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We investigate the dissipative real-time evolution of the order parameter for the deconfining transition
in the pure SU�2� gauge theory. The approach to equilibrium after a quench to temperatures well above the
critical one is described by a Langevin equation. To fix completely the Markovian Langevin dynamics we
choose the dissipation coefficient, that is a function of the temperature, guided by preliminary
Monte Carlo simulations for various temperatures. Assuming a relationship between Monte Carlo time
and real time, we estimate the delay in thermalization brought about by dissipation and noise.
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I. INTRODUCTION

The study of the dynamics of phase conversion during
the deconfinement transition for pure gauge theories might
shed some light on the process of thermalization of the
quark-gluon plasma in hot QCD in a controlled fashion.
Indeed, for pure SU�N�, which can be seen as QCD in the
limit of infinitely heavy quarks, lattice simulations are well
developed, yielding a precise prediction for the deconfine-
ment critical temperature and a good understanding of the
corresponding thermodynamics [1]. In this limit there is a
global Z�N� symmetry associated with the center of the
gauge group, so that one can use the Polyakov loop to
construct a well-defined exact order parameter [2,3], and
an effective Landau-Ginzburg field theory based on this
quantity [4,5].

The effective potential for T � Td, where Td is the
deconfinement critical temperature, has only one mini-
mum, at the origin, where the whole system is localized.
With the increase of the temperature, N new minima
appear. At the critical temperature Td all the minima are
degenerate, and above Td the new minima become the true
vacuum states of the theory, so that the extremum at zero
becomes unstable or metastable and the system starts to
decay. In the case of SU�3�, within a range of temperatures
close to Td there is a small barrier due to the weak first-
order nature of the transition [6], and the process of phase
conversion will thus be guided by bubble nucleation. For
larger T, the barrier disappears and the system explodes in
the process of spinodal decomposition [7]. For SU�2�, the
transition is second order [8], and there is never a barrier to
overcome.

Real-time relaxation to equilibrium after a thermal
quench followed by a phase transition, as considered
above, can, in general, be described by standard reaction-
diffusion equations [7]. For a nonconserved order parame-
ter,  �x; t�, such as in the case of the deconfining transition

in pure gauge theories, the evolution is given by the
Langevin, or time-dependent Landau-Ginzburg, equation
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where F � F� ; T� is the coarse-grained free energy of the
system, � is the surface tension and U � U� ; T� is the
effective potential. The quantity � is known as the dissi-
pation coefficient and will play an important role in our
discussion. Its inverse defines a time scale for the system
and is usually taken to be either constant or as a function of
temperature only, � � ��T�. The function � is a stochastic
noise assumed to be Gaussian and white, so that
 

h��x; t�i � 0;

h��x; t���x0; t0�i � 2���x� x0���t� t0�;

(2)

according to the fluctuation-dissipation theorem. From a
microscopic point of view, the noise and dissipation terms
are originated from thermal and quantum fluctuations re-
sulting either from self-interactions of the field represent-
ing the order parameter or from the coupling of the order
parameter to different fields in the system. In general,
though, Langevin equations derived from a microscopic
field theory [9] also contain the influence of multiplicative
noise and memory kernels [10–12].

In this paper, we consider the pure SU�2� gauge theory,
without dynamical quarks, which is rapidly driven to very
high temperatures, well above Td, and decays to the de-
confined phase via spinodal decomposition. We are par-
ticularly interested in the effect of noise and dissipation on
the time scales involved in this ‘‘decay process,’’ since this
might provide some insight into the problem of thermal-
ization of the quark-gluon plasma presumably formed in
high-energy heavy ion collisions [13]. For the order pa-
rameter and effective potential we adopt the effective
model proposed in Ref. [5], and the choice of the dissipa-
tion coefficient, which is a function of the temperature, is
guided by preliminary Monte Carlo simulations for various
temperatures, comparing the short-time exponential

*fraga@if.ufrj.br
†gkrein@ift.unesp.br
‡anajulia@if.ufrj.br

PHYSICAL REVIEW D 76, 034501 (2007)

1550-7998=2007=76(3)=034501(7) 034501-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.76.034501


growth of the two-point Polyakov loop correlation function
predicted by the simulations [14] to the Langevin descrip-
tion assuming, of course, that both dynamics are the same
(see, also, the extensive studies of Glauber evolution by
Berg et al. [15]). This procedure fixes completely the
Markovian Langevin dynamics, as will be described below,
if one assumes a relationship between Monte Carlo time
and real time. Once the setup is defined for the real-time
evolution, we can estimate the delay in thermalization
brought about by dissipation and noise by performing
numerical calculations for the dynamics of the order pa-
rameter on a cubic lattice. As will be shown in the follow-
ing, the effects of dissipation and noise significantly delay
the thermalization process for any physical choice of the
parameters, a result that is in line with but is even more
remarkable than the one found for the chiral transition [16].

The paper is organized as follows. In Sec. II, we describe
the effective model adopted for the Langevin evolution
implementation, as well as the analytic behavior for early
times. In Sec. III, we discuss the necessity of performing a
lattice renormalization to have results that thermalize to
values that are independent of the lattice spacing and free
from ultraviolet divergences, and present the necessary
counterterms. In Sec. IV we briefly describe the Glauber
dynamics of pure lattice gauge theory that can be used to
extract the dissipation coefficient for different values of the
temperature. Details and quantitative results from lattice
simulations will be presented in a future publication [17].
In Sec. V we present and analyze our numerical results for
the time evolution of the order parameter for deconfine-
ment after a quench to temperatures above Td. Finally,
Sec. VI contains our conclusions and outlook.

II. EFFECTIVE MODEL AND LANGEVIN
DYNAMICS

Since we focus our investigation on pure gauge SU�N�
theories, we can adopt effective models built by using
functions of the Polyakov loop as the order parameter for
the deconfining phase transition. If quarks were included in
the theory, the Z�N� symmetry present in pure glue systems
would be explicitly broken, and the Polyakov loop would
provide only an approximate order parameter. For
Euclidean gauge theories at finite temperature, one defines
the Polyakov loop as

 P� ~x� � T exp
�
ig
Z 1=T

0
d�A0� ~x; ��

�
; (3)

where T stands for Euclidean time ordering, g is the gauge
coupling constant and A0 is the time component of the
vector potential.

The effective theory we adopt [5] is based on a mean-
field treatment in which the Polyakov loops are constant
throughout the space. The degrees of freedom that will be
used to construct the free energy are the eigenvalues of the
Polyakov loop, rather than hTrFP� ~x�i. Working in SU�N�

gauge theories the Polyakov loop is unitary, so that it can
be diagonalized by a unitary transformation, assuming the
form

 Pjk � exp�i�j��jk: (4)

At one loop, the free energy for gluons in a constant A0

background is given by

 fpert��� � ln�det��D2
adj��; (5)

whereDadj is the covariant derivative acting on fields in the
adjoint representation. This expression can be written in a
more explicit form:

 f � �
1

�

XN
j;k�1

2
�
1�

1

N
�jk

�Z d3k

�2��3
X1
n�1

1

n
e�n�!k�in��jk ;

(6)

where � is defined in Eq. (4), and ��jk 	 �j � �k. Here we
have the ‘‘bare’’ dispersion relation !k 	 jkj. In order to
include confinement in this effective model description,
one can introduce an ad hoc ‘‘thermal mass’’ for the
gluons, so that the dispersion relation becomes !k ��������������������

k2 �M2
p

. The value of M can be related to the critical
temperature Td extracted from lattice simulations.

Parametrizing the diagonalized Polyakov loop as
diag�exp�i�N=2; . . . ; i�1;�i�1; . . . ;�i�N=2�, we can con-
struct the effective potential from the free energy above.
For SU�2�, it can be written in the following convenient
form:
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where we have defined  	 1� 2�=� and used the rela-

tion between the massM and the critical temperature Td ���������������������
3M2=2�2

p
. In Fig. 1 we display U as a function of  for

-1 -0.5 0 0.5 1
 ψ

0

1

2

3

U
 / 

T
 3

T = 250 MeV
T = 302 MeV
T = 350 MeV
T = 500 MeV

FIG. 1 (color online). Effective potential for the case of SU�2�
for different values of the temperature.
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different values of the temperature. One can see from this
plot that for T � Td the minimum is at  �x; t� � 0. As the
temperature increases new minima appear; above the criti-
cal temperature they become the true vacuum states of the
system. Now, if at t � 0 the temperature is rapidly in-
creased to T 
 Td, the system is brought to an unstable
state and therefore will start ‘‘rolling down’’ to the new
minima of the effective potential.

To study the time evolution, we consider a system
characterized by a coarse-grained free energy of the form

 F� ; T� �
Z
d3x

�
�
2
�r �2 �U� ; T�

�
; (8)

where U is the effective potential obtained above, and �
plays the role of a surface tension [18], assuming the
following value for SU�2�: � � �2T=g2, g being the
gauge coupling. The approach to equilibrium of the order
parameter  �x; t� will then be dictated by the Langevin
equation (1) that, for arbitrary times, has to be solved
numerically on a lattice.

At very short times, however, when  �x; t� � 0, non-
linear terms in the evolution equation can be neglected, so
that Eq. (1) reduces to

 � � k � � _ k � �k2 k � T
3m2

T k � 0 (9)

in the Fourier space, where mT is a dimensionless thermal
mass that can be written as

 m2
T �

�2

3
	�T� �

�2

3

�
1� b

T2
d

T2

�
: (10)

b is a number that depends on the details of the quadratic
term of the particular effective potential adopted, so that it
will be different, for instance, if we consider SU�2� (b � 1)
or SU�3� (b � 10=9). One can, then, approximate the
(noiseless) solution in Fourier space by  �k; t �
0� � e
kt, where 
k are the roots of the quadratic equation
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For wavelength modes such that

 jkj<
��

�
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one already has oscillations, but those are still damped by a
factor exp���t=2��. It is only for longer wavelength
modes, i.e.

 jkj< kc �
�
T3m2

T

�

�
1=2
; (13)

that there will be an explosive exponential growth corre-
sponding to the regime of spinodal decomposition.

As time increases, the order parameter increases and
nonlinear contributions take over. To study the complete
evolution of the phase conversion process, we have to solve
(1) numerically on a lattice. In the next section we discuss

the need for lattice renormalization to avoid spurious ul-
traviolet divergences in the dynamics.

III. LATTICE RENORMALIZATION

In performing lattice simulations of the Langevin evo-
lution, one should be careful in preserving the lattice-size
independence of the results, especially when one is con-
cerned about the behavior of the system in the continuum
limit. In fact, in the presence of thermal noise, short and
long wavelength modes are mixed during the dynamics,
yielding an unphysical lattice-size sensitivity. The issue of
obtaining robust results, as well as the correct ultraviolet
behavior, in performing Langevin dynamics was discussed
by several authors [19–23]. The problem, which is not a
priori evident in the Langevin formulation, is related to the
well-known Rayleigh-Jeans ultraviolet catastrophe in clas-
sical field theory. The dynamics dictated by Eq. (1) is
classical, and is ill defined for very large momenta.

Equilibrium solutions of the Langevin equation that are
insensitive to lattice spacing can be obtained, in practice,
by adding finite-temperature counterterms to the original
effective potential, which guarantees the correct short-
wavelength behavior of the discrete theory. Furthermore,
it assures that the system will evolve to the correct quantum
state at large times. For a more detailed analysis of lattice
renormalization in the Langevin evolution, including the
case of multiplicative noise, see Ref. [24].

Since the classical scalar theory in three spatial dimen-
sions is super-renormalizable, only two Feynman diagrams
are divergent, the tadpole and the sunset. The singular part
of these graphs can be isolated using lattice regularization,
and then subtracted from the effective potential in the
Langevin equation. For a scalar field theory, explicit ex-
pressions for the counterterms were obtained by Farakos
et al. [25] within the framework of dimensional reduction
in a different context.

Following Ref. [25], we write the bare potential in a
three-dimensional field theory in the following form,

 V ��� � �1
2m

2�2 � 1
4
3�4; (14)

wherem is the bare mass of the field� and the subindex in

3 stresses the fact that this is the coupling of a three-
dimensional theory. In Ref. [25], this dimensionally re-
duced theory was obtained from a four-dimensional theory
with a dimensionless coupling 
, assuming a regime of
very high temperature. At leading order, one has 
3 � 
T.
The mass counterterm, which is defined such that

 � 1
2m

2�2 ! �1
2�m

2 � �m2��2 	 �1
2m

2
R�

2; (15)

is given by

 �m2 � 3
3
0:252 731

a
� 6
2

3

1

16�2

�
ln
�

6

�a

�
� 0:09

�
;

(16)

LANGEVIN DYNAMICS OF THE PURE SU�2� . . . PHYSICAL REVIEW D 76, 034501 (2007)

034501-3



where a is the lattice spacing and � is the renormalization
scale. The first term comes from the tadpode diagram and
the second one from the sunset. Finite constants are ob-
tained imposing that, after renormalization, the sunset
diagram yields the same value for three renormalization
schemes: lattice, momentum subtraction, and MS [25].
Notice that in order to obtain lattice-independent results
physical quantities become � dependent [21]. However,
since the contribution from the �-dependent term is loga-
rithmic, variations around a given choice for this scale
affect the final results by a numerically negligible factor,
as we verified in our simulations, so that this dependence is
very mild.

Since the field  in the effective model we consider here
is dimensionless, it is convenient to define the dimension-
ful field ’ � �1=2 in order to relate results from Ref. [25]
to our case more directly.

Now we can write our Langevin equation, Eq. (1), in
terms of the field ’. For SU�2�, we have

 

�
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where

 m2
L �

T3m2
T

�
�
	�T�

3
g2T2; (18)

 
L �
�2T3

3�2 �
1

3�2 g
4T: (19)

The subindex L in these quantities is a reminder that they
refer to the Langevin equation. It is clear that Eq. (17)
corresponds to an effective action S�’� given by

 S �’� � 1
2�r’�

2 � 1
2m

2
L’

2 � 1
4
L’

4: (20)

Once we have identified the mass term and the coupling
constant, we can renormalize the Langevin equation,
which becomes

 

�
@2’

@t2
�r2’

�
�

�

�
@’
@t
� �m2

L � �m
2
L�’� 
L’

3

�
�

�1=2
; (21)

where

 �m2
L � 3
L
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Notice that we have used the same symbol’ to denote both
the renormalized and nonrenormalized fields, since the
theory is super-renormalizable and only mass counterterms
are needed. In terms of the original  , our renormalized
Langevin equation is finally given by
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where

 �M2
 �

�2T

g2 �m2
L: (24)

One can factor out the appropriate powers of T in this
expression to make explicit the mass dimensions:
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�
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�

�
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Notice that for sufficiently high temperatures the sym-
metry of the potential is restored.

IV. DISSIPATION COEFFICIENT FROM
MONTE CARLO EVOLUTION

In lattice simulations for pure SU�N� gauge theories, one
can implement the Glauber dynamics by starting from
thermalized gauge field configurations at a temperature
T < Td and then changing the temperature of the entire
lattice that is quenched to T > Td [15,17]. The gauge fields
are then updated using the heat-bath algorithm of Ref. [26]
without over-relaxation. A ‘‘time’’ unit in this evolution is
defined as one update of the entire lattice by visiting
systematically one site at a time.

The structure function, defined as

 S�k; �� � h ~LF�k; �� ~LF��k; ��i; (26)

where ~LF�k; �� is the Fourier transform of LF�x; ��, the
Polyakov loop in the fundamental representation, can be
used to obtain the values of the dissipation coefficient, �,
for different values of the final temperature, T, as follows.
At early times, immediately after the quench,  ’ 0 and
one can neglect the terms proportional to  3 and  4 in the
effective potential to first approximation. It is not difficult
to show that at early times, when  is small, the structure
function can be written as

 S�k; �� � S�k; 0� exp�2!�k���; (27)

where

 !�k� �
�2T

g2�
�k2
c � k2�: (28)

In obtaining this expression we have neglected the second-
order time derivative in Eq. (9), which should be a good
approximation for a rough estimate of �. For the effective
potential adopted here, k2

c is given by
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 k2
c �

g2

3

�
T2 �

9M2

4�2

�
: (29)

One sees that, for momenta smaller than the critical mo-
mentum kc, one has the familiar exponential growth, sig-
naling spinodal decomposition. Plotting lnS�k; ��=� for
different values of k allows one to extract 2!�k� and, in
particular, the value of k2

c. Once one has extracted these
values, � can be obtained from the following relation:

 ��1 � !�k�
g2

�2T�k2 � k2
c�
: (30)

Now, in Monte Carlo simulations one does not have a
time variable in physical units and so, by plotting lnS from
the lattice, one obtains values of 2!�k� that do not include
the (unknown) scale connecting real time � and
Monte Carlo time. Nevertheless, if one assumes that the
relation between the Langevin time variable � and the
Monte Carlo time is linear, one can parametrize this rela-
tion in terms of the lattice spacing a as � � a
MC, where

MC is a dimensionless parameter that gives this relation in
units of the lattice spacing. An estimate for the relationship
between Monte Carlo time and real time is given in
Ref. [27], where the authors evaluate the number of sweeps
necessary for the system to freeze out. In this reference, the
authors implement lattice Monte Carlo simulations of the
change of the Polyakov loop under lattice expansion and
temperature falloff. The freeze-out number of sweeps was
defined as being the number of sweeps necessary for the
Polyakov loop to reach zero. This number was found to be
of the order of 5000 for the range of temperatures we are
considering here. Using the phenomenological value of
9 fm=c [28] as the freeze-out time, one can then obtain

MC.

Preliminary simulations clearly show that ��1 decreases
as the final temperature increases [17]. Guided by these
results, we choose in the case of SU�2� ��T� � 103 fm�2

for our Langevin simulations, which we describe in the
next section.

V. NUMERICAL RESULTS FOR DECONFINEMENT
AND DISCUSSION

We solve Eq. (1) numerically for SU�2� in a cubic
spacelike lattice with 643 sites under periodic boundary
conditions, using the semi-implicit finite-difference
method for time discretization and finite-difference fast
Fourier transform for spatial discretization and evolution
[29]. To compute the expectation value of the order pa-
rameter  , we average over thousands of realizations with
different initial conditions around  � 0 and different
initial configurations for the noise. At each time step we
compute

 h i �
1

N3

X
ijk

 ijk�t�; (31)

where the indices i, j, k indicate the position of the site on
the lattice.

The thermal mass M can be determined through the
deconfinement temperature. For SU�2�, Td � 302 MeV,
so that M � 775 MeV. In Fig. 2 we show the time evolu-
tion of h i for the SU�2� case, normalized by  0, which
corresponds to the value of the order parameter at the
vacuum. The dotted line represents the case with no noise
and no dissipation, the dashed line corresponds to the case
with only dissipation, and the solid line corresponds to the
complete case. Simulations were run under a temperature
of T � 6:6Td, which ensures that there is no barrier to
overcome, and the dynamics will be that of spinodal de-
composition. For this temperature the value of � is given
by 103 fm�2, in accordance with the discussion of the
previous section.

One can clearly see from the figure that dissipation
brings strong effects in the time evolution, delaying con-
siderably the necessary time for the onset of the decay
process. Noise acts in the same direction as dissipation,
retarding even more the time of equilibration: from around
2 fm=c for the simulation including dissipation effects
only, to more than 4 fm=c in the complete case.
Comparing our results to those from a similar calculation
performed for the case of the chiral phase transition [16], it
is evident that in the former dissipation and noise have
similar but stronger effects. This might signal that the
dynamics of the deconfinement transition is more sensitive
to medium effects. However, this is a very premature
conjecture, since both effective theory approaches are
rather simplified descriptions of in-medium QCD.

VI. CONCLUSIONS AND OUTLOOK

We have presented a systematic procedure to study the
real-time dynamics of pure gauge deconfinement phase
transitions, considering in detail the case of SU�2�. Given

0 1 2 3 4 5 6
t (fm/c)

0.0

0.5

1.0

1.5

<
ψ

>
/ψ

0

ξ # 0     Γ # 0
ξ = 0     Γ # 0
ξ = 0     Γ = 0

FIG. 2 (color online). Langevin evolution of the SU�2� order
parameter.
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an effective field theory for the order parameter of the
transition, we have discussed the necessity to introduce
counterterms from lattice renormalization that guarantee
lattice independence of physical results. These counter-
terms were computed for the case of SU�2� or any theory
whose effective model exhibits the same divergence
structure.

For the Langevin evolution, one needs the dissipation
coefficient as an input. We have described a recipe to
extract this kinetic quantity from Glauber dynamics in
Monte Carlo simulations. The value adopted here is based
on preliminary lattice results. A detailed analysis will be
presented in a future publication [17], together with
Langevin evolution results for the case of SU�3�.

From our results for the dynamics of the deconfining
transition in SU�2�, we conclude that dissipation and noise
play a very relevant role, being responsible for delays in the
equilibration time of the order of 100%. So, effects from
the medium are clearly significant in the determination of
the physical time scales, and should be included in any
description.

Of course, the treatment implemented here is very sim-
plified in many respects. First, there is a need for a more
robust effective theory for the order parameter of the
deconfining transition. Recently, studies of the renormal-
ization of Polyakov loops naturally lead to effective matrix
models for the deconfinement transition [30], unfolding a
much richer set of possibilities than the approach consid-
ered here. In particular, eigenvalue repulsion from the
Vandermonde determinant in the measure seems to play

a key role as discussed in Ref. [31]. Nevertheless, these
studies have shown that, in the neighborhood of the tran-
sition, the relevant quantity is still the trace of the Polyakov
loop.

Second, there is a need to construct a phenomenological
generalized Landau-Ginzburg effective theory describing
simultaneously the processes of chiral symmetry restora-
tion and deconfinement in the presence of massive quarks
as discussed in Ref. [32]. Then, the dynamics of the
approximate order parameters, the chiral condensate and
the expectation value of the trace of the Polyakov loop, will
be entangled. Finally, if one has the physics of heavy ion
collisions in mind, effects brought about by the expansion
of the plasma [33] and by its finite size [34] will also bring
corrections to this picture.

In a more realistic approach, time scales extracted from
the real-time evolution of the order parameters can be
confronted with high-energy heavy ion collisions experi-
mental data, and perhaps provide some clues for the under-
standing of the mechanism of equilibration of the quark-
gluon plasma presumably formed at the Relativistic Heavy
Ion Collider.
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