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The time-dependent Ginzburg-Landau formalism for (d + s)-wave superconduc-
tors and their representation using auxiliary fields is investigated. By using the link
variable method, we then develop suitable discretization of these equations. Numer-
ical simulations are carried out for a mesoscopic superconductor in a homogeneous
perpendicular magnetic field which revealed peculiar vortex states. C© 2014 AIP Pub-
lishing LLC. [http://dx.doi.org/10.1063/1.4870874]

I. GINZBURG-LANDAU MODEL FOR d-WAVE SUPERCONDUCTORS

It is well known that the physical properties of conventional superconducting materials can be
conveniently described by the time dependent Ginzburg-Landau (TDGL) equations, strictly valid
only at temperatures close to Tc, but in practice giving very good phenomenological description
even at much lower temperature.1 The unknown functions of these equations are the scalar com-
plex order parameter ψ , and the vector potential A. The absolute order parameter squared |ψ |2
then represents the Cooper-pair density, and the magnetic induction B is found via the equation
B = ∇ × A. However, conventional superconductors possess s-wave pairing symmetry. For the high
critical temperature superconductors, the scalar order parameter is replaced by a multicomponent
one with d-wave pairing symmetry. In fact, unconventional superconducting materials often exhibit
a mixed (d + s)-wave symmetry with two order parameters (ψd, ψ s). In such a case, the TDGL
equations are written as
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where L is the Helmholtz free-energy density functional which is expressed in terms of two
components of the order parameter and the vector potential as

L = −αs |ψs |2 − αd |ψd |2 + β1

2
|ψs |4 + β2

2
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2
|ψs |2|ψd |2
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Here, the overbar denotes the complex conjugation, and the covariant derivative operator is
� = (−i�∇ − e∗

c A). ϕ is the scalar electric potential; m∗
i (for i = d, s, v) are the effective masses;

m∗
d and m∗

d are the effective masses in the d and s band, respectively; m∗
v represents the coupling

between the gradient terms, in different bands, in the free-energy density; e* is the effective charge of
the Cooper-pair; D is the phenomenological diffusion coefficient; and σ is the electrical conductivity;
β i (i = 1, 2, 3, 4) are positive phenomenological constants and do not depend on temperature; αd and
αs are also two phenomenological constants. The values of these phenomenological constants have
been found from microscopic considerations in Ref. 2 (see also Ref. 3), but we prefer to develop a
method of solution of the TDGL equations in a more general scenario. In the latter references, it was
shown that αd = αd0(T/Tc − 1), where αd0 is a negative constant and Tc is the critical temperature;
αs is a temperature independent constant, and is negative.4

The TDGL equation for a single order parameter was first proposed by Schmid5 and derived
from the microscopic BCS theory by Gor’kov and Eliashberg.6 The extension of this equation for
multicomponent order parameter system with mixed (d + s)-wave symmetry was proposed by Du.7

The free-energy of this system has been proposed by several authors (see, for instance, Refs. 8 and
9) and derived microscopically in Ref. 2.

In order to solve Eqs. (1)–(3), we will follow the same approach used in the pioneering works
of Refs. 10 and 11. A more comprehensible solution of these equations have been presented in
Ref. 12 for the two-dimensional case and in Ref. 13 for the case of charged boundaries. The
generalization of the method of Ref. 10 for circular geometries has been developed in Ref. 14. By
substituting the functional (4) in Eqs. (1)–(3), we can rewrite the TDGL equations as follows:
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where the superconducting current density is defined by
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ŷ; (8)

where Re indicates the real part of a complex function.
A very simple inspection of Eqs. (5)–(8) shows us that they are invariant under the gauge

transformation ψ ′
d = ψdeiχ , ψ ′

s = ψseiχ , A′ = A + �c
e∗ ∇χ , ϕ′ = ϕ − �

e∗
∂χ

∂t . We will consider the
particular gauge ϕ′ = 0 at all times. It is not difficult to recover the numerical approximations of
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the TDGL equations for the most general gauge ϕ′ �= 0. Then, if we neglect the primes, the new
equations can be simplified to
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4πσ
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= 4π

c
Js − ∇ × B. (11)

For simplicity, we will develop an algorithm to solve the TDGL equations on a two-dimensional
rectangular domain. The generalization to the three-dimensional case is straightforward. Thus, we
take all functions invariant along the z axis. Within this scenario, ψd = ψd(x, y), ψ s = ψ s(x, y), B
= Bz(x, y)k, and A = Ax(x, y)i + Ay(x, y)j.

Let us denote by �sc the superconducting region. The outer medium can be either a metal or
vacuum. Let ∂�sc be the interface separating the superconducting from the outer medium. Solving
Eqs. (9)–(11) requires known boundary conditions at the interface ∂�sc. Let us denote by n the unit
vector outward normal to the interface. At ∂�sc we impose that

Js · n = 0, (12)

which is valid for a superconductor-vacuum interface. Had we used a superconductor-metal interface
would be rather different.15

This condition gives the values of the order parameter components at the surface ∂�sc. We need
an additional boundary condition for the induction. Let us denote by H the applied magnetic field.
Then, at the interface ∂�sc,

Bz = H, (13)

or equivalently,

(∇ × A)z = H. (14)

Therefore, solving Eqs. (9)–(11) subjected to the boundary conditions (12)–(14) is a well posed
problem.

II. DIMENSIONLESS FORM OF THE TDGL EQUATIONS

For numerical purposes, it is more convenient to write the TDGL equations (9)–(11) in di-
mensionless units. Let us first consider the situation in which the system is not perturbed, that is,
there is no applied magnetic field nor an applied current, i.e., both ϕ and A are zeroed. In that case,
both components of the order parameter are constant everywhere and have no time dependence.
Consequently, they are the solution of the equations δL

δψ̄d
= δL

δψ̄s
= 0, which produce

αdψd − 2β2|ψd |2ψd − β3|ψs |2ψd − 2β4ψ
2
s ψ̄d = 0, (15)

αsψs − 2β1|ψs |2ψs − β3|ψd |2ψs − 2β4ψ
2
d ψ̄s = 0. (16)

We can have three possible solutions; (a) ψd �= 0 and ψ s = 0; (b) ψd = 0 and ψ s �= 0; (c) ψd

�= 0 and ψ s �= 0. We will be most concerned with the first case in which the superconductor is nearly
in the pure d-wave state deep inside the bulk. By considering the order parameter real, we obtain
ψ2

d = ψ2
d0 = αd

2β2
and ψ s = 0. This solution for the order parameters is the so-called pure Meissner

state.
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041501-4 Gonçalves et al. J. Math. Phys. 55, 041501 (2014)

If we multiply both sides of Eqs. (9) and (10) by ψd0, and substitute ψd = ψ̃dψd0, ψs = ψ̃sψd0,
lead directly to the dimensionless quantities

• τ1 = β1

β2
, τ3 = β3

β2
, τ4 = β4

β2
,

• ηv = m∗
d

m∗
v
, ηs = m∗

d
m∗

s
, ν = αs

αd
,

• β = 4πσκ2
d D

c2 ,

and the following change of variables:

• ∇ = 1
ξd

∇̃, t = ξ 2
d

D t̃ ,

• A = Hc2ξdÃ, B = Hc2B̃,

where

• ξ 2
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2

2m∗
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, λ2
d = m∗

d c2β2

2π(e∗)2αd
, κd = λd

ξd
,

• �0 = hc
2e , Hc2 = �0

2πξ 2
d
.

As a result, we obtain the following dimensionless form of the TDGL equations:
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2
ψ̃d − ηv(
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x )ψ̃s
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2
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= −ηs�̃

2
ψ̃s − ηv(
̃2
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̃2
x )ψ̃d

+νψ̃s − τ1|ψ̃s |2ψ̃s − τ3

2
|ψ̃d |2ψ̃s − τ4ψ̃

2
d

¯̃ψs, (18)

β
∂Ã
∂ t̃

= J̃s − κ2
d ∇̃ × B̃, (19)

J̃s = Re
(

¯̃ψd�̃ψ̃d

)
+ ηsRe

(
¯̃ψs�̃ψ̃s

)

−ηv

[
Re

(
¯̃ψd
̃x ψ̃s + ¯̃ψs
̃x ψ̃d

)]
x̂

+ηv

[
Re

(
¯̃ψd
̃yψ̃s + ¯̃ψs
̃yψ̃d

)]
ŷ, (20)

where now �̃ = −i∇̃ − Ã.
Here, ξ d is the coherence length and λd is the London penetration length, the characteristic

lengthscales for the spatial evolution of |ψd| and B, respectively; κd is then the Ginzburg-Landau
parameter which is material dependent; Hc2 is the upper critical field at which bulk superconductivity
is destroyed.

From this point on, we will omit the tildes in all variables, for simplicity of the presented
formulae.

III. THE AUXILIARY ORDER PARAMETERS

In order to solve the TDGL equations (17)–(19), it is convenient to rewrite them using auxiliary
order parameters. Let us define

� = ψd − ηvψs, (21)

λ = ψd + ηvψs, (22)

γ = ηsψs − ηvψd , (23)

� = ηsψs + ηvψd . (24)
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Consequently, Eqs. (17)–(18) and (20) can be written as

∂ψd

∂t
= −
2

x� − 
2
yλ + ψd − |ψd |2ψd − τ3

2
|ψs |2ψd − τ4ψ

2
s ψ̄d , (25)

ηs
∂ψs

∂t
= −
2

xγ − 
2
y� + νψs − τ1|ψs |2ψs − τ3

2
|ψd |2ψs − τ4ψ

2
d ψ̄s, (26)

Jsx = Re
[
ψ̄d (
x�) + ψ̄s
xγ

]
, (27)

Jsy = Re
[
ψ̄d (
yλ) + ψ̄s
y�

]
. (28)

Equation (19) remains unchanged after introducing these new functions. This procedure hugely
simplifies the implementation of the boundary conditions (12) in the sense that now we have
conventional Neumann boundary conditions for the auxiliary order parameters. In fact, by supposing
that both components of the order parameters are non-vanishing at the edge, in order to satisfy (12)
we must have


x� = 0, 
xγ = 0, at the west and east boundaries, (29)


yλ = 0, 
y� = 0, at the south and north boundaries. (30)

Written in terms of the covariant derivative operator, it is not obvious that Eqs. (29)–(30) are
Neumann boundary conditions. However, it will be shown in Sec. IV that this is indeed the case
when we introduce the auxiliary field into the TDGL equations.

From (20) one notices that homogeneous Neumann boundary conditions for the d and s compo-
nents of the order parameter, 
xψd = 
xψ s = 0 at the west and east boundaries and 
yψ s = 
yψd

= 0, will result in vanishing of the current density perpendicular to the surface ∂�sc. However, this
is a sufficient condition, but not a necessary one to make J · n = 0 at ∂�sc. This is one of the aspects
that differentiate the present method of solving the TDGL equations with respect to previous works
(see, for instance, Refs. 9, 22, and 23). In other words, we require the weaker boundary conditions
(29) and (30) to vanish the perpendicular current density at the boundaries. Maybe, for (d + s)-wave
superconductors these two different sets of boundary conditions will not have much impact on the
physics of the problem. However, for p-wave superconductors, which are very non-conventional,
where we have mixed covariant derivative terms in the TDGL equations, the use of the auxiliary
order parameters makes a great difference.24

The properties of the TDGL equations for a d-wave superconductor have been studied earlier
in Ref. 7. There, a detailed mathematical analysis of these equations was made, and some approx-
imations in the κd → ∞ limit were devised. However, a clear algorithm to solve these equations,
which can be easily implemented numerically, was not proposed. In addition, to our best knowledge,
the introduction of the auxiliary order parameter presented above is novel as well and has signifi-
cant advantages in solving the TDGL equations (in addition to those mentioned for the boundary
conditions) which will be discussed through Secs. IV–VIII.

IV. AUXILIARY FIELDS

As a next step, we will introduce the auxiliary field vector U = (Ux ,Uy) which is given by

Ux (x, y, t) = exp

(
−i

∫ x

x0

Ax (ξ, y, t) dξ

)
,

Uy(x, y, t) = exp

(
−i

∫ y

y0

Ay(x, η, t) dη

)
, (31)

where (x0, y0) is an arbitrary reference point. From now on, we will assume that the time dependence
is implicit in all functions.

This has become a very common procedure in the numerical treatment of the conventional
Ginzburg-Landau equations.16 The main idea behind this technique is to guarantee that the dis-
cretization of the TDGL equations preserves gauge invariance.10, 11 Otherwise, one may obtain
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undesirable non-physical solutions. Another advantage is that, by incorporating this field into the
conventional TDGL equation for the order parameter, we obtain an equation which resembles a
diffusion equation, the discretization of which has a very well defined stability criterion.

The auxiliary field has the following properties:


 j f = −i Ū j
∂(U j f )

∂x j
, (32)


2
j f = −Ū j

∂2(U j f )

∂x2
j

, (33)

with (x1, x2) = (x, y) and {j = 1, 2}. Upon taking (32) into (27) and (28), the current density
components become

Jsx = Im

[
Ūx ψ̄d

∂(Ux�)

∂x
+ Ūx ψ̄s

∂(Uxγ )

∂x

]
, (34)

Jsy = Im

[
Ūyψ̄d

∂(Uyλ)

∂y
+ Ūyψ̄s

∂(Uy�)

∂y

]
, (35)

where Im denotes the imaginary part of a complex function. It is now clear that the boundary
conditions (29) and (30) are of Neumann type,

∂(Ux�)

∂x
= 0,

∂(Uxγ )

∂x
= 0, at the west and east boundaries, (36)

∂(Uyλ)

∂y
= 0,

∂(Uy�)

∂y
= 0, at the south and north boundaries. (37)

Next, we substitute Eqs. (33) into (25) and (26) to obtain

∂ψd

∂t
= Ūx

∂2 (Ux�)

∂x2
+ Ūy

∂2
(
Uyλ

)
∂y2

+ψd − |ψd |2ψd − τ3

2
|ψs |2ψd − τ4ψ

2
s ψ̄d , (38)

ηs
∂ψs

∂t
= Ūx

∂2 (Uxγ )

∂x2
+ Ūy

∂2
(
Uy�

)
∂y2

+νψs − τ1|ψs |2ψs − τ3

2
|ψd |2ψs − τ4ψ

2
d ψ̄s . (39)

In Secs. V and VI, we will develop an algorithm to solve Eqs. (19), (38), and (39) numerically,
subjected to the boundary conditions (36) and (37), with the current density given by (34)–(35) and
(13)–(14).

V. COMPUTATIONAL GRID

The computational grid which will be used to find the best approximation for the TDGL
equations is illustrated in Figure 1. It is a domain comprehended by a rectangle of Nx × Ny unit
cells of size (�x, �y) in the x and y directions, respectively. Then, the vertex points in the mesh are
given by {xi = (i − 1)�x, yj = (j − 1)�y, i = 1, 2, . . . , Nx + 1, j = 1, 2, . . . , Ny + 1}. The
superconducting domain is given by

�sc =
{

r = (x, y) : x1 + �x

2
< x < xNx + �x

2
, y1 + �y

2
< y < yNy + �y

2

}
. (40)
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Δx

Δy

Nx

Ny

Legend

ψs,i,j, ψd,i,j

Bz,i,j

Ax,i,j, Jsx,i,j

Ay,i,j, Jsy,i,j

Ux,i,j

Uy,i,j

FIG. 1. The computational grid used for the discretization of the TDGL equations. The superconducting domain �sc is
limited by the dashed line ∂�sc; the true meaning of the dashed line is explained in the text. The points where each quantity
is calculated are indicated in the legend.

The superconducting region is surrounded by a conveniently attached thin superconducting
layer of width �x

2 in the horizontal direction and �y
2 in the vertical direction. Both regions are inside

the domain

� = {
r = (x, y) : x1 < x < xNx +1, y1 < y < yNy+1

}
. (41)

We denote by ∂�sc the interface between the superconductor and the added superconducting layer
(dashed line in Figure 1), and by ∂� the superconducting layer-vacuum interface. The boundary
conditions will be employed at the ∂�sc interface rather than ∂�. The actual superconducting-
vacuum interface is �sc. The edge ∂� is constituted only by ghost-points used only for illustration
purposes of the order parameter. As it will be seen later on, the values of the order parameter in the
domain �sc do not depend on the values of (ψd, ψ s) at the edges.

VI. DISCRETIZATION OF THE TDGL EQUATIONS

We are now in position to initialize the discretization of the TDGL equations. Before that, let us
consider the product of the auxiliary field Ux between two consecutive points (xi, yj) and (xi + 1, yj)

Ux,i, j ≡ Ūx (xi , y j )Ux (xi+1, y j )

= exp

(
−i

∫ xi+1

xi

Ax dx

)

= exp
(−i Ax,i, j�x

)
, (42)

where we have used the middle point rule for integration. Similarly, we have

Uy,i, j ≡ Ūy(xi , y j )Uy(xi , y j+1)

= exp
(−i Ay,i, j�y

)
, (43)

where Ax,i, j ≡ Ax (xi + �x
2 , y j ) and Ay,i, j ≡ Ay(xi , y j + �y

2 ). Thus, it is clear that the variables
Ux,i,j and Uy, i, j link the auxiliary field components at two adjacent points of the mesh through the
vector potential in the middle point.
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The next step is to use the central difference formula for the second derivative and Definition
(42). We have,

Ūx
∂2

∂x2
(Ux�)

∣∣∣∣
(xi ,y j )

= Ux,i, j�i+1, j − 2�i, j + Ūx,i−1, j�i−1, j

�x2
, (44)

where �(xi, yj) ≡ �i, j. Similar result can be obtained for the derivative with respect to the y
coordinate involving the functions Uy and λ. Therefore, the discrete version of Eqs. (38) and (39) is

∂ψd,i, j

∂t
= Di, j , (45)

ηs
∂ψs,i, j

∂t
= Si, j , (46)

where

Di, j = Ux,i, j�i+1, j − 2�i, j + Ūx,i−1, j�i−1, j

�x2

+Uy,i, jλi, j+1 − 2λi, j + Ūy,i, j−1λi, j−1

�y2

+ψd,i, j − |ψd,i, j |2ψd,i, j − τ3

2
|ψs,i, j |2ψd,i, j − τ4ψ

2
s,i, j ψ̄d,i, j , (47)

Si, j = Ux,i, jγi+1, j − 2γi, j + Ūx,i−1, jγi−1, j

�x2

+Uy,i, j�i, j+1 − 2�i, j + Ūy,i, j−1�i, j−1

�y2

+νψs,i, j − τ1|ψs,i, j |2ψs,i, j − τ3

2
|ψd,i, j |2ψs,i, j − τ4ψ

2
d,i, j ψ̄s,i, j , (48)

for all {i = 2, . . . , Nx, j = 2, . . . , Ny}. Here, λ(xi, yj) ≡ λi, j, γ (xi, yj) ≡ γ i, j, �(xi, yj) ≡ �i, j, ψd(xi,
yj) ≡ ψd,i,j, and ψ s(xi, yj) ≡ ψ s,i,j.

At this point, we can see another advantage of introducing the auxiliary order parameters. The
discrete Laplacian in (47) and (48) would have three times as much terms if we had discretized the
original equations (17) and (18). The same will occur with current density components. From the
computational point of view, this is very costly.

Let us now discretize the current density components (34) and (35). First, we use the central

difference formula to evaluate ∂(Ux �)
∂x

∣∣∣
(xi + �x

2 ,y j )
. Second, we approximate Ūx ψ̄d at (xi + �x

2 , yi ) by

its average value at the nearest vertex points in the mesh. Then, using Definition (42) of the link
variable, we are left with

Jsx,i, j ≡ Jsx (xi + �x

2
, y j )

= 1

2�x
Im

{[
Ūx,i, j ψ̄d,i+1, j + ψ̄d,i, j

] [
Ux,i, j�i+1, j − �i, j

]

+ [
Ūx,i, j ψ̄s,i+1, j + ψ̄s,i, j

] [
Ux,i, jγi+1, j − γi, j

]}
, (49)

for all {i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny + 1}. Similarly,

Jsy,i, j = Jsy(xi , y j + �y

2
)

= 1

2�y
Im

{[
Ūy,i, j ψ̄d,i, j+1 + ψ̄d,i, j

] [
Uy,i, jλi, j+1 − λi, j

]

+ [
Ūy,i, j ψ̄s,i, j+1 + ψ̄s,i, j

] [
Uy,i, j�i, j+1 − �i, j

]}
, (50)

for all {i = 1, 3, . . . , Nx + 1, j = 1, 2, . . . , Ny}.
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We still have to discretize the equation for the vector potential (19). Taking into account that B
= Bzk, we have

β
∂ Ax

∂t
= Jsx − κ2

d

∂ Bz

∂y
, (51)

β
∂ Ay

∂t
= Jsy + κ2

d

∂ Bz

∂x
. (52)

The discrete form of these equations are

β
∂ Ax,i, j

∂t
= Jsx,i, j − κ2

d

�y
(Bz,i, j − Bz,i, j−1), (53)

for all {i = 1, 2, . . . , Nx, j = 2, 3, . . . , Ny}, and

β
∂ Ay,i, j

∂t
= Jsy,i, j + κ2

d

�x
(Bz,i, j − Bz,i−1, j ), (54)

for all {i = 2, 3, . . . , Nx, j = 1, 2, . . . , Ny}, where Bz,i, j ≡ Bz(xi + �x
2 , y j + �y

2 ).
To finalize the discretization of the TDGL equations, we need an approximation for the induction.

From the central difference formula for the first derivative, it is not difficult to see that the discrete
form of Bz = ∂Ay/∂x − ∂Ax/∂y is

Bz,i, j = Ay,i+1, j − Ay,i, j

�x
− Ax,i, j+1 − Ay,i, j−1

�y
, (55)

for all {i = 2, 3, . . . , Nx − 1, j = 2, . . . , Ny − 1}.
Let us denote the discrete time by tn = (n − 1)�t for all {n = 1, 2, . . . }, and fn ≡ f(tn). Then,

by using the first order approximation ∫ tn+1

tn

f (t)dt = fn�t, (56)

from Eqs. (45)–(46) and (53)–(54), we obtain the following set of recursive relations:

ψn+1
d,i, j = ψn

d,i, j + �tDn
i, j , (57)

ψn+1
s,i, j = ψn

s,i, j + �t

ηs
S n

i, j , (58)

An+1
x,i, j = An

x,i, j + �t

β
Jsx,i, j − κ2

d

β�y
(Bn

z,i, j − Bn
z,i, j−1), (59)

An+1
y,i, j = An

y,i, j + �t

β
Jsy,i, j + κ2

d

β�x
(Bn

z,i, j − Bn
z,i−1, j ). (60)

To conclude the evaluation of all physical quantities at t = tn+1, we need to determine them at
the edge points by using the boundary conditions. We start from the induction. From (13), we have

Bz,1, j = H, (61)

Bz,N x, j = H, (62)

Bz,i,1 = H, (63)

Bz,i,N y = H, (64)

for all {i = 1, 2, . . . , Nx, j = 2, 3, . . . , Ny − 1}.
A quick inspection of the recursion relations (59) and (60) leads to the conclusion that

(Ax,1, j , Ax,Nx , j ) and (Ay,i,1, Ay,i,Ny ) remain constant at all times. To see this, we just note that
Jsx,1, j = Jsx,Nx , j = 0 and Jsy,i,1 = Jsy,i,Ny = 0 at all times, for all {j = 2, 3, . . . , Ny} and {i = 2, 3,
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. . . , Nx}, respectively, which is required by the boundary condition (12). In addition, the induction
is constant along the boundary. Notice also that to run all recursion relations we do not need the
values of (Ax,i,1, Ax,i,Ny+1) and (Ay,1, j , Ay,Nx +1, j ). However, we determine them from (55), where
there is always only one unknown at the edges, except at the corners. This enables us to find the
link variables at the edge points and consequently the components of the superconducting current
density.

To end the discretization procedure, we need to discretize Eqs. (36) and (37). As before, we use
the central difference approximation for the first derivative. We obtain

�1, j = Ux,1, j�2, j , (65)

γ1, j = Ux,1, jγ2, j , (66)

at the west boundary,

�Nx +1, j = Ūx,Nx , j�Nx , j , (67)

γNx +1, j = Ūx,Nx , jγNx , j , (68)

at the east boundary,

�i,1 = Uy,i,1�i,2, (69)

λi,1 = Uy,i,1λi,2, (70)

at the south boundary,

�i,Ny+1 = Ūy,i,Ny �i,Ny , (71)

λi,Ny+1 = Ūy,i,Ny λi,Ny , (72)

at the north boundary, for all times. We have asserted before that the inner values of the order
parameter components do not depend on their outer values on ∂�. Indeed, if we substitute (65) in
(47) considering i = 1, we can immediately see that the first term of this last equation becomes
(Ux, 1, j�2,j − �2,j)/�x2.

Hence, once we have determined the order parameter components from the recursive relations
(57) and (58) inside the mesh points at the time t = tn+1, we can determine the auxiliary order
parameters from (21)–(24). Next, we determine the auxiliary order parameters at the boundaries
using the above equations.

In summary, we briefly recapitulate how the algorithm works. If we know (ψd,i,j, ψ s,i,j, Ax,i,j,
Ay, i, j) at t = tn, from Eqs. (21)–(24), (47)–(50), and (55) we can calculate all the quantities required to
evaluate the right-hand side of (57)–(60) at the interior mesh points. Next, we evaluate the auxiliary
order parameters from Eqs. (21)–(24). Finally, the boundary conditions are applied. Before going
to the next time step, we update all relevant quantities like the link variables, current density, and
the induction at all mesh points. By repeating this procedure we can determine all the relevant
physical quantities at all times, until the system achieves the stationary state. Unfortunately, this
method does not converge for an arbitrary time step �t. We have used the following practical
rule:

�t ≤ min

{
δ2

4
,
δ2ηs

4
,
δ2β

4κ2
d

}
, (73)

δ2 = 2
1

�x2 + 1
�y2

, (74)

which worked for all cases we have analyzed. This is another important characteristic of our
strategy of introducing the auxiliary order parameters. Since transformations (21)–(24) make the
Laplacian of the TDGL equations isotropic-like ones, as we can see from (38), the time step rule
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for multicomponent order parameter system is straightforward. This a crucial point to guarantee the
stability towards the stationary state.

Notice that materials with high κd impose a limitation on the algorithm, which becomes very
time consuming in order to obtain the stationary state, since the time step is small. In these cases, the
implicit method of time integration should be used which are usually unconditionally convergent.
However, for κd 	 1 it is most convenient to consider the local magnetic field nearly constant
everywhere and equals the applied field, that is, the vector potential is taken fixed as A = − H y

2 i
+ H x

2 j. Then, we do not need to solve Eqs. (19), only for the order parameter components. In addition,
the time step is smaller than the situation in which we keep κd large but finite. This approximation
is quite good for κd ≥ 5.18

VII. SOME PHYSICAL QUANTITIES

There are several important physical quantities in superconductivity which can be measured
experimentally. One of them is the average induction which is defined as the spatial average of the
induction,

B̄z = 1

S

∫ ∫
�

Bz(x, y) dx dy, (75)

where S is the total area of the domain �. By using the midpoint rule for double integration, the
discrete version of this definition can be written as

B̄z = 1

Nx Ny

Nx∑
i=1

Ny∑
j=1

Bz,i, j . (76)

The second quantity is the magnetization which is a measure of the expelled magnetic field
from the superconductor, and defined as

4π M = B̄z − H. (77)

Third important quantity is the Gibbs free-energy. This energy is not measurable directly, but it
can be obtained from the other two by using the virial theorem.17 In dimensionless units, we have
the following expression for the free-energy:

F = 1

A

∫ ∫ [
−ν|ψs |2 − |ψd |2 + τ1

2
|ψs |4 + 1

2
|ψd |4 + τ3

2
|ψs |2|ψd |2

+τ4

2

(
ψ̄2

s ψ2
d + ψ̄2

d ψ2
s

) + |�ψd |2 + ηs |�ψs |2

+ηv

(

̄yψ̄s
yψd + 
̄yψ̄d
yψs − 
̄x ψ̄s
xψd − 
̄x ψ̄d
xψs

)
+κ2

d (Bz − H )2
]

dx dy. (78)

The use of integration by parts, the boundary conditions (29) and (30), and finally the TDGL
equations (17) and (18), in this sequence, yields for the stationary state

F = 1

A

∫ ∫ [
κ2

d (Bz − H )2 − τ1

2
|ψs |4 − 1

2
|ψd |4 − τ3

2
|ψs |2|ψd |2

−τ4

2

(
ψ̄2

s ψ2
d + ψ̄2

d ψ2
s

)]
dx dy, (79)
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or in the discrete form

F = 1

Nx Ny

⎧⎨
⎩

Nx∑
i=1

Ny∑
j=1

κ2
d (Bz,i, j − H )2

−
Nx∑

i=2

Ny∑
j=2

[
τ1

2
|ψs,i, j |4 + 1

2
|ψd,i, j |4 + τ3

2
|ψs,i, j |2|ψd,i, j |2

+τ4

2

(
ψ̄2

s,i, jψ
2
d,i, j + ψ̄2

d,i, jψ
2
s,i, j

)]}
. (80)

VIII. COMPUTATIONAL RESULTS

The recursive relations supplemented by the boundary conditions derived in Sec. VII were
implemented in Fortran 90 language.25 We started from the Meissner state, taking ψd,i,j = 1, ψ s,i,j =
0, Ax,i,j = Ay, i, j = 0, Ux,i,j = Uy, i, j = 1, and Bz, i, j = 0 as the initial conditions in the entire sample. By
keeping the external magnetic field H constant, we allow the system to evolve towards the stationary
state. Next, we ramp up the applied field in increments of �H. The stationary solution for H is then
used as the initial state to determine the solution for H + �H, and so on. Usually we started from
zero field and increased H until superconductivity was destroyed. For each field, we monitored the
highest differences |ψm

d − ψn
d | and |ψm

s − ψn
s | for all vertex points in the mesh over a time interval

typically of order m − n ∼ 103. The largest difference smaller than the precision ε = 10− 5 was
taken as the criterion to have obtained a stationary solution.

As an example of the application of the algorithm, we consider a superconducting square of
dimensions 8ξ d × 8ξ d with material parameters κd = 2, τ 1 = 8/3, τ 3 = 16/3, τ 4 = 2, ν = − 2,
ηs = 2, ηv = 1; this value of ν corresponds to αs/αd0 = 1 and T/Tc = 0.5. These parameters were
taken from Ref. 2, where they were microscopically derived and used in a numerical simulation of
an infinite (d + s)-wave superconductor by using periodic boundary conditions.3 In Figure 2, we
present the calculated magnetization and Gibbs free-energy as a function of the external applied
field. First, we increased H adiabatically until the order parameter vanishes everywhere. Then we
gradually decreased the field to zero (red dashed curve). As can be seen, calculated quantities exhibit
a series of discontinuities, where each jump indicates a nucleation of one or more vortices inside the
superconductor if H increases, or exit of vortices if H decreases. This is a very typical behavior of
a mesoscopic superconductor, where states are labeled by vorticity L.19 By mesoscopic we mean a
superconductor of dimensions of order a few ξ d.

Figure 2 also shows some other interesting features. For the considered mesoscopic super-
conductor, the upper critical field to destroy superconductivity is of order H ≈ 2Hc2(0) for a pure
s-wave superconductor,19, 20 whereas for the (d + s)-wave we found it to be H ≈ 2.5Hc2(0), i.e.,
the superconducting critical parameters are enhanced by the mixing with a d-wave order parameter.
Another interesting feature is that for H = 0 we still have trapped flux inside the superconductor in
decreasing H. This is quite remarkable, since we do not have any defect to which vortex pinning can
be attributed and is a consequence of the presence of the surface barrier. Indeed, Figure 3 shows the
order parameter for both components, and Figure 4 depicts the induction and the current distribution,
also for H = 0. As can be clearly seen from these figures, a single vortex remains at the center of
the square in spite of the complete removal of the applied field. A possible explanation for these
results is as follows. In the d-band what we have is a vortex and in the s-band an anti-vortex.26 So
there is an attractive interaction which keeps them together at the center of the sample. In fact, in
Figure 5 we have plotted the current density vector field for both the d- and the s-vortex.27 As we
can clearly see, around the vortex core, the currents circulate in opposite direction (anticlockwise
for the d-vortex and clockwise for the s-vortex). In other words, the currents are indeed countered,
and thus minimize the energy when those vortices are on top of each other and currents com-
pensate. We have learned that this is a rather weak effect. If we invert the field towards negative
values, we noticed that the vortex remains stable only to very weak fields. This should be studied

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

186.217.234.103 On: Fri, 10 Oct 2014 16:39:20
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FIG. 2. The magnetization (upper-left) and the Gibbs free-energy (upper-right) as a function of the external applied field; for
magnetic field sweeping up (black curve) and then down (red dashed curve). Different states are labeled by their corresponding
vorticity L (lower panel).

further to see if it can be observed in realistic conditions (e.g., for corrugated sample surfaces and
edges).

It is of course well known that the vortex configurations exhibit a very different behavior in
mesoscopic superconductors compared to bulk superconductors. For a pure s-wave mesoscopic
superconductor, confinement can lead to the formation of a giant vortex (two or more vortices
coalescing into one).19–21 We found that this also occurs for a mixed (d + s)-wave superconductor
but in a rather different way. In the left panel of Figure 6, we show the density plot of |ψd| for six
vortices, just immediately after they nucleated inside the superconductor. As we increase H, the two
central vortices move to the exact center of the sample forming a giant vortex (see right panel of
the same figure). In a pure s-wave superconductor of the same size, this happens immediately after
the vortices penetrate the sample, and, as more vortices penetrate the sample the giant vortex at the
center increases in vorticity. However, our simulations show that the latter does not occur for a (d
+ s)-wave superconductor. In fact, in the left panel of Figure 7 we show the density plot of |ψd|
for L = 8, where it can be seen that the giant vortex at the center splits into individual vortices. To
confirm this, in the right panel of the same figure we plotted |ψd| in logarithmic scale, and we clearly
observe that four vortices at the center are separated. We conclude that d-wave symmetry of the order
parameter enhances the influence of the C4 symmetry of the sample, having direct consequences on
the vortex states.
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FIG. 3. Density plot of the order parameter for the d-component (upper-left) and the s-component (upper-right). Density
plot of the phase of the d-component (down-left) and the s-component (down-right).
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FIG. 5. The current density vector field for both the d-vortex (left) and the s-vortex (right).
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FIG. 6. Density plot of |ψd| for six vortices at H = 1.040 (left) and H = 1.125 (right).
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IX. CONCLUDING REMARKS

There are definitely many more important characteristics of a mesoscopic (d + s)-wave super-
conductor in comparison with the well-understood pure s-wave case. However, a detailed study of
those properties will be postponed for a separate publication. In this paper, we restricted ourselves
to developing a stable numerical algorithm to solve the TDGL equations which can be easily im-
plemented and can be immediately applied in further simulations. We demonstrated the efficiency
of our numerical procedure on a few peculiar examples of novel properties of mesoscopic mixed
(d + s)-wave superconductors.
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