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Dissipative three-wave structures in stimulated backscattering.
I. A subluminous solitary attractor

Carlos Montes,* Alexander Mikhailov,† Antonio Picozzi, and Fre´déric Ginovart‡

Laboratoire de Physique de la Matie`re Condense´e, Centre National de la Recherche Scientifique, Universite´ de Nice– Sophia Antipolis,
Parc Valrose, F-06108 Nice Cedex 2, France

~Received 21 June 1996!

We present a solitary solution of the three-wave nonlinear partial differential equation~PDE! model—
governing resonant space-time stimulated Brillouin or Raman backscattering—in the presence of a cw pump
and dissipative material and Stokes waves. The study is motivated by pulse formation in optical fiber experi-
ments. As a result of the instability any initialboundedStokes signal is amplified and evolves to a subluminous
backscattered Stokes pulse whose shape and velocity are uniquely determined by the damping coefficients and
the cw-pump level. This asymptotically stable solitary three-wave structure is an attractor for any initial
conditions in a compact support, in contrast to the known superluminous dissipative soliton solution which
calls for an unbounded support. The linear asymptotic theory based on the Kolmogorov-Petrovskii-Piskunov
assertion allows us to determine analytically the wave-front slope and the subluminous velocity, which are in
remarkable agreement with the numerical computation of the nonlinear PDE model when the dynamics attains
the asymptotic steady regime.@S1063-651X~97!13201-9#

PACS number~s!: 42.81.Dp, 42.65.Es, 42.65.Dr, 42.65.Tg
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I. INTRODUCTION

Localized traveling backscattered Stokes pulses, w
modeled by the three-wave nonlinear interaction between
pump waveEp , the material waveEa , and the backscattere
Stokes waveES , have been obtained, in the ns range,
stimulated Brillouin backscattering~SBBS! experiments in
liquids @1#, gases@2#, plasmas@3#, and fiber-ring resonator
@4–6#. Such spiked dynamics also appears in stimulated
man backscattering~SRBS! experiments@7,8#, in the ps
range, due to the faster material response.

This resonant three-wave interaction problem is descri
by the nonlinear partial differential equations~PDE! model
within the slowly varying envelope approximation; it ha
been the object of many theoretical studies and numer
simulations. For interacting waves whose profiles vanish
infinity ~bounded envelopes for all three waves!, the problem
has been integrated by the inverse scattering transform~IST!
in the nondissipative case@9–11#, and solved numerically in
the nonintegrable dissipative case@12#, yielding no soliton
solution for the backscattering problem: the collision of t
pump wave with the material wave generates only a radia
backscattered wave.

However, we are concerned with nonconservative stim
lated backscattering~SBBS or SRBS! in the presence of a
continuous pump. This cw pump gives rise to two main no
linear responses resulting from the instability. On the o
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hand, when it enters a semi-infinite material medium it ge
erates a stationary distributed mirror where the monoto
backscattered amplification of the Stokes wave in the opt
medium is saturated by the monotonic depletion of
forward-propagating cw pump@13#. On the other hand, in the
unlimited three-wave interaction, the cw pump may gener
a localized structure: Two kinds of initial conditions for th
Ea or ES signals will yield two classes of localized travelin
structures which may be associated with the above-cited
periments.

~i! Initially boundedStokes or material wave fluctuation
yield, as we show in this paper, asubluminousbackscattered
three-wave solitary structure, whose constant velocity
uniquely determined by the damping coefficients and the
pump level, and which is anattractor for any initial condi-
tion in a compact support. ThisCauchy problemof an ini-
tially bounded Stokes wave packet, propagating~in the
absence of interaction! at the velocity of light, and colliding
with a cw pump~Fig. 1!, cannot yield a superluminous as
ymptotic traveling structure.

~ii ! Initially unboundedStokes conditions present wel
known analyticalsuperluminousthree-wave soliton solutions
@14–16#, which are also available for dissipativeEa andES
envelopes@5,17#. Superluminous motion of the three-wav
localized structure does not contradict by any means the
cial theory of relativity. This motion can be viewed as th
result of the convective amplification of the leading edges
the Stokes and material pulses, whereas their rears ar

0
ed
-

FIG. 1. Shape of the initially bounded envelopeES(x,0) counter
propagating with respect to a cw pumpEp(x,0).
1086 © 1997 The American Physical Society
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55 1087DISSIPATIVE THREE-WAVE . . . . I. . . .
tenuated, since the pump wave is depleted during the in
action and totally or partially restored after that. No transp
tation of information can be obtainedvia this deformation
process, which can only occur if a sufficiently extend
background of Stokes light is available. This unbound
problem has often been considered in the literature, sinc
can be integrated by IST in the nondissipative case@18#, and
a perturbative theory has been developed for the weakly
sipative case@19#. To a certain extent, the infinite interactio
problem can be associated with the periodical problem i
cavity, where, below a critical feedback, spontaneous st
turation of superluminous solitary Stokes pulses@5# takes
place from any initial conditions@6#. This case will be con-
sidered in paper II@20# in order to present the full family o
nonintegrable superluminous or subluminous dissipa
solitary attractors, dependent only on the wave-front slope
the backscattered Stokes wave.

In this paper we will consider only case~i!: An initially
bounded Stokes wave packet, associated with localized
terial fluctuations, grows backward at the expense of a m
tained cw-pump input. This problem was already studied
including only the material wave damping@21,22#, and could
not lead to an asymptotic steady state. In the absence of
dissipation, or if only the material wave is assumed to
damped, the Stokes envelope exhibits unlimited amplifi
tion, compression, and frontal steepening, the maximum
the pulse shifting to its wave front with a decreasi
velocity: no saturated steady behavior is obtained@23#. This
nonstationary situation is unchanged even if the slowly va
ing envelope approximation for the material waveEa is
taken off @24#.

However, it has been shown that, for the unbounded c
~ii !, steady traveling solitonlike solutions exist for the Stok
envelope when damping of bothEa andES are taken into
account@5,17#. By analogy, the aim of the present paper is
revisit the initially bounded case~i!, already studied in@22#,
but now taking into account bothEa andES dampings, in
order to look for a steady traveling Stokes envelope solu
as well. Indeed, we shall see in this case, by the numer
treatment of the nonlinear three-wave dynamics starting fr
any initial Stokes signalboundedin a compact support, tha
it evolves toward a backscattered pulse attractor with c
stantsubluminousvelocity, in contrast to the knownsuper-
luminousdissipative soliton solution@5#, which calls for an
unboundedsupport. Our basic tool will be a powerful asse
tion of Kolmogorov, Petrovskii, and Piskunov~KPP! @25#,
which has been applied to several diffusion proble
@26,27#, but never, to our knowledge, in the context of no
linear optics. They state that for nonlinear problems g
erned by the PDE and containing instability and dissipati
a transition from an initially bounded unstable solution to
stable steady-state solution continues a long time by me
of stationary traveling waves, whose velocity is unambig
ously determined by thelinear behavior of the equations
while the shape of the front is determined by the solution
the corresponding ordinary differential equation~ODE!. Our
problem belongs to this class, being initially bounded, dis
pative, and exponentially unstable in the initial parame
regime~undepleted pump approximation!. Therefore thelin-
ear KPP asymptotic method allows us to obtain analytica
the front slope and the velocity of the localized structu
r-
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which are uniquely determined by the damping coefficie
and the cw-pump level. The strength of this result is that t
velocity corresponds to thenonlinearasymptotic steady-stat
structure exhibiting pump depletion and resulting from
complicated transient evolution. The reason for this agr
ment lies in the fact that the front foot of the Stokes struct
always remains in the linear parametric regime; the slope
this front edge asymptotically attains the slope of the wh
nonlinear structure in the steady-state regime, and the ve
ity is determined by this slope.

II. NUMERICAL THREE-WAVE DYNAMICS

We deal with the~1D!space-~1D!time three-wave prob-
lem ~1D is one dimensional!, relevant, for instance, in single
mode optical fibers@22,4#. The nonlinear resonant SBBS~or
SRBS! process couples through electrostriction~through op-
tically induced polarizability variations! a pump wave
Ep(vp ,kp) and a backscattered Stokes waveES(vS ,kS) of
complex amplitudes to a material acoustic wave~or polariz-
ability wave! Ea(va5vp2vS ,ka5kp1kS). Neglecting the
material wave propagation~sinceca!c in SBBS!, it yields,
through the slowly varying envelope approximation, t
three coupled equations in dimensionless units@4#

~] t1]x1mp!Ep52ESEa ,

~] t2]x1mS!ES5EpEa* , ~1!

~] t1ma!Ea5EpES* ,

where the envelope amplitudesEi , the time t and spacex
variables, and the damping ratesg i are normalized to the
constant pump inputEcw and to the SBBS or SRBS couplin
constantK @Ei /Ecw→Ei , tKEcw→t , xcKEcw /n→x , and
g i(KEcw)

21→m i ( i5p,S,a)#.
In order to look for steady localized traveling Stok

structures, we must assume a constant pump input com
sating for Stokes and material losses, and therefore we
glect the damping of the pump wave (mp50). This is locally
legitimate if the structure’s width is small compared
mp

21 . Therefore, considering that the threshold condition
satisfied

mSma[
gSga

~KEcw!2
,1, ~2!

theES andEa waves are unstable, exponentially growing
the linear parametric regime until a nonlinear stage
reached. The basic problem is to determine the nonlin
stage of this unstable process in the presence of dissipa
ES andEa waves, when the depletion of the pumpEp satu-
rates the instability. As we shall see, the nonlinear evolut
of the initially bounded Stokes signal, exhibiting dampin
yields a saturated localized three-wave structure in cont
to the unsaturated no-Stokes-damping case.

Let us consider the nonlinear space-time evolution of
three-wave system governed by Eqs.~1! for an initially
bounded Stokes wave packetES(x,t50) counterpropagating
with respect to the pumpEp(x,t50), as shown by Fig. 1.
Since we are looking for solutions localized in the vicinity
the ES characteristic, it is naturally to reduce the abo
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1088 55MONTES, MIKHAILOV, PICOZZI, AND GINOVART
Cauchy problem to the initial-boundary value problem in t
comovingES frame (j5x1t,t5t), where Eqs.~1! read

~]t12]j!Ep52ESEa ,

~]t1mS!ES5EpEa* , ~3!

~]t1]j1ma!Ea5EpES* ,

with the same initial data ES(j5x,t50)Þ0 @or
Ea(j5x,t50)Þ0# inside the compact support, and supp
mented boundary data Ep(j50,t)51 and
ES(j50,t)5Ea(j50,t)50. This initial-boundary-value
problem well describes the evolution of the bounded ba
scattered envelope interacting with a cw-pump input, an
more suitable for long-time numerical integration.

We integrate Eqs.~3! by following the characteristics
@11,22# and using a standard four-step Runge-Kutta al
rithm, which proved to be remarkably stable for very lo
interaction times. The numerical results show that any ini
Stokes signalboundedin a compact support evolves to
backscattered pulse attractor of constantsubluminousveloc-
ity. The whole pulse only reaches this velocity in the fu
nonlinear asymptotic regime after a complicated transie
The velocity of the nonlinear structure in the numerical d
namics is evaluated from the displacement of the Sto
peak maximum, in the comoving backscattered wave fra
where we represent the dynamics. In Fig. 2 we plot the th

FIG. 2. Three-wave envelope evolution, obtained by numer
computation of Eqs.~3!, in the comoving Stokes framej5x1t for
ma51 andmS50.01, from timet5100 to timet57000, where the
Stokes peak velocity approaches the asymptotic subluminous v
ity V predicted by the theory@and given by Eq.~12!#, while its
shape attains the steady state.~Characteristic timet for SBBS is
10–100 ns@6, 20#!.
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wave dynamical evolution, and in Figs. 3~a! and 3~b! the
time velocity deviationDV(t)5V(t)21 of the Stokes peak
~with respect to the luminous velocityV51) for the case
(mS51022, ma51). During the initial stage following the
collision of the pump with the Stokes signal~Fig. 1!, stimu-
lation of the resonantEa wave spreads theES envelope by
slowing its peak. The result is a transient subluminous m
tion during the initial stage until timet58, as shown in Fig.
3~a!. Then the depletion of the pump causes the Stokes f
to be more amplified than the rear part, and the Stokes p
to drift forward leading to a superluminous motion@Fig. 2,
upper half; Fig. 3~a!#. Note that these large variations of th
velocity are associated with the transient deformation of
pulse, the velocity corresponding only to the Stokes pe
motion. In the nonlinear stage, the Stokes peak continue
have a transient superluminous velocity (V.1) at long times
(t.1300), finally decreasing again~Fig. 2, lower half!, and
asymptotically reaching the subluminous steady state. T
complex transient in the nonlinear stage presents some s
larities with the previously studied dynamics in the absen
of Stokes damping@22#, but now, at some later time, th
presence of the Stokes damping, even extremely smal
responsible for a completely different asymptotic behavi
Indeed, the velocity again becomes subluminous (V,1) un-
til reaching a stable localized steady state at constant velo
@Fig. 3~b!#.

l

c- FIG. 3. Stokes peak velocity variationDV(t)5V(t)21 associ-
ated with the dynamical scenario of Fig. 2.~a! during the initial
stage (0,t,100), first showing transient subluminosit
(DV(t),0) and then superluminosity (DV(t).0); and~b! in the
asymptotic regime ~different coordinate scales! for times
(1000,t,11 200) where the velocity asymptotically approach
the subluminous theoretical value~12! of the attractor.
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Asymptotics

Thus our conjecture is verified: The damping of t
Stokes wave saturates its amplitude, yielding a steady lo
ized structure in contrast to the unlimited amplification a
compression of the pulse in the no-Stokes-damping c
@22#. In Fig. 4 we plot this dissipative three-wave stea
solution presenting asymmetry and moving at constant
locity V511DV in the far asymptotic stage. The numeric
value of the velocity deviation computed in this regime~in-
teraction timet511 000) isDVnum 5 2 2.51031025.

Therefore, this nonlinear~nonintegrable! problem, gov-
erned by the PDE, presenting instability and dissipation,
leading to a steady asymptotic behavior, contains all the
gredients required by the KPP procedure in order to ob
the expression for the velocity analytically.

III. ASYMPTOTIC THEORY: DETERMINATION
OF THE PULSE’S VELOCITY AND SLOPE

Starting from localized initial Stokes- or material-wav
fluctuations, which are unstable and exponentially grow
at the expense of a cw-pumpEp , counterpropagating with
respect to the Stokes componentES , the KPP procedure al
lows us to look for localized traveling wave solutions. Th
asymptotic procedure, based on the steepest descent me
analytically determines the velocity and the slope of
wave front in the linear regime of undepleted pump,which
turns to be the value of the velocity of the nonlinear stea
stateof strong pump depletion, since the front edge of t
whole three-wave steady structure remains in the linear
depleted pump regime every time.

Let us stress this key point. We have seen that thenon-
linear process saturates the instability, and leads to a non
ear localized steady structure. Because the slope of its fr
determining the velocity of the whole steady state, asym
totically rejoins the slope of its front foot, which alway
remains in the linear undepleted pump regime, thelinear
asymptotic behavior may allow us to determine the ste
velocity through the KPP procedure.

Thus, assuming an undepleted pump wave (Ep51)
throughout the whole linear interaction range, the lineariz
Eqs.~1! yield

~] t2]x1mS!~] t1ma!ES,a5ES,a , ~4!

FIG. 4. Steady asymptotic three-wave profiles moving at
velocity V predicted by the theory.
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whose complex characteristic equation for an exponential
pendence@ES,a} exp (gt1px)# reads

~g2p1mS!~g1ma!51, ~5!

in which we keep only the unstable root~Reg.0)

g5
p2ma2mS

2
1

A~p1ma2mS!
214

2
. ~6!

For a large class of spatially bounded conditions, we m
give the linear solution of Eqs.~1! by means of the Laplace
transform

ES,a~x,t !5
1

2ipE2 i`1s

i`1s

ẼS,a~p,t !exp~px!dp;

ẼS,a(p,t)5ẼS,a(p)exp@g(p)t#, whereg(p) is given by Eq.
~6!; and

ẼS,a~p!5E
0

`

ES,a~x,0!exp~2px!dx.

Let us look for traveling waves with velocityV

z5x1Vt, ~7!

yielding

ES,a~z,t !5
1

2ipE2 i`1s

1 i`1s

ẼS,a~p!exp@g~p!2pV#t

3exp~pz!dp. ~8!

This linear solution holds for long timest, allowing us to
obtain theasymptotic behaviorof the far pulse wave front
wherethe linear undepleted pump approximation always
mains valid, while the interaction is already strong enough
that, in our problem, the exponent functio
f (p)5g(p)2pV has a saddle pointp5ps . Therefore, we
are able to apply the steepest descent method to comput
asymptotic behavior@28#, s being chosen so that the integr
path contains the saddle point

@]g~p!/]p#p5ps
5V. ~9!

Expandingf (p) aroundp5ps , and integrating, we obtain

ES,a~z,t !}~ t f p5ps
9 !21/2ẼS,a~ps!exp@g~ps!2psV#t

3exp~psz!. ~10!

For times long enough to justify the asymptotic treatme
the stationarity of Eq.~10! implies a velocity of the pulse
given by

g~ps!5psV ~11!

at the order of (lnt)/t. For any other velocity the pulse is no
steady. From Eq.~10!, a velocity lower than that given by
Eq. ~11! yields an unstable pulse exponentially growing un
its slope reaches the critical valueps , and therefore the criti-
cal velocityV. In the opposite case a greater velocity driv
a damping. This steady state becomes theattractor solution
of the whole nonlinear three-wave PDE dynamics proven
the numerical computation. Equations~6!, ~9!, and ~11! de-

e
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1090 55MONTES, MIKHAILOV, PICOZZI, AND GINOVART
termine the velocityV, the slope of its wave frontp0 and the
growth rate g(p0) of the localized traveling solution
ES,a(x1Vt), as functions of the damping parametersmS and
ma :

V5
21ma

22mSma12A12mSma

41~ma2mS!
2 , ~12!

p05
1

mS
1mS2

1

ma
2ma1

A12mSma

ma
1

A12mSma

mS
,

~13!

g~p0!5
12mSma1A12mSma

mS
. ~14!

Let us plot in Fig. 5 the curvesV1(ps) and V2(ps),
whose intersection atps5p0 determines the steady velocit
V. CurveV1(ps) is obtained from the saddle point conditio
~9!, with g(p) given by solution~6!,

V15
1

2
1

ps1ma2mS

2A~ma2mS1ps!214
~15!

andV2(ps) is obtained from the stationarity condition~11!
with g(p) still given by Eq.~6!,

FIG. 5. CurvesV1(ps) andV2(ps), respectively, given by ex-
pressions~15! and ~16!. The intersection point determines th
steady subluminous velocityV, given by Eq.~12!, of the solitary
three-wave attractor. In the absence of Stokes damping (mS50),
there is no intersection point~dashed curves!, and thus no steady
traveling structure@22#.
J

p

o

V25
1

2
2

mS1ma

2ps
1

A~ma2mS1ps!214

2ps
. ~16!

The minimum of the curveV2(ps) just corresponds to the
steady growth rateps5p0. This attractor point is removed to
1` whenmS→0, the limit point where the dashed lines o
Fig. 5 intersect. Therefore no steady solution is attainable
the absence of Stokes damping, in accordance with the re
of @22#.

We have tested the accuracy of Eq.~12! for several pairs
(mS ,ma), and we always find an excellent agreement; e
for the case described in Sec. II (mS51022;ma51), the nu-
merical value for the velocity computed in the far asympto
stage wasDVnum 5 2 2.51031025, while the theoretical
value readsDVtheor 5 2 2.51231025, given by Eq.~12!
and plotted in Fig. 3~b!.

IV. CONCLUSION

We have found a three-wave dissipative solitary struct
for an initially bounded Stokes wave packet. The unsta
stimulated backscattering process in the presence of a
pump and material-wave damping, exhibiting a long a
complicated space-time nonlinear transient, is finally sa
rated by even an extremely small Stokes damping, leadin
a steady attractor. Let us point out the remarkable agreem
of the pulse’s characteristic parameters~velocity, slope! ob-
tained from the nonlinear PDE dynamics, in the asympto
steady state, with the values given by the linear asympt
KPP procedure. The reason for this agreement lies in the
that the front slope of the asymptotic steady Stokes struct
which determines the subluminous velocity, coincides w
that of its front foot, which always remains in the line
parametric regime. Thus we obtain a steady sublumin
three-wave structure, uniquely determined by the mater
and Stokes-wave dampings and the cw-pump level, in op
sition to the unlimited pulse amplification and compress
in the absence of Stokes damping@22#, and to the superlu-
minous solitonlike solution@5# which calls for an unbounded
Stokes support, and which stability will be analyzed in pap
II @20#.
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