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Concerning the chiral phase transition in QED
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Using the effective potential for composite operators but without using a variational approach, we

show the possible existence of a dynamical phase transition from a massive phase to a massless one.

The problem of the spontaneous breakdown of chiral
symmetry with a composite operator in non soluble
theories such as four-dimensional QED is an old and
open one. ' Some time ago we showed, using the for-
malism of the effective potential for composite operators
(EPCO), that in the ladder approximation, in quantum
electrodynamics in a continuum space-time with a mass-
less fermion, the latter gets a mass for every nonzero cou-
pling constant. In this case the Goldstone theorem is
evaded. The picture that arises, taking our results seri-
ously, is in close analogy with the BCS theory of super-
conductivity in which any charge different from zero pro-
duces a condensate if not thermally disrupted. In Ref. 3
we calculated the EPCO using a variational approach
and two asymptotic solutions for the Schwinger-Dyson
(SD) equation for the fermion propagator (see below)
which are valid for 0&a=e /4~&m. /3; that is, we are
able to search for a critical coupling constant in the
above interval for a.

On the other hand, it is possible to consider the mecha-
nism of spontaneous chiral-symmetry breaking in QED
based on the analogy between this phenomenon and that
of the "fall" of a particle to the center. In this formal-
ism the critical coupling constant is a, =m/3, which
separates the massless (a & a, ) and the massive (a & a, )

phases.
A third approach to the problem of chiral phase transi-

tion is the lattice technique. In noncompact lattice QED
in the quenched approximation the critical coupling con-
stant a, =3.75 has been found. However, using an im-
proved action (having the same infrared behavior but
differing in the ultraviolet part) the critical constant be-
comes a, =2.00. The authors of Ref. 7 have interpreted
these results as an indication that the critical coupling
constant is nonuniversal and is strongly influenced by the
short-distance behavior of the gauge field theory. When
fermions are introduced in the theory the phase transi-
tion survives. But in Ref. 8 fermions have a relatively
large bare mass: m =0.25 and 0.20 in lattice units. Re-
cently a study of the chiral phase transition in compact
QED with light fermions (m =0. 1,0.2) gave a critical
coupling constant lower than the previous ones:

a, =1.119 for m =0.10 and a, =1.088 for m =0.25. In
Ref. 9, the existence of a first-order transition for
m =0.10 is also suggested.

Recently a lot of new and interesting results have been
obtained in noncompact QED. For example, with four
species of light fermion (i.e., Nf =4) and bare fermion
mass m =0.0125 in lattice units simulation data confirm
that there is a second-order phase transition to a strong-
coupling phase where chiral symmetry is broken. ' There
is also a finite-size effect which is a nontrivial effect which
can be interpreted as an indication that the phase transi-
tion is associated with an ultraviolet-stable fixed point of
an interaction theory of meson bound states. The theory
also shows a real temperature and flavor number depen-
dence. "

We can think that our results using EPCO with a vari-
ational approach which gives us a, =0 (Ref. 3) could be
consistent with the collapse picture and lattice tech-
nique " in which a, 1 if there is a phase transition
with a critical coupling constant a,', with 0(a,' &1 but
now the transition being from a massive phase (a & a,' ) to
a massless one (a & a,'). Then the other phase transition
with a, ~ 1 from a massless phase to a massive one could
occur. If this is true the reason we did not find the criti-
cal coupling constant a,' in Ref. 3 could be an artifact of
the variational approach or of the two-loop effective po-
tential. On the other hand, in order to have physically
significant results we must use in the effective potential
exact solutions of the SD equation or a variational ap-
proach. Of course, exact solutions to the nonlinear SD
equation are not known; for this reason the variational
approach is the preferred one in the literature for both
Abelian ' ' and non-Abelian' theories.

In this paper we want to point out that in the case of
QED in the latter approximation and with —p ~ ~ we
have asymptotic solutions and for this reason we can use
them with some confidence in the effective potential
without using a variational approach. This could not be
done in QCD in which even asymptotic solutions are only
approximates. ' '

%'e shall use the usual situation ' ' of the free vertex
and
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S(P)=—, G '(p) =S '(p) —X(p),

I p v

Dpv( )
pv p p

with X(p) being a nontrivial solution of the SD equation
for the fermion propagator which in this approximation
becomes

.
X( ) 3 2 dk X(k)

(2)2~4 p k 2 k2 y2

After writing the last equation in Euclidean space and
integrating in the angular variables we can obtain in a
straightforward way the SD equation in the differential
form

d'X(p ) + 3 d X(p ) + 4eX(p )

dp2 p dp p2+X2(p )

With appropriate boundary conditions, (2) and (3) are
equivalent. Both Eqs. (2) and (3) are nonlinear and no
analytical solutions have been found. However, if we
consider the regime in which p ))X (p ) we can write
Eq. (3) as

d'X(p) + 3 dX(p) +4 X(p)
dp p dp p

and it is easy to show that this linearized SD equation has
exact solutions of the form

2—)
-4

FIG. 1. The eftective potential as a function of the coupling
constant. With the f (p ) solution (solid curve) there is a criti-
cal coupling constant (a,. =0.67}; this is not the case for the

f+ (p ) solution (dashed curve).

with

V, (X)= 6, 2 d'p X(p)
(27r) p +X (p)

2

X(p)~ f(p), f(p)= (5)
p

since y(1 —y)=e That is., y+= —,'[1+(1 4E)' ] —and
e= 3a /4'.

The Euclidean effective potential at the two-loop level
1s

d4 X2
V(X)=2J 4 ln 1+

(2m ) p'

d k X(k)
(2n) (p —k) [k +X (k)]

In this work we use the ansatz '

X (p ) =@[8(p p)+ f+(p )&(—p —p)]

(7)

2X'(P ) + v, (x)
p +X (p)

(6) with f+(p) given in Eq. (5) with y=Z+. Using expres-
sion (8) in (6) with x =p jp and y =k /p we obtain

where

(p E)= 3 —41n2 —2I dx x ln 1+p 00 f2(x)
16~ 1 X

+ v, (~)x+f (x)
(9)

V2(e) = —4e 1 —ln2 —
—,'ln 2+(1—ln2)] 2 dx f (x)

x x+f'(x)

1 dx f(x) " f(y) f(x} dy f(y)
2 i x x+f (x) & y+f'(y) ~ x+f (x) -' y y+f (y)

(10)

The above expressions (9) and (10) were calculated nu-
merically as a function of e (or a). We can search for a
possible phase transition, looking for a change of sign in
the effective potential, that is, if a critical coupling con-

stant exists such that below it (a(a, ) the potential is
negative. This is indeed the case for the irregular solu-
tion y =y . The results are shown in Fig. 1. For the

f (p) solution (solid curve) the critical coupling con-
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stant is a, =0.67. For the f+ (p ) solution (dashed curve)
there is no change of sign. Then for o. )o., =0.67 the
theory has massless fermions and then the second phase
transition should appear with a stronger critical coupling
constant e, =~/3.

We are well aware that our results do not prove the ex-
istence of this phase transition. We only point out the
possibility of this. The effective potential in the massive
phase is unbounded below. This is because we are assum-
ing the existence of an eigenvalue condition; that is, the P
function in the renormalization-group equations van-
ishes' and in this case the effective potential is a simple
power. But this is exactly why we think that the change
of sign of the effective potential is a nontrivial result. Us-

ing a variational approach it is possible to get an effective
potential which is bounded below, but in this case no
transition to a massless phase appears.

Only by obtaining better solutions to the SD equations
or through agreement with other techniques can we
confirm if the possibility we have pointed out in this pa-
per is realized in nature or not.
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