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We study the Boussinesq equation from the point of view of a multiple-time reduc-

tive perturbation method. As a consequence of the elimination of the secular pro-
ducing terms through the use of the Korteweg—de Vries hierarchy, we show that the
solitary-wave of the Boussinesq equation is a solitary-wave satisfying simulta-

neously all equations of the Korteweg—de Vries hierarchy, each one in an appro-
priate slow time variable. €995 American Institute of Physics.

I. INTRODUCTION

As is well known, the Boussinesq model equation,
Ut — Uyxt Uyyxx— 3(u2)xx: 0, (1)

whereu(x,t) is a one-dimensional field and the subscripts denote partial differentiation, is com-
pletely integrablé. It is considered as an intermediate long-wave equation since its long-wave
limit with a further restriction to waves moving in only one direction yields, at the lowest order,
the Korteweg—de VriegKdV) equation,

Ug— BU Uy + Uy =0, 2

which is an equation governing general weak nonlinear long-wave dynamics of dispersive
systemg. Equation(1) hasN-soliton solutions. In particular, its solitary-wave solution is of the
form®

u=—2k? sech’[k(x—+1—-4k? t)], ®)

wherek is the wave number. Accordingly, its long-wave limit is related, also at the lowest order,
to the solitary-wave solution of the KdV equation.

In a recent work we have considered a perturbative scheme based on the reductive pertur-
bation method of Taniufi,modified by the introduction of an infinite number of slow time vari-
ables, which were given by=¢, =€, etc. Then, we have shown that a wave field satisfying
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the KdV equation in the time, must also satisfy all equations of the KdV hieraréfgach one in

a different slow time variable. The main reason for introducing these time variables was that they
allowed for the construction of a perturbative series, valid for weak nonlinear dispersive systems,
which was free of solitary-wave related secularities.

As stated above, the solitary-wave solution of the Boussinesq equation tends to the KdV
solitary wave for small wave numbers. What we will show here is that, by making use of the
perturbative scheme with multiple slow time scales, the solitary wave of the Boussinesq equation
may be written as a solitary-wave solution to the whole set of equations of the KdV hierarchy,
each one in a different time scale. This result follows both, from the general long-wave perturba-
tion theory, and from the observation that the perturbative series truncates for a solitary-wave
solution to the KdV hierarchy equations, rendering thus an exact solution for the Boussinesq
equation.

The paper is organized as follows. In Sec. Il the multiple-time formalism is introduced for the
Boussinesq equation, and the first few evolution equations are obtained. In Sec. Ill we discuss how
the KdV hierarchy equations show up, and in Sec. IV we show how they can be used to eliminate
the soliton-related secularities of the evolution equations for the higher-order terms of the wave
field. In Sec. V, by returning from the slow to the laboratory coordinates, we obtain the above-
mentioned relation between the solitary waves of the Boussinesq and the KdV hierarchy equa-
tions. And finally, in Sec. VI, we summarize and discuss the results obtained.

IIl. THE MULTIPLE TIME FORMALISM

In order to study the long-wave limit of Eq1), we will introduce slow space and time
variables based on the long-wave limit of the linear dispersion relation,

w=k(1+k?)2, (4)
This limit corresponds to take
k=ex, 5)

with € a small parameter. Expanding the dispersion rela@gnthe solution of the linear equation
is simply

] ex3 ok €'k’
u=a exp i|ex(x—t)— 5 t+ 8 t— 16 t+--- . (6)

Based on this solution, we define now the slow space coordinate,

£=e(x—1), ()

and the infinite sequence of slow time coordinates,

et et €'t
73:_71 7-5:?1 T7:_El Tt (8)
Accordingly, we have that
J _ d 9
ax < oE ©

and
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J (?63&+65& e7a+ 10
ot S 2 gr; 8 9re 16 91, ' (10

Notice that in the definition of,,,, ;, we have already assumed specific slow time normalizations,
as inspired by the long-wave expansion of the dispersion relation. As we are going to see, these
normalizations are exactly those necessary to cancel out the solitary-wave related secularities
appearing in the higher-order evolution equations.

Returning to the nonlinear problem, we make now the expansion

u=€20=€?(Uup+ €’u,+ €*uy+--+), (11
and we suppose that,,= u,,(¢,73,75,...), N=0,1,2,..., which corresponds to an extension in the

sense of SandfiSubstituting it, together with Eq$9) and(10), into the Boussinesq equatiéh),
the resulting expression, up to terms of ordéris

9 a* 9 9 et P 9
t—mgt— |t | — |+
9E I3 9+ 4 (m@ 9E (975) 8 (ag T, 973 (71'5)

u
(?2
3 pr: [(Ug)?+2€2uguy+ €*(2uguy+ (uy)?) + -+ 1=0. (12
At order €® we get
i )+‘93u° -0. 13
— (U
9 | 913 § 0 IE

Integrating once and assuming a vanishing integration constant, we obtain

dug 6 Ao . #3ug o 14
(97'3 Uo ag &53 — Y, ( )
which is the KdV equation.
At order €, Eq. (12) yields
J [du, 9 . Pup] 1 Pug 1 0%ug 15
IE | o013 ag(UOUZ) 9& | 4 9E a1 4 915 (19

Using Eq.(14), integrating once ir¥ and assuming a vanishing integration constant, we obtain

AUy #u, 1dug 1 d°uq (93u0 9 dug 9? Uo

ﬁUO
g1y © é(u°u2)+ 3 Ao, 4 9B W08 T2 GE 9

(Uo)2 Yy

&’

(16)

Equation(16), as it stands, presents two problems. Firstiigs is not knowna priori, it cannot

be solved foru,. In the next section we will show how to obtain the evolutionugfin time 7
independently. The second problem is that the teffuy/9¢°), as a source term far,, is a secular
producing term wher is chosen to be a solitary wave of the KdV equation. For instance, if we
take the solution of Eq(14) proportional to[sech 6], then(5uy/d¢°) will contain a term propor-
tional to[sec #tanhé)]. Being a solution of the homogeneous part of ), this term produces

a resonance, giving rise to a nonuniform perturbative series. It will turn out, howevauol;gaan

be adjusted exactly to cancel out this secular term.
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IIl. THE RISE OF THE KORTEWEG-DE VRIES HIERARCHY
As we have seen, the field, satisfies the KdV equation in the timg:
UOT3:_UO§§§+ 6U0U0§EF3. (17)
The evolution of the same field, in any of the higher-order times,,, ; can then be obtained in

the following way” First, to have a well-ordered perturbative scheme we impose that each one of
the equations,

Uo%“:F2n+1(Uo,Uog,---), (18
be e-independent when passing from the slawy (¢, 75, 1) to the laboratory coordinatesi(x,t).

This step selects all possible terms to appedf R, 1(Ug,Ugy,--.). Forinstance, the evolution of
Ug in the time 7y is restricted to be of the form

Ug, = (,YUO(5§)+ IBUQUQ§§§+ (ﬁ‘l‘ ’y) U0§U0§§+ 5U3U0§, (19)
5

wherea, B, v, andé are constants. Then, by imposing the natgrathe multiple time formalism
compatibility condition

(u073) 72n+1: (u072n+1) T3 (20)
or, equivalently,
(F3) sy, ,= (Fons1) 7y (1)

with F5 given by Eq.(17), it is possible to determine anfy,,, . As it can be verified, the
resulting equations are those given by the KdV hierarchy. In particuIalla,c)l‘,grrslndu()T7 we obtain

Uo-,= Uo(se)— 10UqUggge— 20UqUges+ 30(uo)2u0§ (22
and
UOT7: - U0(7§) + 14UOU0(5§)+ 42U0§U0(4§) + 7OUO§§UO§§§_ 280UoU0§U0§§_ 70(U0§)3

—70(Ug)*Upggs + 140( o) pog- (23

In principle, one could have an arbitrary constant multiplying the right-hand side of Z)sand

(23), which corresponds to an arbitrariness in the time normalizations. However, as we will see in
the next section, the definition of the slow time variables we took implies that these constants must
be chosen to be one, since in this case the theory automatically is rendered secular free. This
choice is also the one which makes the linear limit of the perturbation theory compatible with the
linear theory coming directly from Ed1).

IV. HIGHER-ORDER EVOLUTION EQUATIONS

From this point on, we are going to consider some specific solutions to our equations. First of
all, we assume the solution of the KdV equatidr) to be the solitary-wave solution,

Ug= — 242 SEChZ[K(§—4K2'T3)+ a], (24
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where 6 is a phase. Moreover, sineg must also satisfy the equations of the KdV hierarchy, we
assume thati, given by (24) also be a solitary-wave solution to all equations of the KdV hierar-
chy. This means that, is actually

Ug=—2k% sech?ké—4k3T3+ 16k%15— 64K T+ ]. (25)

We return now to Eq(16) for u,. Substitutingu,,, from Eg. (22), we obtain
Uz, — 6(UgUp) ¢+ Upgge= 3L —3(Ug)®Upg+ UgUpgss— Uggloge] - (26)

Now, using the solitary-wave solutiof25) for uy, we see that the right-hand side of EG6)
vanishes, leading to

U27.3_ 6(UOU2)§+ U2§§§:0, (27)
which is the linearized KdV equation. We will assume for it the trivial solution
u,=0. (29

With this result, orde? is solved for the particular case we chose.
At order €*, and already assuming tha;=0, Eq.(12) gives

Ugre— 6(UoUa) gg+ Uaiag) = ad- Uor ¢t Uoryr, - (29)

Using Eqs.(17) and (22) to expressuy,, and uo,,, respectively, and integrating once énwe
obtain

Ugr,— 6(UgUg) ¢+ Usgee= 5[ — Uor, — Uo(7¢)+ L6UQUo(ss) — 90(Ug)®Upgge+ 7O0UggeUogee
+40Uq:Ug(ag)— 300UgUQeUgzs+180(Ug)3Ugs—60(Ug,)°].  (30)

The termug 7 is the only resonant, that is, secular producing term to the solugjofihen, in the
very same way we did before, we use the KdV hierarchy equagidnto expressiy... After we

do that, the secular producing term is automatically canceled out, an@@doecomes
Ugr,—6(UgUs) ¢+ Usgee= — 2[ UgeUo(ag) — UoUo(sg) + 1 0UgUogUoze— 5(Ugg)+10(Ug) *Uggg,
—20(Ug)3ug]. (3D

Substituting again the solitary-wave soluti@b) for uy, we can easily see that the nonhomoge-
neous term of Eq31) vanishes, leading to

U47.3_ 6(UOU4)§+ U4§§§:0 (32)
And again, we take the trivial solution

This is a general result that will repeat at any higher ordernted, the evolution ofu,, in the
time 7, after using the KdV hierarchy equation to express, .. and then substituting the

solitary-wave solution(25) for ug, is given by a homogeneous linearized KdV equation. Conse-
quently, the solution

Up=0, n=1, (34)
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can be assumed for any higher order.

V. BACK TO THE LABORATORY COORDINATES

Let us now take the solitary-wave solution to all equations of the KdV hierarchy,
Ug=—2k% sech ké—4k3T3+ 16k%15— 64K T+ -], (35
and rewrite it in the laboratory coordinates. First, recall that we have made the expansion
u=e20=€?(Uup+ €’u,+ €*uy+---). (36)
Thereafter, we have found a particular solution in which
Uyp=0, n=1. (37)
Consequently, expansidB6) truncates leading to an exact solution of the form
u=€2uy, (38

with ug given by Eq.(35). Moreover, from Eq(5) we see that the wave numberis written in
terms of the corresponding laboratory one by

k=¢€ k. (39

Finally, the slow coordinate§ and ,,,, ; are related to the laboratory onesandt, according to
Egs.(7) and(8). Then, in the laboratory coordinates, the exact solu(@8) is written as

u=—2k? sech? k[ x—(1—2k?—2k*—4k8+---)t]. (40)

Now, the series appearing inside the parentheses can be summed, with the result

1-2k?—2k*—4K8+ - - =(1—4k?)Y2, (41)
Therefore, we get
u=—2k?> sechy[k(x—+y1—4k? 1)], (42)

which is the well-known solitary-wave solution of the Boussinesq equdfipn

VI. FINAL COMMENTS

By applying a multiple-time version of the reductive perturbation method of Tartiutihe
Boussinesq model equation, and by eliminating the solitary-wave related secular producing terms
through the use of the KdV hierarchy equatiénse have succeeded in establishing a relation
between the solitary-wave satisfying all the equations of the KdV hierarchy and that of the
Boussinesq equation. In other words, we have shown that the solitary wave of the Boussinesq
equation is given, in slow variables, by the solitary wave satisfying simultaneously all the equa-
tions of the KdV hierarchy. Accordingly, while the KdV solitary wave depends only on one slow
time variable, namelyz;, the solitary wave of the Boussinesq equation can be thought of as
depending on the infinite sequence of slow time variables.

The above considerations put in evidence the universal character played not only by KdV, but
by all equations of the KdV hierarchy in relation to general weak nonlinear dispersive systems.
For such systems, as we have already said, it is always possible to define slow variables in which
the KdV equation emerges at the lowest relevant order of the reductive perturbation method, and
consequently, compatibility and secularity-free requirements imply that all equations of the KdV
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hierarchy emerge as well. In the case where the perturbative series truncates, we may then obtain
an exact solution of the original equation, which is, in this sense, reconstructed from the pertur-
bative expansion. Of course, the Boussinesq solitary wave is a well-known solution, but not the
least, it remains that a possible method of construction of solutions for more involved system of
equations can be envisaged. The return to the laboratory coordinates, then, makes the connection
between a solution of the KdV hierarchy and that of the equations governing the original system.
To conclude, we may conjecture that, whenever the original model equation has an exact
solitary-wave solution, the series may somehow be truncatedventually summedand a rela-
tion will be established between the solitary wave of the KdV hierarchy and that of the original
equation. On the other hand, when the original nonlinear dispersive system does not present an
exact solitary-wave solution, the series will not truncate. In this case, a secular-free expansion can
still be obtained and the process of returning to the laboratory coordinates can be made order-by-
order at any higher order, implying in a successive solitary-wave velocity renormaliZ4tion.
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