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Dissipative three-wave structures in stimulated backscattering.
[. A subluminous solitary attractor
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We present a solitary solution of the three-wave nonlinear partial differential equ@dB model—
governing resonant space-time stimulated Brillouin or Raman backscattering—in the presence of a cw pump
and dissipative material and Stokes waves. The study is motivated by pulse formation in optical fiber experi-
ments. As a result of the instability any initldundedStokes signal is amplified and evolves to a subluminous
backscattered Stokes pulse whose shape and velocity are uniquely determined by the damping coefficients and
the cw-pump level. This asymptotically stable solitary three-wave structure is an attractor for any initial
conditions in a compact support, in contrast to the known superluminous dissipative soliton solution which
calls for an unbounded support. The linear asymptotic theory based on the Kolmogorov-Petrovskii-Piskunov
assertion allows us to determine analytically the wave-front slope and the subluminous velocity, which are in
remarkable agreement with the numerical computation of the nonlinear PDE model when the dynamics attains
the asymptotic steady regimgS51063-651X97)13201-9

PACS numbeps): 42.81.Dp, 42.65.Es, 42.65.Dr, 42.65.Tg

I. INTRODUCTION hand, when it enters a semi-infinite material medium it gen-

erates a stationary distributed mirror where the monotonic

Localized traveling backscattered Stokes pulses, welbackscattered amplification of the Stokes wave in the optical

modeled by the three-wave nonlinear interaction between themedium is saturated by the monotonic depletion of the
pump waveE ,, the material wavé&,, and the backscattered forward-propagating cw pumjd3]. On the other hand, in the

Stokes waveEg, have been obtained, in the ns range, inunlimited three-wave interaction, the cw pump may generate
stimulated Brillouin backscatteringSBBS experiments in & localized structure: Two kinds of initial conditions for the
liquids [1], gaseq2], plasmag3], and fiber-ring resonators E, orEg signz_ils will yield two cl_asses (_)f localized trav_eling

[4—6]. Such spiked dynamics also appears in stimulated Rrastructures which may be associated with the above-cited ex-

man backscatteringSRBS experiments[7,8], in the ps Periments. , ,
range, due to the faster material response. (i) Initially boundedStokes or material wave fluctuations

ield, as we show in this paper,sabluminousackscattered
three-wave solitary structure, whose constant velocity is
uniguely determined by the damping coefficients and the cw-
ump level, and which is aattractor for any initial condi-
on in a compact support. ThiSauchy problenof an ini-
ially bounded Stokes wave packet, propagatifg the

This resonant three-wave interaction problem is describe
by the nonlinear partial differential equatiofBDE) model
within the slowly varying envelope approximation; it has
been the object of many theoretical studies and numeric
simulations. For interacting waves whose profiles vanish

infinity (bounded envelopes for all three wayghe problem 5,0 ce of interactiorat the velocity of light, and colliding
has been integrated by the inverse scattering transft8m | ith 3 cw pump(Fig. 1), cannot yield a superluminous as-
in the nondissipative cag8—11], and solved numerically in ymptotic traveling structure.
the nonintegrable dissipative cafk?], yielding no soliton (i) Initially unboundedStokes conditions present well-
solution for the backscattering problem: the collision of theknown analyticakuperluminoushree-wave soliton solutions
pump wave with the material wave generates only a radiativ14—16, which are also available for dissipati#, andEg
backscattered wave. enveloped5,17]. Superluminous motion of the three-wave
However, we are concerned with nonconservative stimutocalized structure does not contradict by any means the spe-
lated backscatteringSBBS or SRB$in the presence of a cial theory of relativity. This motion can be viewed as the
continuous pump. This cw pump gives rise to two main nonresult of the convective amplification of the leading edges of
linear responses resulting from the instability. On the onehe Stokes and material pulses, whereas their rears are at-
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tenuated, since the pump wave is depleted during the intewhich are uniquely determined by the damping coefficients
action and totally or partially restored after that. No transpor-and the cw-pump level. The strength of this result is that this
tation of information can be obtaineda this deformation velocity corresponds to theonlinearasymptotic steady-state
process, which can only occur if a sufficiently extendedstructure exhibiting pump depletion and resulting from a
background of Stokes light is available. This unboundedcomplicated transient evolution. The reason for this agree-
problem has often been considered in the literature, since fent lies in the fact that the front foot of the Stokes structure
can be integrated by IST in the nondissipative dd$3, and  @lways remains in the linear parametric regime; the slope of
a perturbative theory has been developed for the weakly dighis front edge asymptotically attains the slope of the whole
sipative casé19]. To a certain extent, the infinite interaction NPnlinear structure in the steady-state regime, and the veloc-
problem can be associated with the periodical problem in &Y 1S determined by this slope.

cavity, where, below a critical feedback, spontaneous struc-

turation of superluminous solitary Stokes pul§é$ takes Il. NUMERICAL THREE-WAVE DYNAMICS

place from any initial condition§6]. This case will be con- We deal with the(1D)spaceflDjtime three-wave prob-
sidered in paper I[20] in order to present the full family of o (1D is one dimensionalrelevant, for instance, in single-
nonintegrable superluminous or subluminous dissipativg,,qe optical fiber§22,4]. The nonlinear resonant’ SBRSY
solitary attractors, dependent only on the wave-front slope °§RBS process couples through electrostrictigirough op-
the backscattered Stokes wave. tically induced polarizability variationsa pump wave

In this paper we will consider only cag®: An initially E k.) and a backscattered Stokes was ko) of
bounded Stokes wave packet, associated with localized m%‘cg)r(naé)riéxp;mplitudes to a material acoustic W%;)ESF’)O?;HZ_

terial fluctuations, grows backward at the expense of a maing ;i _ _ i

. ; . X y wave E,(w,=w,— wg,k;=k,+Kks). Neglecting the
fcamed. cw-pump input. Th's problem was already studied b3fnaterial wave apfroz)agaptio@si%ceaca;c inS)SBBSg), it yiglds,
including only the material wave dampifigl,23, and could through the slowly varying envelope approximation, the

not lead to an asymptotic steady state. In the absence of aYree coupled equations in dimensionless upis
dissipation, or if only the material wave is assumed to be

damped, the Stokes envelope exhibits unlimited amplifica- (0+ dx+ wp)Ep=—EgEa,

tion, compression, and frontal steepening, the maximum of

the pulse shifting to its wave front with a decreasing (= dy+ ms)Es=ELEX (1)
velocity: no saturated steady behavior is obtaif@8]. This

nonstationary situation is unchanged even if the slowly vary- (di+ pma) Ea=ELES,

ing envelope approximation for the material wakg is

taken off[24]. where the envelope amplitud&s, the timet and space

However, it has been shown that, for the unbounded caseariables, and the damping ratgg are normalized to the
(i), steady traveling solitonlike solutions exist for the Stokesconstant pump inpuE,,, and to the SBBS or SRBS coupling
envelope when damping of bot, and Eg are taken into constanK [E;/E.,—E;, tKE,,—t, XxcKE,/n—x, and
accoun{5,17]. By analogy, the aim of the present paper is toyi(KE.,) = ui (i=p,S,a)].
revisit the initially bounded casg), already studied if22], In order to look for steady localized traveling Stokes
but now taking into account bot, and Eg dampings, in  structures, we must assume a constant pump input compen-
order to look for a steady traveling Stokes envelope solutiorsating for Stokes and material losses, and therefore we ne-
as well. Indeed, we shall see in this case, by the numericallect the damping of the pump wavg (= 0). This is locally
treatment of the nonlinear three-wave dynamics starting frontkegitimate if the structure’s width is small compared to
any initial Stokes signadboundedin a compact support, that ,u,jl. Therefore, considering that the threshold condition is
it evolves toward a backscattered pulse attractor with consatisfied
stantsubluminousvelocity, in contrast to the knowasuper-
luminousdissipative soliton solutiof5], which calls for an _ YsYa
unboundedsupport. Our basic tool will be a powerful asser- Hsta= (KEcw)2<l' @
tion of Kolmogorov, Petrovskii, and PiskundKPP) [25],
which has been applied to several diffusion problemshe EsandE, waves are unstable, exponentially growing in
[26,27], but never, to our knowledge, in the context of non-the linear parametric regime until a nonlinear stage is
linear optics. They state that for nonlinear problems gov+eached. The basic problem is to determine the nonlinear
erned by the PDE and containing instability and dissipationstage of this unstable process in the presence of dissipative
a transition from an initially bounded unstable solution to aEs andE, waves, when the depletion of the purkp satu-
stable steady-state solution continues a long time by meanates the instability. As we shall see, the nonlinear evolution
of stationary traveling waves, whose velocity is unambigu-of the initially bounded Stokes signal, exhibiting damping,
ously determined by thdinear behavior of the equations, yields a saturated localized three-wave structure in contrast
while the shape of the front is determined by the solution ofto the unsaturated no-Stokes-damping case.
the corresponding ordinary differential equati@DE). Our Let us consider the nonlinear space-time evolution of the
problem belongs to this class, being initially bounded, dissithree-wave system governed by Ed4) for an initially
pative, and exponentially unstable in the initial parametricbounded Stokes wave packef(x,t=0) counterpropagating
regime(undepleted pump approximatijor herefore thdin-  with respect to the pumf,(x,t=0), as shown by Fig. 1.
ear KPP asymptotic method allows us to obtain analyticallySince we are looking for solutions localized in the vicinity of
the front slope and the velocity of the localized structurethe Eg characteristic, it is naturally to reduce the above
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FIG. 2. Three-wave envelope evolution, obtained by numerical 2000 4000 6000 8000 10*

computation of Eqs(3), in the comoving Stokes framg&=x+t for
ma=1 andug=0.01, from timet= 100 to timet= 7000, where the
Stokes peak velocity approaches the asymptotic subluminous veloc- FIG. 3. Stokes peak velocity variatighV/(t)=V(t) — 1 associ-
ity V predicted by the theorjand given by Eq(12)], while its  ated with the dynamical scenario of Fig. @) during the initial
shape attains the steady staf€haracteristic timea for SBBS is stage (B<t<100), first showing transient subluminosity
10-100 ng6, 2Q). (AV(t)<0) and then superluminositAV/(t)>0); and(b) in the
asymptotic regime (different coordinate scalgs for times
Cauchy problem to the initial-boundary value problem in the(1000<t<11 200) where the velocity asymptotically approaches

t

comovingEg frame (¢=x+t,7=t), where Eqs(1) read the subluminous theoretical val&2) of the attractor.
(9,+23,)Ep=—EgE,, wave dynamical evolution, and in Figs(aB and 3b) the
7 P time velocity deviatiolnAV(t) =V(t) —1 of the Stokes peak
(0,4 po)Eg=E E* 3) (with respect to the luminous velocity=1) for the case
T p=a:

(us=10"2, u,=1). During the initial stage following the
collision of the pump with the Stokes signdig. 1), stimu-
lation of the resonanE, wave spreads thEg envelope by
, - slowing its peak. The result is a transient subluminous mo-
with the same initial data Eg(é=x,7=0)#0 [or o gyring the initial stage until time=8, as shown in Fig.
Eq(£=x,7=0)#0] inside the compact support, and supple-3(a) Then the depletion of the pump causes the Stokes front
mented  boundary  data E,(é=0,7)=1 and  to he more amplified than the rear part, and the Stokes peak
Es(§=0,7)=E4({=0,7)=0. This initial-boundary-value to drift forward leading to a superluminous motifig. 2,
problem well describes the evolution of the bounded backupper half; Fig. 8a)]. Note that these large variations of the
scattered envelope interacting with a cw-pump input, and iselocity are associated with the transient deformation of the
more suitable for long-time numerical integration. pulse, the velocity corresponding only to the Stokes peak
We integrate Eqs(3) by following the characteristics motion. In the nonlinear stage, the Stokes peak continues to
[11,22 and using a standard four-step Runge-Kutta algohave a transient superluminous velocity> 1) at long times
rithm, which proved to be remarkably stable for very long (t=1300), finally decreasing agaifig. 2, lower half, and
interaction times. The numerical results show that any initialasymptotically reaching the subluminous steady state. This
Stokes signaboundedin a compact support evolves to a complex transient in the nonlinear stage presents some simi-
backscattered pulse attractor of constaubluminousreloc-  larities with the previously studied dynamics in the absence
ity. The whole pulse only reaches this velocity in the full of Stokes damping22], but now, at some later time, the
nonlinear asymptotic regime after a complicated transientpresence of the Stokes damping, even extremely small, is
The velocity of the nonlinear structure in the numerical dy-responsible for a completely different asymptotic behavior.
namics is evaluated from the displacement of the Stoketnhdeed, the velocity again becomes sublumindés () un-
peak maximum, in the comoving backscattered wave framél reaching a stable localized steady state at constant velocity
where we represent the dynamics. In Fig. 2 we plot the threg+Fig. 3(b)].

(0,4 0¢t ma) E;=ELES,
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whose complex characteristic equation for an exponential de-
pendencg Es ,« exp (yt+px)] reads

(y=ptug)(y+uma)=1, ®)
in which we keep only the unstable ro@ey>0)

— Ma— +pa— o)+ 4
7/:ID M; Ms+\/(p MaZMs) | ©

For a large class of spatially bounded conditions, we may
give the linear solution of Eqg1l) by means of the Laplace
transform

1 je+o

¢ = xit ES,a(Xat): Y ES,a(pat)eXﬁpX)dp;

2|7T —ji+o
FIG. 4. Steady asymptotic three-wave profiles moving at the _

velocity V predicted by the theory. Es‘a(p,t)=ES‘a(p)exp{ v(p)t], wherey(p) is given by Eq.
(6); and
Asymptotics "
Thus our conjecture is verified: The damping of the Es,a(p)zfo Esa(X,00exp(—px)dx.

Stokes wave saturates its amplitude, yielding a steady local-

ized structure in contrast to the unlimited amplification and| ot ;s 100k for traveling waves with velocity
compression of the pulse in the no-Stokes-damping case

[22]. In Fig. 4 we plot this dissipative three-wave steady z=x+Vt, (7)
solution presenting asymmetry and moving at constant ve-.

locity V=1+ AV in the far asymptotic stage. The numerical yielding
value of the velocity deviation computed in this regifie 1 [+imto~
teraction timet=11 000) iSAV,,;;, = — 2.510 X107 °. Esa(zU)=5—|  Esa(P)exdy(p)—pV]t
. : . M) —ioc+0o
Therefore, this nonlinea¢nonintegrablg problem, gov-
erned by the PDE, presenting instability and dissipation, and Xexp(pz)dp. ©)]

leading to a steady asymptotic behavior, contains all the in-
gredients required by the KPP procedure in order to obtaifThis linear solution holds for long timess allowing us to

the expression for the velocity analytically. obtain theasymptotic behavioof the far pulse wave front
wherethe linear undepleted pump approximation always re-
. ASYMPTOTIC THEORY: DETERMINATION mains valid while the interaction is already strong enough so
OF THE PULSE’'S VELOCITY AND SLOPE that, in our problem, the exponent function

. . L . f(p)=7v(p)—pV has a saddle poimt=p,. Therefore, we
Start_mg from_ localized initial Stokes- or mqterlal-wa\_/e are able to apply the steepest descent method to compute the
fluctuations, which are unstable and exponentially growing,symptotic behavioi28], o being chosen so that the integral
at the expense of a cw-punif,, counterpropagating with path contains the saddle point
respect to the Stokes componéiy, the KPP procedure al-

lows us to look for localized traveling wave solutions. This [dy(pP)/dplp=p,=V. 9
asymptotic procedure, based on the steepest descent method, _ _ _ _
analytically determines the velocity and the slope of theExpandingf(p) aroundp=p,, and integrating, we obtain
wave front in the linear regime of undepleted pumich " = _

turns to be the value of the velocity of the nonlinear steady E5~a(z’t)“(tfp=%) Esa(Po)exid y(p,) =P, V]t
state of strong pump depletion, since the front edge of the x

whole three-wave steady structure remains in the linear un- eXp(Py2)- (10

depleted pump regime every time. For times long enough to justify the asymptotic treatment,

~ Let us stress this key point. We have seen thatrt®-  ne stationarity of Eq(10) implies a velocity of the pulse
linear process saturates the instability, and leads to a nonlingjyen py

ear localized steady structure. Because the slope of its front,

determining the velocity of the whole steady state, asymp- Y(Ps)=PsV (11
totically rejoins the slope of its front foot, which always
remains in the linear undepleted pump regime, lihear
asymptotic behavior may allow us to determine the stead
velocity through the KPP procedure.

at the order of (Ib)/t. For any other velocity the pulse is not
teady. From Eq(10), a velocity lower than that given by
g.(12) yields an unstable pulse exponentially growing until

Thus, assuming an undepleted pump waug,1) its slope reaches the critical valpg, and therefore the criti-

throughout the whole linear interaction range, the linearized@ VelocityV. In the opposite case a greater velocity drives
Egs. (1) yield a damping. This steady state becomesatigactor solution

of the whole nonlinear three-wave PDE dynamics proven by
(dy— Iyt us)(dy+ ma)Esa=Esa, (4)  the numerical computation. Equatio(®), (9), and(11) de-
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Vi=0Y/0P)p » Vo=\Y/Ploa 2
1 p=p, 2 P=Py st g \/(Ma—MS_l— po—) +4

2p, 2p,

(16)

1
=5

~ F——— 1 2

The minimum of the curveé/,(p,) just corresponds to the
steady growth ratp,= pg. This attractor point is removed to
+0o when ug— 0, the limit point where the dashed lines of
Fig. 5 intersect. Therefore no steady solution is attainable in
the absence of Stokes damping, in accordance with the result
of [22].

We have tested the accuracy of Ef2) for several pairs
(us,ma), and we always find an excellent agreement; e.g.,
for the case described in Sec. Jk§=10"2;u,=1), the nu-
merical value for the velocity computed in the far asymptotic

slope (p,) stage wasAV,,, = — 2.510 X107 °, while the theoretical
value readsAVieor = — 2.512 X107 °, given by Eq.(12)

FIG. 5. CurvesV,(p,) andV,(p,), respectively, given by ex- and plotted in Fig. ®).
pressions(15) and (16). The intersection point determines the
steady subluminous velocity, given by Eq.(12), of the solitary IV. CONCLUSION
three-wave attractor. In the absence of Stokes damping=0),
there is no intersection poirftlashed curves and thus no steady We have found a three-wave dissipative solitary structure
traveling structurg22]. for an initially bounded Stokes wave packet. The unstable

stimulated backscattering process in the presence of a cw
termine the velocity/, the slope of its wave fronty and the  pump and material-wave damping, exhibiting a long and
growth rate y(py) of the localized traveling solution complicated space-time nonlinear transient, is finally satu-
Esa(x+ V1), as functions of the damping parametgrsand  rated by even an extremely small Stokes damping, leading to

v (py)

Ma: a steady attractor. Let us point out the remarkable agreement
2_ r— of the pulse’s characteristic parametérslocity, slope ob-
= 2t pa” Mspat2 12 ,us,ua' (120  tained from the nonlinear PDE dynamics, in the asymptotic
4+ (pa—ps) steady state, with the values given by the linear asymptotic

KPP procedure. The reason for this agreement lies in the fact

1 1 VI—psma V1 joua that the front slope of the asymptotic steady Stokes structure,
Po=—+ pmg— — — ot + , which determines the subluminous velocity, coincides with
Ks Ha Ka Hs 13 that of its front foot, which always remains in the linear

(13 parametric regime. Thus we obtain a steady subluminous

1— pwspat V1— psua three-wave structure, uniquely determined by the material-

¥(Po) = s . (14 and Stokes-wave dampings and the cw-pump level, in oppo-

sition to the unlimited pulse amplification and compression
Let us plot in Fig. 5 the curve®,(p,) and V,(p,), In the absence of Stokes dampifP], and to the superlu-

whose intersection gt, = p, determines the steady velocity minous solitonlike solutiofi5] which calls for an unbounded
V. CurveV,(p,) is obtained from the saddle point condition Stokes support, and which stability will be analyzed in paper

(9), with y(p) given by solution(6), Il [20].
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