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Tsukamoto’s Theorem in Characteristic two

Clotilzio Moreira dos Santos

abstract: In this paper it is proved that hermitian forms over quaternion division

algebras over local fields of characteristic two are classified by their dimension and

discriminant.
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1. Introduction

The Tsukamoto’s theorem classifies skew-hermitian forms over quaternion divi-

sion algebras over local fields of characteristic different from two. It was generalized

by Becher and Mahmoudi to a quaternion division algebra over a Kaplansky field,

(see §6 of [2]). In this article we consider non-singular (or regular) hermitian forms

over a quaternion division algebra over a local field of characteristic two and we

show that Tsukamoto’s classification is also valid in this case. We see that these

forms correspond to skew-hermitian forms over quaternion division algebras over

fields of characteristic different from two. The main theorem (see Theorem 3.1) is

very similar to theorem 3.6 of Chapter 10 of [7] and the Theorem 3 of [8]. How-

ever we can see in the following corollary that the structures of these forms are

independent of the characteristic.

In order to state our results we need some notation. Throughout this paper F

will always denotes a field of characteristic two, and Ḟ its multiplicative group of

nonzero elements.

We denote by Q a quaternion algebra over a field F. There always exists an F -

basis {1, i, j, k} of Q with multiplication given by ij + ji = i, j2 + j = b ∈ F, i2 =

a ∈ Ḟ , ji = k, (see Chapter 8, Section 11 of [7]). Every basis {1, i, j, k} satisfying
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the above relations is called standard basis of the quaternion algebra. In this case,

we also denote Q by
[
(b, a)/F

)
.

The standard involution σ : Q → Q is given by σ(x) = α + β + βj + γi + δk,

for all x = α + βj + γi + δk ∈ Q. The element xσ(x) belongs to F, and is called

the norm of x and is denoted by N(x). Considering the standard basis {1, i, j, k}

of the F -vector space Q, the norm N : Q → F is the quadratic form denoted by

[1, b] ⊥ 〈a〉[1, b], that is N(x) = α2 + αβ + bβ2 + a(γ2 + γδ + bδ2). In general, the

two-dimensional quadratic forms cα2 + dβ2 and ecα2 + eαβ + edβ2 over F will be

denoted by [c] ⊥ [d] and 〈e〉[c, d], respectively. For a quadratic form q : V → F (V

an F -vector space), DF q = {q(u) ∈ F, u ∈ V \ {0}} denotes the subset of elements

of F represented by q. For instance, DF ([1] ⊥ [a]) ⊂ DF ([1] ⊥ 〈a〉[1, b]) ⊂ DFN.

It is known that Q is a division algebra if and only if 0 /∈ DFN. The quadratic

form q is universal if q represents all α ∈ Ḟ . We refer to [1] for general facts about

quadratic forms in characteristic two.

The element x ∈ Q is said to be symmetric if σ(x) = x, and we denote by

Sym(Q) the subset of all symmetric elements of Q. It is easy to see that Sym(Q) =

F + Fi + Fk = {x ∈ Q | x2 = N(x) ∈ F}. The quadratic form NSym(Q) :

Sym(Q) → F is denoted by [1] ⊥ 〈a〉[1, b]. For each x = α+ γi+ δk ∈ Sym(Q) we

have N(x) = α2 + a(γ2 + γδ + bδ2).

2. Preliminaries

Let Q be a quaternion division algebra over a field F. An hermitian form on a

finite dimensional Q-right vector space V is a map h : V × V → Q which satisfies

the following conditions:

h(u+ v, w) = h(u,w) + h(v, w), h(u, v + w) = h(u, v) + h(u,w),

h(uα, vβ) = σ(α)h(u, v)β, and σ(h(u, v)) = h(v, u),

for all u, v, w ∈ V and all α, β ∈ Q.

We will refer to h as being an hermitian form over Q and V as its underlying

vector space. The pair (V, h) is called an hermitian space. The Q-dimension of

V is said to be the dimension of h over Q; dimQh, and also the dimension of the

hermitian space (V, h) over Q.

The hermitian form h over Q (or hermitian space (V, h) is said to be regular

or nondegenerate if, h(u, v) = 0, for every v ∈ V, then u = 0, that is, if for any

u ∈ V \ {0}, the associated Q-linear form V → Q, v → h(u, v) is nontrivial.

Otherwise, h or (V, h) is said to be singular or degenerate.

We say that an hermitian form h, or hermitian space (V, h) is isotropic if there

exists a vector u ∈ V \ {0} such that h(u, u) = 0, and h or (V, h) is anisotropic in

otherwise.
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We say that the hermitian form h represents the element z ∈ Q if there exists

u ∈ V \ {0} such that h(u, u) = z. Denote by Dh the subset of elements of Q

represented by h. Thus 0 ∈ Dh if and only if h is isotropic. Of course, Dh ⊂ Sym(Q)

and we say that h is universal if h represents all z ∈ Sym(Q).

An isometry between two hermitian spaces (V1, h1) and (V2, h2), or between h1

and h2 is an isomorphism of Q-vector spaces τ : V1 → V2, such that h1(u, v) =

h2(τ (u), τ (v)), for every u, v ∈ V1. In this case we say that (V1, h1) and V2, h2), or

h1 and h2 are isometric and write (V1, h1) ≃ (V2, h2), or h1 ≃ h2 to indicate this.

Given two hermitian spaces (V1, h1) and (V2, h2) over Q the orthogonal sum of

h1 and h2, denoted by h = h1 ⊥ h2, is the hermitian form over Q with underlying

vector space V = V1 ⊕ V2 defined by h(u, v) = h1(u1, v1) + h2(u2, v2), for every

u = (u1, u2), v = (v1, v2) ∈ V. The hermitian space (V, h) is denoted by (V1, h1) ⊥

(V2, h2). In particular, if V1, V2 are subspaces of V such that V = V1 ⊕ V2 and

h(u, v) = 0 for every u ∈ V1, v ∈ V2 then (V, h) ≃ (V1, hV1
) ⊥ (V2, hV2

).

An hermitian form h with underlying vector space V is said to be diagonalizable

if there exists a basis {e1, e2, . . . , en} of V such that h(u, v) =
∑n

i=1 σ(xi)aiyi,

(with ai ∈ Sym(Q)) for all u =
∑n

i=1 eixi and v =
∑n

i=1 eiyi ∈ V. We denote h by

〈a1, a2 . . . , an〉, or also by n〈a〉, if ai = a for all i = 1, 2, . . . , n. It follows that h is

regular if and only if ai 6= 0, for all ai ∈ Q.

Two elements a, b ∈ Sym(Q) are congruent if there exists c ∈ Q such that

b = σ(c)ac, which is equivalent to saying that 〈a〉 ≃ 〈b〉 over Q.

For an element a ∈ Ḟ we define the scaled hermitian form ah by (ah)(u, v) =

a.h(u, v), for all u, v belonging to underlying vector space of h. In particular

a〈a1, a2, . . . , an〉 = 〈aa1, aa2, . . . , aan〉. Two hermitian forms h and h1 over Q are

said to be similar if h1 ≃ ah, for some a ∈ Ḟ .

The Grothendieck group and the Witt group of the regular hermitian forms over

Q are denoted, respectively, by Ŵ (Q) and by W (Q). A regular hermitian space

(V, h) such that there exists a decomposition V = N ⊕ P with N = N⊥, that

is, h =

(
0 α

σ(α) β

)
is called metabolic hermitian space. We denote the two-

dimensional metabolic hermitian space h =

(
0 1

1 a

)
by IM(a). The following

lemma is due to knebusch and can be seen in ( [4], Chapter I, Proposition 3.7.6) or

( [7], Chapter 7, Lemma 3.7).

Lemma 2.1. Let (V, h) be a metabolic hermitian space. Then (V, h) ⊥ (V,−h) ≃

IH(N) ⊥ (V,−h) and thus [V, h] = [IH(N)] in Ŵ (Q), where IH(N) is an hyper-

bolic space for some subspace N of V and [V, h] is the isometry class of (V, h). In

particular [V, h] is zero in W (Q).
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Proposition 2.2. (Chapter I; 6.1.1 and 6.1.4 of [4]) Let (V, h) be a regular hermi-

tian space over Q. There exists an orthogonal decomposition (V, h) ≃ (V ′, han) ⊥

IM(a1) ⊥ · · · ⊥ IM(ar), with han anisotropic or zero and r ≥ 0. Furthermore,

(V ′, han) is uniquely determined up to isometry by (V, h). In particular, (V, h), (or

h) is isotropic if and only if r ≥ 1.

We write h ≃ han ⊥ hIM, where hIM is a metabolic hermitian space.

As in [8] and also [7] the discriminant of an hermitian form h (or hermitian

space (V, h)) over Q will be denoted by disc(h) and it is defined as follows: Let

{e1, e2, . . . , en} be an Q-basis of V. Denoting by Nrd the reduced norm from Mn(Q)
·

to Ḟ , we put disc(h) = (−1)nNrd
(
(h(ei, ej))

)
modḞ 2. It is known that disc(h) is

independent of the choice of the basis of V and is also independent of the choice

of the splitting field of Q,( see Chapter 8, Lemma 5.7 of [7], 16.1 of [5] or §22 of

[3]). In particular, given the quaternion algebra
[
(b, a)/F

)
, if we take the algebraic

closure F of F, we have an F -algebra homomorphism ϕ :
[
(b, a)/F

)
→ M2(F )

given by ϕ(i) = i0 and ϕ(j) = j0, where i0 =

(
0 α

α 0

)
and j0 =

(
β 0

0 β + 1

)
in

M2(F ) (the algebra of 2× 2 matrices over F ) and α, β are elements of F such that

α2 = a, β2+β+b = 0. It follows that Nrd(〈z〉) = ([1, b] ⊥ 〈a〉[1, b])(x1, x2, x3, x4) =

N(z), where z = x1 + x2j + x3i+ x4k ∈ Q and x1, x2, x3, x4 ∈ F.

Since reduced norm is multiplicative ( [3], §22(7) and §20, Theorem 1 and

§22, Theorem 1) or ( [5], §16.5, Corollary b), it follows that disc(h1 ⊥ h2) =

disc(h1).disc(h2). Now, if τ : (V1, h1)
∼
→ (V2, h2) is an isometry and B1, B2 are F -

basis of V1 and V2 respectively, take (h1)B1
, (h2)B2

, (αij) = (τ )B1B2
the matrices of

h1, h2 and τ , with respect to the given basis. Then (h1)B1
=
(
σ(αij)

)t
(h2)B2

(αij),

where σ : Q → Q, is the standard involution. From Lemma 5 of ( [3], §22) we get

Nrd
(
(h1)B1

)
= σ

(
Nrd

(
(αij)

t
))
Nrd

(
(h2)B2

)
Nrd

(
(αij)

)
= Nrd

(
(h2)B2

)
.

in Ḟ /Ḟ 2, since Nrd
(
(αij)

t
)
∈ F. Thus Nrd and disc does not depend of the isom-

etry class of (V1, h1). Furthermore, as hyperbolic space and metabolic hermitian

space has Dieudonné determinant 1.Ḟ 2, (see [3] §19 Example 1, §20 Definitions 1

and 3) the Proposition 5 of [8] holds for any characteristic:

Proposition 2.3. The mapping h → disc(h) induces an homomorphism from the

Witt group W (Q) into Ḟ /Ḟ 2.

The mapping W (Q) → Ḟ /Ḟ 2 will also be denoted by disc.

Proposition 2.4. Two one-dimensional hermitian forms over Q are similar if and

only if their discriminants are the same in Ḟ /Ḟ 2.
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Proof: It is exactly the same as ( [2], Proposition 4.2). ✷

The following lemma in characteristic different from two is due to Scharlau

( [7], Chapter 10, Lemma 3.4).

Lemma 2.5. Let λ ∈ Sym(Q)\{0} and c ∈ Ḟ . If λ /∈ F, then the hermitian

forms 〈λ〉 and 〈cλ〉 are isometric over Q if and only if c is represented over F by

the quadratic form [1] ⊥ [a]. If λ ∈ F, then the hermitian form 〈λ〉 and 〈cλ〉 are

isometric over Q if and only if c is a norm in F.

Proof: We have 〈λ〉 ≃ 〈cλ〉 over Q if and only if

σ(x)λx = cλ, (∗)

for some x ∈ Q. Thus, if λ ∈ F, then (∗) holds if and only if σ(x)x = c, that

is, c is a norm in F. If λ /∈ F, then there exist j′ ∈ Q, s ∈ F such that j′2 +

j′ + s = 0, j′λ + λj′ = λ (If λ = α + βi + γk, then β or γ is nonzero. Take

j′ = j + α
aβ

i, if β is nonzero, or j′ = j+ α
aγ

i if β is zero). Thus,
[
(N(j′), N(λ))/F

)

is a quaternion algebra contained in Q. It follows that Q =
[
(N(j′), N(λ))/F

)
and

therefore we can suppose λ = i. Replacing in (∗) we get σ(x)ix = ci, for some

x ∈ Q, or equivalently N(x)ix = cxi. Writting x = y + zj, with y, z ∈ Fi. Thus

N(x)(iy+ izj) = c
(
iy+ z(i+ ij)

)
, (because yi = iy and ji = i+ ij). Equivalently,

N(x)iy +N(x)izj = ci(y + z) + cizj, and so

{
N(x)y = c(y + z)

N(x)z = cz.

If z 6= 0, then N(x) = c and cz = 0. Thus z = 0, absurd. It follows that z = 0, x = y

and c = N(y) ∈ DF ([1] ⊥ [a]). ✷

Remark 2.6. If we consider x = y + iz, y, z ∈ F + Fj, we may conclude that

y, z ∈ F. Thus, once again N(x) ∈ DF ([1] ⊥ [a]).

3. Main Results

The field F in question is local field of characteristic two, that is, F = K((t))

(the field of Laurent’s power series of K), where K is a finite field of characteristic

two. Every element f ∈ F is of the form f = tm(1+a1t+a2t
2+· · · ), ai ∈ K, m ∈ Z.

Since K = K2, f can be written in the form f = g2 + th2, for some g, h ∈ F.

Thus {1, t} is a basis for the F 2-vector space F and the quadratic form [1] ⊥ [t] is

universal over F. The unique quaternion division algebra over F, up to isomorphism,

is Q =
[
(b, t)/F

)
, for some b ∈ F and their norm form is N = [1, b] ⊥ 〈t〉[1, b] up to

isometry, (see, for instance, ( [1], Chapter II, Proposition 1.19 and [6], Lemma 1.7)
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Theorem 3.1. Let F = K((t)) be a local field of characteristic two and Q =[
(b, t)/F

)
be the unique quaternion division algebra over F, up to isomorphism.

Then

(a) For any dimension ≥ 1 there are regular hermitian forms of any discrimi-

nant.

(b) A two-dimensional regular hermitian form over Q is isotropic if and only if

has trivial discriminant.

(c) Any regular hermitian form h with dimQ ≥ 2, is the form h ≃ 〈z〉 ⊥ hIM if

dimQh is odd and h ≃ han ⊥ hIM if dimQh is even, for some metabolic hermitian

space hIM and han = 0 or 〈1, z〉 for some z ∈ Sym(Q).

(d) Let h1 and h2 be regular hermitian forms of equal dimension over Q. Then

disc(h1) = disc(h2) if and only if (h1)an ≃ (h2)an.

Proof: (a) Since DF ([1] ⊥ [t]) = Ḟ and DF ([1] ⊥ [t]) ⊂ DF ([1] ⊥ 〈t〉[1, b]), for any

α ∈ Ḟ there exists z0 ∈ Sym(Q) such that N(z0) = α. Thus the hermitian forms

〈z0〉 and 〈1, . . . , z0〉 have discriminant α.

Now, we show (d) for 1-dimensional forms. Let z1, z2 ∈ Sym(Q) and assume

that hermitian forms 〈z1〉 and 〈z2〉 over Q have the same discriminant. According

to Proposition (2.4), 〈z1〉 ≃ 〈cz2〉 for some c ∈ Ḟ . Since Ḟ = DF ([1] ⊥ [t]) and

DF ([1] ⊥ [t] ⊂ DFN, by Lemma (2.5) we obtain 〈cz2〉 ≃ 〈z2〉 and so 〈z1〉 ≃ 〈z2〉.

(b) Let z1, z2 ∈ Sym(Q) be such that the form 〈z1, z2〉 has discriminant 1. Then

Nrd(〈z1〉) and Nrd(〈z2〉) represent the same element in Ḟ /Ḟ 2. This means that

〈z1〉 ≃ 〈z2〉 by what we showed above. It follows that 〈z1, z2〉 is isotropic.

Conversely, if h is an 2-dimensional regular hermitian form over Q and h is

isotropic then there is a basis B = {u, v} such that h(u, u) = 0, h(u, v) = h(v, u) =

1. Thus h ≃ IM(h(v, v)) and disc(h) = 1.

(c) First we give Tsukamoto’s argument to show that every 3-dimensional re-

gular hermitian form over Q is isotropic. Suppose that h is anisotropic. Since

h can be diagonalized ( [4], Chapter I, Lemma 6.2.1) we may assume that h =

〈z1, z2, z2〉, with z1, z2, z3 ∈ Sym(Q)\{0}. From (a) there exists z0 ∈ Sym(Q) such

that Nrd(〈z0〉) = disc(h). As Sym(Q) has F -dimension 3, there exist c0, c1, c2, c3 ∈

F, not all zero, such that c0z0 + c1z1 + c2z2 + c3z3 = 0. For ci 6= 0, the Proposition

(2.4) implies that 〈cizi〉 and 〈zi〉 are similar, that is, cizi = σ(di)zidi, for some

di ∈ Ḟ , i = 0, 1, 2, 3. If we take di = 0 for ci = 0, we obtain
∑3

i=0 σ(di)zidi = 0

and therefore 〈z0〉 ⊥ h is isotropic. From Proposition (2.2) we have 〈z0〉 ⊥ h ≃

h1 ⊥ IM(a), for some a ∈ Sym(Q). Since disc(IM(a)) = 1 it follows that disc(h1) =

disc(〈z0〉 ⊥ h) = 1. From (b) and Lemma (2.1) we get 〈z〉 ⊥ h = 0 in W (Q), that

is, h = 〈z0〉 in W (Q). As dimQh = 3, h is isotropic, absurd. This concludes the
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first part. From Proposition (2.2) and the first part every regular hermitian form

h with dimQh ≥ 2 is the form h ≃ 〈z〉 ⊥ hIM, for some z ∈ Sym(Q), if dimQh is

odd, and h ≃ han ⊥ hIM, for some metabolic hermitian space hIM and han = 0 or

han ≃ 〈z1, z2〉, if dimQh is even.

If han ≃ 〈z1, z2〉, by (a) disc(han) = disc(〈z0〉), for some z0 ∈ Sym(Q). Then

〈1, z0〉 ⊥ han is isotropic from the first part. We write 〈1, z0〉 ⊥ han ≃ h1 ⊥ IM(a),

for some two-dimensional regular hermitian form h1 and a ∈ Sym(Q). As before

disc(h1) = 1 and by part (b) and Proposition (2.2) we obtain 〈1, z0〉 ⊥ han = 0 in

W (Q). Thus han ≃ 〈1, z0〉.

(d) Let h1 and h2 be regular hermitian forms of equal dimension over Q. Then

h1 ≃ 〈z1〉 ⊥ (h1)IM, h2 ≃ 〈z2〉 ⊥ (h2)IM if dimQhi is odd, i = 1, 2, or h1 ≃ (h1)an ⊥

(h1)IM, h2 ≃ (h2)an ⊥ (h2)IM, if dimQhi is even, i = 1, 2. Suppose dimQhi = 1, i =

1, 2. Since disc(hIM) = 1, from Proposition (2.4) disc(h1) = disc(h2) if and only if

〈z1〉 ≃ 〈z2〉. If dimQhi is even for i = 1, 2 and (h1)an ≃ 〈1, z1〉, (h2)an ≃ 〈1, z2〉

then disc(h1) = disc(h2) implies that disc(〈z1〉) = disc(〈z2〉). From Proposition

(2.4) 〈z1〉 ≃ 〈z2〉, and so (h1)an ≃ (h2)an. Clearly (h1)an ≃ (h2)an and dimQh1 =

dimQh2 implies that disc(h1) = disc(h2). Finally, if there is the case (h1)an = 0

and (h2)an ≃ 〈1, z2〉 anisotropic, then disc(h1) 6= disc(h2) and so (h1)an is not

isometric to 〈1, z2〉. ✷

Corollary 3.2. Let F = K((t)) be a local field of characteristic two and Q the

unique nonsplit quaternion algebra over F. Then Ŵ (Q)
∼
→ Z⊕Ḟ /Ḟ 2, and W (Q)

∼
→

Z/2Z⊕ Ḟ /Ḟ 2.

Proof: We denote the elements of Ŵ (Q) by h1 − h2 as into ( [7], page 239) and

we define ϕ(h1 − h2) = (dimQh1 − dimQh2, disc(h1).disc(h2)
−1). Then ϕ is clearly

a group homomorphism. If ϕ(h1 − h2) = (0, 1), then dimQh1 = dimQh2 and

disc(h1) = disc(h2). From Theorem (3.1, (d)) (h1)an ≃ (h2)an and dimQ

(
(h1)IM

)
=

dimQ

(
(h2)IM

)
. From Lemma (2.1) (h1)IM ≃ (h2)IM and so h1 − h2 =

(
(h1)an −

(h2)an
)
+
(
(h1)IM−(h2)IM

)
= 0 in Ŵ (Q). Therefore ϕ is injective. For every (m, a) ∈

Z ⊕ Ḟ /Ḟ 2 take z0 ∈ Sym(Q) such that disc(〈z0〉) = a and h = 〈1, 1, . . . , z0〉, with

dimQh = |m| + 1. Then ϕ(h − 〈1〉) = (m, a), if m ≥ 0 and ϕ(〈1〉 − h) = (m, a),

if m < 0. This conclude that ϕ is an isomorphism and induces an isomorphism

ϕ : W (Q) → Z/2Z⊕ Ḟ /Ḟ 2, given by ϕ(h) =
(
dimQh(mod2), disc(h)

)
. The Lemma

(2.1) and the Proposition (2.2) imply that the elements of the Witt group are

determined by isometric classes of anisotropic regular hermitian forms. Thus

W (Q) = {〈z0〉, 〈1, z0〉 | z0 ∈ Sym(Q)}. ✷
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