for the creation (annihilation) of an electron in a quan-

tum state labeled by the wave number k, energy ek and chem-

ical potential lhost. For the adatoms, d†
j (dj) creates

(annihilates) an electron in the state ej, with j¼ 1, 2. V is the

hybridization of the adatoms with the host. In particular for

j¼ 1, the adatom 1 is coupled to the MBS 1 described by the

operator g†
1 ¼ g1. The strength of this coupling is k. The

MBS 2 given by g†
2 ¼ g2 is connected to the MBS 1 via the

coefficient �M � e�L=n, with L being the distance between

the MBSs and n the coherence length. It is worth mentioning

that the present spinless model supposes a strong magnetic

field over the entire system, which leads to a large Zeeman

splitting where the higher levels are not energetic favorable

at low temperatures. In this situation, one spin component

plays no role and the spin degrees of freedom can be

ignored.

The second part of Eq. (1) is described by the

Hamiltonian

Htip ¼
X

q

ðeq � ltipÞb†
qbq; (3)

which corresponds to free electrons ruled by fermionic oper-

ators b†
q and bq in the STM tip, with energy eq and chemical

potential ltip.

To perform the coupling between Eqs. (2) and (3), we

have to define the tunneling Hamiltonian

Htun ¼ wðf †
t w0 þ H:c:Þ; (4)

where w is the STM tip-host coupling,

ft ¼
X

q

bq (5)

is for the edge of the STM tip,

w0 ¼ f0 þ ðpCq0Þ1=2q0

X
j

dj (6)

is the field operator that accounts for Fano interference,

f0 ¼
X

k

ck (7)

represents the host site laterally coupled to the adatoms [see

the green-circle of the host outlined in Fig. 1],

C ¼ pV2q0 (8)

is the Anderson parameter, with q0 ¼ 1
2D as the density of

states for the surface without adatoms, D is the band half-

width and

q0 ¼ ðpCq0Þ�1=2
~V

w

� �
(9)

is the Fano factor of interference,37 with ~V as the couplings

between the STM tip and the adatoms. Notice that due to

Eqs. (6) and (9), the limit q0 � 1 represents the situation in

which the tip is highly hybridized with the adatoms, while in

the opposite regime q0¼ 0, the tip is strongly connected to

the surface [see Fig. 1]. As the former case in presence of a

MBS still obeys the standard Fano’s theory, in this work we

will focus on the latter, where we can find a non trivial Fano

interference. Such a point will be discussed in Sec. III.

B. Calculation of the transmittance

1. The STM tip as a probe

By applying the linear response theory, in which the

STM tip is considered as a probe, it is possible to show that

the zero-bias conductance is given by

Gð0Þ ¼ e2

h
ð2pwÞ2

ð
qLDOSðeÞqtipðeÞ �

@fF
@e

� �
de; (10)

where e is the electron charge, h is the Planck constant,

qLDOS (e) is the LDOS of the “hostþadatoms” system, qtip

(e) as the DOS of the STM tip and fF is the Fermi-Dirac dis-

tribution. The total transmittance is then defined as follows:

T probeðeÞ ¼ ð2pwÞ2qLDOSðeÞqtipðeÞ: (11)

To obtain the LDOS, we follow Ref. 36 by introducing the

retarded Green’s function

Rw0w0
¼ � i

�h
h tð ÞTr .hostþads½w0 tð Þ;w†

0 0ð Þ�þ
n o

(12)

for the field operator of Eq. (6) in the time domain t, where

h(t) is the Heaviside function, .hostþads is the density matrix

of the system described by the Hamiltonian in Eq. (2) and

½� � � ; � � ��þ is the anticommutator of Eq. (6) at distinct times.

From Eq. (12), the LDOS of the host can be obtained as

qLDOSðeÞ ¼ �
1

p
Imð ~Rw0w0

Þ; (13)

where ~Rw0w0
is the Fourier transform of Rw0w0

in the energy

domain e. Analogously, we have

qtipðeÞ ¼ �
1

p
Imð ~RftftÞ; (14)

with

Rftft ¼ �
i

�h
h tð ÞTr .tip½ft tð Þ; f †

t 0ð Þ�þ
n o

; (15)

where .tip is the density matrix of the system described by

the Hamiltonian in Eq. (3).

Thus to determine an analytical expression for the

LDOS, we apply the equation-of-motion approach on Eq.

(12). Such a procedure is summarized as follows:

ðeþ igÞ ~RAB ¼ ½A;B†�þ þ ~R A;Hi½ �B; (16)

with g ! 0þ , A and B as fermionic operators belonging to

the HamiltonianHi (i¼ hostþ ads or tip).

063706-3 Seridonio et al. J. Appl. Phys. 115, 063706 (2014)
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By taking Eq. (12), one can calculate via Eqs. (2), (6),

and (16) with A ¼ B ¼ w0 and Hi ¼ Hhostþads, the following

relation:

~Rw0w0
¼ ~Rf0f0 þ ðpCq0Þq2

0

X
jl

~Rdjdl
þ 2ðpCq0Þ1=2q0

�
X

j

~Rdjf0 ; (17)

which depends on the Green’s functions ~Rf0f0 ;
~Rf0dj

and
~Rdjdl

. First, we find ~Rf0f0 ,

~Rf0f0 ¼ pq0ð�c � iÞ þ pq0Cð�c � iÞ2
X

jl

~Rdjdl
(18)

and later on, the mixed Green’s function ~Rdjf0 ,

~Rdjf0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
pCq0

p
ð�c � iÞ

X
l

~Rdjdl
; (19)

where

�c ¼ 1

pq0

X
k

1

e� ek
: (20)

Now, we choose for Eq. (16), Hi ¼ Htip and A ¼ B ¼ ft,

respectively, from Eqs. (3) and (14), to show that

~Rftft ¼ pq0ð�c � iÞ: (21)

In particular, for the wide band limit D ! 1, �c ! 0.

Thus, the imaginary parts of Eqs. (18)–(21) become

Imð ~Rf0f0Þ ¼ �pq0½1þ C
X

jl

Imð ~Rdjdl
Þ�; (22)

Imð ~Rdjf0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
pCq0

p X
l

Reð ~Rdjdl
Þ (23)

and

Imð ~RftftÞ ¼ �pq0: (24)

Now, we take Eqs. (22)–(24) into Eq. (11) to obtain

TprobeðeÞ ¼
T probeðeÞ
T b

¼ 1þ C
X

jl

½ð1� q2
0ÞImð ~Rdjdl

Þ

þ2q0Reð ~Rdjdl
Þ� (25)

as the total transmittance through the system, expressed in

terms of the background conductance

T b ¼ 4x ¼ 4ðpwq0Þ2; (26)

and the Green’s functions ~Rdjdl
of the adatoms.

2. The STM tip in the same footing as the
“host1adatoms” system

Here, we derive the Landauer-B€uttiker formula for the

zero-bias conductance Gð0Þ by considering the STM tip in

the same footing as the “hostþadatoms” system, which is

achievable with ~V ¼ V in Eq. (9).

The zero-bias conductance is a function of the transmit-

tance T full eð Þ as follows:

Gð0Þ ¼ @

@u
J hostðu ¼ 0Þ ¼ e2

h

ð
de � @fF

@e

� �
T fullðeÞ; (27)

with J host as the current for the host and lhost � ltip ¼ eu,

with u as the applied bias-voltage. We begin with the

transformation

ck

bk

� �
¼

1ffiffiffi
2
p 1ffiffiffi

2
p

� 1ffiffiffi
2
p 1ffiffiffi

2
p

0
BBB@

1
CCCA cok

cek

� �
; (28)

on the Hamiltonian of Eq. (1), which depends on the even
and odd conduction operators cek and cok, respectively.

These definitions allow us to express Eq. (1) as

H ¼ He þHo þ ~Htun ¼ Hu¼0 þ ~Htun; (29)

where

He ¼
X

k

ekc†
ekcek þ

X
j

ejd
†
j dj

þ
X

jk

ffiffiffi
2
p

Vðc†
ekdj þ H:c:Þ þ w

X
kq

c†
ekceq

þ i�Mg1g2 þ kðd1 � d†
1Þg1 (30)

represents the Hamiltonian part of the system coupled to the

adatoms via an effective hybridization
ffiffiffi
2
p

V, while

Ho ¼
X

k

ekc†
okcok � w

X
kq

c†
okcoq (31)

is the decoupled one. However, they are connected to each

other by the tunneling Hamiltonian

~Htun ¼ �Dl
X

k

ðc†
ekcok þ c†

okcekÞ; (32)

with lhost ¼ Dl; ltip ¼ �Dl and Dl ¼ eu=2. As in the

zero-bias regime Dl! 0, due to u! 0; ~Htun is a perturba-

tive term.

Here, we use the interaction picture to calculate T fullðeÞ.
It ensures that a state jUni from the spectrum of the

Hamiltonian given by Eq. (29) admits the following time-

dependency:

jUni ¼ e
� i

�h

Ð 0

�1
~H tunðsÞdsjWni

’ 1� i

�h

ð0

�1
~HtunðsÞds

 !
jWni; (33)

where �h ¼ h
2p and jWni is an eigenstate of He þHo ¼ Hu¼0.

Thus, the current J host for the host can be obtained by

063706-4 Seridonio et al. J. Appl. Phys. 115, 063706 (2014)
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performing the expected mean value of the current operator

Ihost � I host t ¼ 0ð Þ, which reads

J host ¼ hUnjIhostjUni

¼ � i

�h
Wn

ð0

�1
½I host; ~HtunðsÞ�ds

����
����Wn

� �
þOð ~H2

tunÞ;

(34)

where we have regarded hWnjI hostjWni ¼ 0 and by consider-

ing the thermal average on the latter equation, which gives

J host ¼ �
i

�h

ð0

�1
Tr .u¼0½I host; ~HtunðsÞ�
n o

ds; (35)

where .u¼0 is the density matrix of the system described by

the Hamiltonian Hu¼0 in Eq. (29). By applying the equation-

of-motion on I host, we show that

Ihost ¼ �
i

�h
½e
X

k

c†
kck;Hu¼0�

¼ � ieffiffiffi
2
p

�h

� �
V
X

kj

ðc†
ekdj � d†

j cekÞþðc†
okdj � d†

j cokÞ
n o

þ � ie

�h

� �
w
X
q~q

ðc†
oqce~q � c†

e~qcoqÞ; (36)

which, in combination with Eq. (35), leads to

J host ¼ �
e

�h
Dl Im

ðþ1
�1

ds
ffiffiffi
2
p

V
X

j

F jð�sÞþ2wMð�sÞ
� 	

;

(37)

where

F jð�sÞ ¼ � i

�h
hð�sÞTr .u¼0½f †

o dj;
X

q

c†
eqðsÞcoqðsÞ�

� 	
(38)

and

Mð�sÞ ¼ � i

�h
hð�sÞTr .u¼0½f †

o fe;
X

k

c†
ekðsÞcokðsÞ�

� 	
(39)

are retarded Green’s functions, expressed in terms of the

operators

fo ¼
X

~q

co~q (40)

and

fe ¼
X

q

ceq: (41)

In order to find a closed expression for the current J host,

we should evaluate the integrals in the time coordinate s of

Eq. (37), which result in

ðþ1
�1

dsF jð�sÞ ¼ Z�1
X
mn

ðe�bEn � e�bEmÞ
En � Em þ ig

� hWnjf †
o djjWmihWmj

X
q

c†
eqcoqjWni

(42)

andðþ1
�1

dsMð�sÞ ¼ Z�1
X
mn

ðe�bEn � e�bEmÞ
En � Em þ ig

� hWnjf †
o fejWmi

D
Wm

���X
q

c†
eqcoq

���Wn

E
;

(43)

where we have used Z as the partition function of

Hu¼0jWmi ¼ EmjWmi, A sð Þ ¼ e
i
�hHu¼0sAe�

i
�hHu¼0s for an arbi-

trary time-dependent operator A sð Þ and g ! 0þ. To elimi-

nate the matrix element hWmjc†
eqcoqjWni in Eqs. (42) and

(43), we calculate hWmj½
P

q c†
eqcoq;Hu¼0�jWni, which gives

D
Wm

���X
q

c†
eqcoq

���Wn

E
¼ �

ffiffiffi
2
p

V

ðEn � EmÞ

�
X

~j

hWmjd†
~j
fojWni

� 2w

ðEn � EmÞ
hWmjf †

e fojWni: (44)

By performing the substitutions of Eqs. (42), (43) with

(44) in Eq. (37), we enclose the result into the function la-

beled by vmn to show that

J host ¼
e

�h
pDlZ�1

X
mn

vmn

ðe�bEn � e�bEmÞ
En � Em

dðEn � EmÞ

¼ � e

�h
pDlb

X
mn

½Z�1e�bEndðEn � EmÞ�vnm; (45)

where we have defined

vnm ¼ ð
ffiffiffi
2
p

VÞ2
X

j~j

hWnjf †
o djjWmihWmjd†

~j
fojWni

þ 2
ffiffiffi
2
p

Vð2wÞ
X

j

hWnjf †
o djjWmihWmjf †

e fojWni

þð2wÞ2hWnjf †
o fejWmihWmjf †

e fojWni: (46)

In this calculation, we have used

hWnjf †
o djjWmihWmjf †

e fojWni
¼ hWnjf †

o fejWmihWmjd†
j fojWni;

with

ðe�bEn � e�bEmÞ
En � Em

¼ �be�bEn (47)

in the limit En! Em. The property He;Ho½ � ¼ 0 ensures the

partitions En ¼ Ee
n þ Eo

n and Z ¼ ZeZo for the Hamiltonians
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He and Ho, respectively in the brackets of Eq. (45), thus

leading to

Z�1e�bEndðEn � EmÞ ¼
1

b
Z�1

e Z�1
o

ð
de � @fF

@e

� �
� ðe�bEe

n þ e�bEe
mÞðe�bEo

n þ e�bEo
mÞ

� dðeþ Ee
n � Ee

mÞdðeþ Eo
n � Eo

mÞ:
(48)

Therefore, we substitute Eqs. (46) and (48) in Eq. (45)

to calculate @
@uJ hostðu ¼ 0Þ. The comparison of such a result

with Eq. (27) allows us to find

T full eð Þ ¼ ð2pwÞ2~qLDOSðeÞ~qtipðeÞ; (49)

where

~qLDOSðeÞ ¼ �
1

p
Imð ~Rwewe

Þ (50)

and

Rwewe
¼ � i

�h
h tð ÞTr .e½we tð Þ;w†

e 0ð Þ�þ
n o

; (51)

with the former as the renormalized LDOS of the

“hostþadatoms” system described by the Hamiltonian of Eq.

(30), which is affected by the STM tip via the scattering term

w
P

kq c†
ekceq, thus leading to

we ¼ fe þ ðpDq0Þ1=2c
X

j

dj (52)

and

~Rwewe
¼ ~Rfefe þ ðpq0DÞc2

X
jl

~Rdjdl

þ 2ðpq0DÞ1=2c
X

j

~Rdjfe

that generalize Eqs. (6) and (17), respectively, with a renor-

malized Anderson parameter

D ¼ 2pV2q0 (53)

and Fano factor

c ¼ pq0Dð Þ�1=2

ffiffiffi
2
p

V

2w

� �
: (54)

Additionally, the scattering term �w
P

kq c†
okcoq renorm-

alizes the DOS of the STM tip due to the Hamiltonian of Eq.

(31), which provides

~qtipðeÞ ¼ �
1

p
Imð ~RfofoÞ: (55)

From Eqs. (30) and (41), we make the substitutions

A ¼ B ¼ fe and Hi ¼ He in Eq. (16), which gives

~Rfefe ¼
pq0ð�c � iÞ

1�
ffiffiffi
x
p
ð�c � iÞ þ pq0D

ð�c � iÞ
1�

ffiffiffi
x
p
ð�c � iÞ


 �2

�
X

jl

~Rdjdl
eð Þ; (56)

where we have used the mixed Green’s function

~Rdjfe ¼
ffiffiffiffiffiffiffiffiffiffiffi
pDq0

p ð�c � iÞ
1�

ffiffiffi
x
p
ð�c � iÞ

X
l

~Rdjdl
; (57)

determined from Eq. (16) by considering A ¼ dj; B ¼ fe and

Hi ¼ He, with the parameter x being the same as found in

Eq. (26). We point out that, Eqs. (56) and (57) constitute

respectively, generalizations of Eqs. (18) and (19), where the

latter can be obtained from the former by making x 	 1.

Thus, the imaginary parts of Eqs. (56) and (57) for the wide

band limit D!1, become

Imð ~RfefeÞ ¼ �
pq0

1þ x
� ð1� xÞ
ð1þ xÞ2

pDq0

X
jl

Imð ~Rdjdl
Þ

þ 2
ffiffiffi
x
p

1þ xð Þ2
pDq0

X
jl

Reð ~Rdjdl
Þ (58)

and

Imð ~RdjfeÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
xpDq0

p
1þ x

X
l

Imð ~Rdjdl
Þ

�
ffiffiffiffiffiffiffiffiffiffiffi
pDq0

p
1þ x

X
l

Reð ~Rdjdl
Þ; (59)

where we have used �c ! 0. To conclude, we notice that
~Rfofo is decoupled from the adatoms. Thereby, from Eqs.

(31) and (40), we take A ¼ B ¼ fo and Hi ¼ Ho in Eq. (16)

and we obtain

Imð ~RfofoÞ ¼ �
pq0

1þ x
; (60)

which is equal to the first term of Eq. (58).

Thus the substitution of Eqs. (58)–(60) in Eq. (49), leads

to

TfullðeÞ ¼
T fullðeÞ

�T b

¼ 1þ �C
X

jl

½ð1� q2
bÞImð ~RdjdlÞ

þ2qbReð ~Rdjdl
Þ�; (61)

where

�T b ¼
4x

1þ xð Þ2
(62)

represents the transmittance in the absence of the adatoms

and MBSs (background contribution),

�C ¼ D
1þ x

(63)
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is an effective coupling and

qb ¼
1� xð Þ
2
ffiffiffi
x
p (64)

is the Fano parameter. Notice that Eq. (61) has the same

form of Eq. (25), but with q0 replaced by qb. In this work, we

will focus on the limit q0¼ qb¼ 0.

C. Green’s functions of the adatoms

In this section, we calculate the Green’s functions ~Rdjdl

within the wide band limit D ! 1. We point out that, the

expressions derived here describe the situation of Sec. II B 1

for an STM tip as probe with C instead of D [see Eqs. (8)

and (53)] and by assuming x	 1 [Eq. (26)], otherwise, they

belong to the case of Sec. II B 2. We begin by applying the

equation-of-motion procedure on

Rdjdl
¼ � i

�h
h tð ÞTr .s½dj tð Þ; d†

l 0ð Þ�þ
n o

; (65)

where s¼ hostþ ads or s¼ e, and changing to the energy do-

main e, we obtain the following relation:

ðe� ~ej � iRI � dj1RMBS1Þ ~Rdjdl
¼ djl þ R

X
~l 6¼j

~Rd~ldl; (66)

with

~ej ¼ ej þ RR (67)

is the adatom level renormalized by the STM tip-host cou-

pling w, with R¼RRþ iRI,

RR ¼ �
ffiffiffi
x
p

1þ x
D; (68)

RI ¼ � D
1þ x

(69)

and

RMBS1 ¼ k2Kð1þ k2 ~KÞ (70)

as the self-energy due to the MBS 1 coupled to the adatom 1,

K ¼ 1

2

1

e� �M þ ig
þ 1

eþ �M þ ig

� �
(71)

and

~K ¼ K

eþ ~e1 � iRI � k2K
; (72)

which have the same forms as found in Ref. 22. Thus, the so-

lution of Eq. (66) provides

~Rd1d1
¼ 1

e� ~e1 � iRI � RMBS1 � C2

(73)

as the Green’s function of the adatom 1, with

Cj ¼
ðRR þ iRIÞ2

e� ~ej � iRI
; (74)

as the self-energy due to the presence of the jth adatom. For

C2 ¼ 0, we highlight that Eq. (73) is reduced to the Green’s

function of the single QD system found in Ref. 22. In the

case of the adatom 2, we have

~Rd2d2
¼

1� ~R0

d1d1
RMBS1

e� ~e2 � iRI �
~R0

d1d1

~R0

d2d2

RMBS1 � C1

; (75)

where ~R0

d1d1
¼1=ðe�~e1� iRIÞ and ~R0

d2d2
¼1=ðe�~e2� iRIÞ

represent the corresponding Green’s functions for the single

adatom system without Majoranas. To conclude, the mixed

Green’s functions are

~Rd2d1
¼ RR þ iRI

e� ~e2 � iRI
~Rd1d1

(76)

and

~Rd1d2
¼ RR þ iRI

e� ~e1 � iRI � RMBS1

~Rd2d2
: (77)

The main result of this section is the emergence of a

lack of symmetry in these Green’s functions. This property

lies on the coupling of the adatom 1 with the MBS 1. To

notice that, let us examine the situation where the adatom 1

is decoupled from the MBS 1, which can be obtained with

RMBS1¼ 0 in Eq. (70). By inspection of Eqs. (73) and

(75)–(77), we verify that the functions ~Rd1d1
and ~Rd1d2

can

be determined by the swap of the indexes 1 $ 2 in ~Rd2d2

and ~Rd2d1
, respectively. However, in the opposite situation

with RMBS1 6¼ 0, this symmetry is broken. Thus, in Sec. III,

we will investigate this lack of symmetry via the transmittan-

ces of Eqs. (25) and (61). To this end, we will follow the

two-stage procedure presented in Sec. I.

III. RESULTS

Here, we consider the Kitaev chain long enough, which

forces �M � e�L=n ! 0 in Eq. (2) for L�n. We adopt typical

values for adatoms in metals [Ref. 32]: D¼C¼ 0.2 for the

Anderson parameters of Eqs. (8) and (53), k, e1 ¼ � De
2
;

e2 ¼ De
2

, the symmetric detuning De ¼ e2 � e1 and e in units

of eV.

In order to investigate the transmittance Tfull (e) of Eq.

(61) as a function of the single particle energy e, in Fig. 2 we

use k¼ 5D, with x¼ 1 and Fano factor qb¼ 0 [Eq. (64)].

This set of parameters allows one to emulate the situation

where the STM tip is strongly connected to the host surface

and therefore, considered in the same footing as the “host þ
adatoms” system.

In Fig. 2(a) for the case of a free system, i.e., without

MBSs [solid-green curve], we observe two antiresonances,

each one placed around the corresponding adatom level

given by e1¼�2.5 and e2¼þ2.5, respectively. We name
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these antiresonances as satellite dips. Off the antiresonances,

the transmittance approaches the unitary limit and the con-

ductance reaches G ¼ G0 ¼ e2=h. Notice, for instance, the

central region bounded by the range �1:75 � eu � 1:5
[shaded region], where we have a ballistic plateau with the

aforementioned conductance. In this free system, the

Green’s functions of the model are symmetric under the per-

mutation of the indexes that designate the parameters of the

adatoms. This property is confirmed by the corresponding

solid-green curve of Fig. 2(b), obtained with e1¼þ2.5 and

e2¼�2.5, which agrees with that for e1¼�2.5 and

e2¼þ2.5 in Fig. 2(a). Therefore, the two-stage procedure

proposed in this work, in particular for the case of a free dou-

ble adatom system, yields two identical curves for the trans-

mittance. However, for the device side-coupled to the MBS

1, a novel feature emerges in the central region.

By fixing e1¼�2.5 and e2¼þ2.5, a dip of amplitude

nearby 1/2 arises in the middle of the ballistic plateau, due to

the MBS 1 attached to the adatom 1 [see the dashed-blue

curve in Fig. 2(a)]. For this situation, the dip around

e2¼þ2.5 coincides with the corresponding one found in the

solid-green curve of the free setup, which is due to the adatom

2 decoupled from the MBS 1. Moreover, the antiresonance in

the vicinity of e1¼�2.5 is not coincident with that in Fig.

2(a) of the solid-green curve for the free system. As we can

see, the position of such an antiresonance is shifted as the

aftermath of the coupling between the MBS 1 and the adatom

1. After the swap procedure, which leads to e1¼þ2.5 and

e2¼�2.5, the satellite dips of Fig. 2(b) [see the dashed-red

lineshape] become reversed with respect to those found in

Fig. 2(a).

We emphasize that the central antiresonance remains

placed at zero-bias, but its amplitude fluctuates slightly

around 1/2. This behavior of the central dip appears in Fig.

3(a), which can be clearly visualized in the dashed-blue and

red lineshapes, respectively. Therefore, a pinned antireso-

nance protected against the two-stage procedure emerges in

the transmittance, which is placed at the zero-bias and char-

acterized by an amplitude nearby 1/2. In contrast, the satel-

lite dips do not share such a pinning, since they move

significantly under the permutation of the levels in the ada-

toms. However, the complete robustness of the Majorana

hallmark does not exist anymore as found in Refs. 22 and

23: the amplitude is not fixed at 1/2 as a straight result of the

interplay between the adatom decoupled from the Kitaev

FIG. 2. Parameters employed: �M¼ 0 [long enough Kitaev chain], k¼ 5D
and D¼ 0.2 [see Eqs. (2) and (53)]. Transmittance Tfull (e) determined by

Eq. (61) in the Fano regime qb¼ 0 [Eq. (64)] as a function of the single par-

ticle energy e. In the panels (a) and (b) we have: the solid-green lineshape is

for the apparatus of Fig. 1 in the absence of the MBS 1. Implementation of

the two-stage procedure of Sec. I: (a) e1¼�2.5 and e2¼þ2.5: The

dashed-blue curve corresponds to the system coupled to the MBS 1. (b)

e1¼þ2.5 and e2¼�2.5: The dashed-red lineshape is for the MBS 1. Here

we see the main result of this procedure: the formation of a Majorana dip

with an amplitude that fluctuates slightly around 1/2, but it remains pinned

at zero-bias even by performing the gates swap. The satellite dips do not

share such a feature, they become significantly shifted under the permutation

of the levels in the adatoms.

FIG. 3. Parameters employed: �M¼ 0 [long enough Kitaev chain], k¼ 5D
and D¼C¼ 0.2 [see Eqs. (2), (8), and (53)]. Transmittance as a function of

the single particle energy e. Implementation of the two-stage procedure of

Sec. I: (a) via the transmittance Tfull (e) of Eq. (61) in the Fano regime qb¼ 0

[Eq. (64)], where we see the formation of a Majorana dip with an amplitude

that fluctuates slightly around 1/2 (Majorana hallmark), but it remains

pinned at zero-bias even by performing the gates swap. In panel (b), the

transmittance Tprobe (e) of Eq. (25) for q0¼ 0 does not exhibit such a fluctua-

tion. The Majorana hallmark remains unchanged for the STM tip considered

as a probe.
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chain and the Fano regime as well, obtained with x¼ 1 in

Eq. (64). In this situation, the real and imaginary parts of the

self-energy R, which read RR and RI, respectively, given by

Eqs. (68) and (69), depend on x. Otherwise, it would corre-

spond to the case of the tip considered as a probe of the

LDOS for the “hostþadatoms” system, which suppresses the

fluctuation of the Majorana hallmark. This feature can be

observed by using the transmittance Tprobe (e) of Eq. (25)

with q0¼ 0, which is confirmed by the dashed-blue and red

lineshapes of Fig. 3(b). In fact, it can be observed an antire-

sonance pinned at zero-bias characterized by a constant am-

plitude of 1/2. In this case, RR and RI do not depend on x,

since x 	 1 for a probe tip [see Eq. (26)]. As a result, the

Majorana hallmark is preserved under the gates swap.

Thus in order to explore the effects due to the fluctuation

of the zero-bias transmittance, we present the analysis of

Tfull (0) and Tprobe (0) as a function of the symmetric detun-

ing De. In both cases, the Fano parameters are qb¼ 0 and

q0¼ 0, which according to Fano’s theory, lead to a destruc-

tive interference pattern. Such a behavior can be seen in the

transmittance versus e plots of Figs. 3(a) and 3(b).

Additionally, we point out that the Majorana dip verified in

the former differs slightly with respect to that found in the

latter. Remarkably, the slight fluctuation of the Majorana

hallmark in Fig. 3(a) is able to provide an unexpected profile

of Tfull (0) versus De, which differs expressively of a Fano

dip. The result of this analysis appears in the solid-violet

curve of Fig. 4(a), where it is observed that the transmittance

approaches 1/2 from upper (lower) values for De< 0

(De> 0). In the domain of De< 0, it reaches the maximum

value of 3/4, while for De> 0, it decreases to 1/4. Notice that

the variation of the transmittance with De does not exceed an

amplitude of 1/2 and particularly at De¼ 0, the transmittance

recovers the Majorana hallmark 1/2. On the other hand, in

Fig. 4(b), the transmittance Tprobe (0) as a function of De in

the solid-orange curve, displays the standard profile of Fano

antiresonance for q0¼ 0. Notice that in both Figs. 4(a) and

4(b), the variation of the transmittance with De is 1/2. We

highlight that the unexpected Fano profile found in this work

becomes a way to identify the existence of isolated MBSs,

since the lineshape in Fig. 4(a) is due to a long enough

Kitaev chain within the topological phase.

In summary, despite the same Fano parameters q0¼ 0

and qb¼ 0 in Tprobe (0) and Tfull (0), respectively, for Eqs.

(25) and (61), which lead to Fano dips slightly different as

those found in Figs. 3(a) and 3(b), we demonstrate in this

FIG. 4. Parameters employed: �M¼ 0 [long enough Kitaev chain], k¼ 5D
and D¼C¼ 0.2 [see Eqs. (2), (8), and (53)]. Panel (a): Transmittance Tfull

(0) of Eq. (61) in the Fano regime qb¼ 0 [Eq. (64)] as a function of the sym-

metric detuning De¼ e2 – e1. For the STM tip in the same footing as the

“hostþadatoms” system, we see a novel feature in the transmittance profile:

an unexpected Fano lineshape emerges and the Fano dip is not verified.

Pained (b): in the case of the STM tip as a probe, the transmittance Tprobe (0)

of Eq. (25) with q0¼ 0 leads to the standard Fano antiresonance. We remark

that despite the small difference in the Majorana dip of Fig. 3(a) with respect

to that found in Fig. 3(b), the zero-bias transmittance as a function of the

detuning De, yields two distinct lineshapes. However, in both situations, the

transmittance does not exceed an amplitude of 1/2.

FIG. 5. Parameters employed: �M¼ 0 [long enough Kitaev chain], D¼ 0.2

[see Eqs. (2) and (53)]. Density plots of the transmittance Tfull (e) determined

by Eq. (61) in the Fano regime qb¼ 0 [Eq. (64)] as a function of the single

particle energy e and the coupling k in units of D. Implementation of the

two-stage procedure of Sec. I: (a) De ¼þ5 (b) De¼�5. Here we see the

main result of this procedure: the formation of a Majorana dip (in black)

pinned at zero-bias even by performing the gates swap. The satellite dips

(also in black) do not share such a feature being significantly shifted under

the permutation of the levels in the adatoms.
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work that the usual hypothesis of the STM tip acting as a

probe is insensitive for the complete knowing of the

zero-bias transmittance versus the symmetric detuning De.
To overcome such an obstacle, the proper description should

consider the STM tip in the same footing as the

“hostþ adatoms” system. It is worth mentioning that we do

not present the results for the case qb � 1, since it still

obeys the standard Fano’s theory, which gives a resonance

profile in the Tfull (0) versus De plot as expected. In Fig. 5

the density plots for Tfull (e) of Eq. (61) with qb¼ 0 as a

function of e and the coupling k are shown. In these graphs,

dips appear (black color regions) being possible to observe

that the MBS 1 dip at zero-bias is the only structure that

does not change with the implementation of the two-stage

procedure as well as with the increase of k. On the other

hand, the positions of the satellite dips are displaced by

changing k and no pinning is observed. This feature can be

visualized in the dips that deviate from the yellow-dashed

lines in Figs. 5(a) and 5(b), respectively, for De¼þ5 and

De¼�5.

IV. CONCLUSIONS

We have explored theoretically in the context of quan-

tum transport an effective Hamiltonian supporting Majorana

quasiparticles for a long enough Kitaev chain in the topologi-

cal phase. This system is coupled to a setup made by an

STM tip and a metallic host with two adatoms. Our analysis

has revealed that the Green’s functions of the adatoms

become symmetric by neglecting the hopping term between

one adatom and a side-coupled MBS. However, if we con-

sider this parameter relevant, a lack of symmetry manifests

in these functions.

To read out this feature experimentally, it has been pro-

posed a two-stage procedure of gates swap by using AFM

tips. As a result, a persistent zero-bias dip with an ampli-

tude nearby 1/2 emerges in the transmittance arising from

the isolated MBS under the aforementioned procedure. We

have also verified that the fluctuation of the Majorana hall-

mark occurs only for the STM tip treated in the same foot-

ing as the “hostþadatoms” system. In the case of an STM

tip as a probe, the robustness of the Majorana hallmark is

kept. However, this small difference between these two

Majorana dips results in contrasting Fano profiles for the

zero-bias transmittance versus the symmetric detuning. In

the case of the STM tip acting as probe, Fano’s theory is

confirmed, but with the tip in the same footing as the

“hostþadatoms” system, an unexpected Fano lineshape

appears. We conclude that to access this non trivial Fano

profile, the assumption of an STM tip acting as a probe

should not be used.
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