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Analytical functions for the calculation of hyperspherical potential curves of atomic systems
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We present angular basis functions for the Sdiwger equation of two-electron systems in hyperspherical
coordinates. By using the hyperspherical adiabatic approach, the wave functions of two-electron systems are
expanded in analytical functions, which generalizes the Jacobi polynomials. We show that these functions,
obtained by selecting the diagonal terms of the angular equation, allow efficient diagonalization of the Hamil-
tonian for all values of the hyperspherical radius. The method is applied to the determinatiort 8% treergy
levels of the Li" and we show that the precision can be improved in a systematic and controllable way.

PACS numbd(s): 31.25-v, 31.15.Ja, 31.15.Ar

I. INTRODUCTION role of the kinetic terms. As a result, calculations of the wave
function for nuclei with a mass number between two and ten
Hyperspherical coordinates have been used, for a lonpave been reporteld2]. In the atomic counterpart, the ap-
time, to solve theN-body quantum problems in molecular plications are mainly limited to the three- and four-body
[1-5], atomic [6—11], and nuclear physic§12-14. The case.
standard approach begins with the introduction of Jacobi An alternative approach to the use of the multidimen-
variables to eliminate the center-of-mass coordinates. Thgjonal orthogonal basis is to solve the partial differential
remaining N—3 degrees of freedom are described by agquation for the angular variables directly by expanding the
(hyper) radius R and -4 angular variablesQ)  angular function in a power series in appropriated variables
=(wy, ... w3y-4) cOmposed byN—2 hyperspherical an- 7] The functions will not be eigenstates of the orthogonal
gular variables and by theN>-2 usual spherical angular 4.5 put will fully incorporate the interparticle interactions.

variables¢; and ¢;. The nonrelativistic kinetic-energy op- This approach has been used in calculations of potential
erator is separable on those variables and its angular part Calves for helium. H. D+ DDy, excitons and other spe-
1 ’ 21 ’

be identified with the Casimir operator of the Q{3 3) . . . . . .
: .cies[2,15,16. The inclusion of nonadiabatic couplings has
symmetry group. The problem of constructing angular bas'jC)een reported and accurate ground-sfad and excited-

functions, which diagonalize the kinetic operator, is reduce : :
to the well-established problem of construction of harmonicState[lsz| energies were obtained. . , .
functions for the orthogonal groups. The irreducible repre- 1he generalization of the hyperspherical adiabatic ap-
sentations of these groups can be labeled by a sHtinte- progch(_HAA) to complex atoms W|I_I require the s_olut|on of
ger indices, and angular functions can be constructed usir@ infinite set of partial equations instead of ordinary equa-
Jacobi polynomials for each representation. tions as in the three-body case, which is unpractical even in
In concrete applications, the attention is focused on théhe lithium case. With this in mind, we reviewed the HAA,
properties of the wave functions; however, the procedure is §earching for a basis that can be used as building blocks for
part of the so-called algebraic methdds§], in which a sym-  atomic and molecular calculations. The set of functions de-
metry group G is decomposed in a chain of subgroupspends parametrically on the hyperspherical radtust the
GDG;D---D0(3) ending in the tridimensional rotation R=0 limit, they reproduce the Jacobi polynomials and at the
group. The multidimensional orthogonal symmetry is bro-R—ce limit, the Laguerre functions behavior, which charac-
ken, not spontaneously by its subgroups but by the interpaterizes the Coulombic problem, is exactly achieved. The
ticle interactions. The effects on the calculation will be thefunctions are obtained extracting the diagonal part of the
lack of convergence in the expansion by harmonic functionsnteractions for all angular momentum manifolds. The func-
and the need of a large basis to reproduce the wave fungions are transcendental but their Taylor expansion coeffi-
tions. The intensity of this effect will depend on how cients can be calculated with arbitrary precision.
“pbadly” the symmetry was broken. The Coulombic three-  In order to verify the efficiency of our procedure, we ana-
body systems are an illustrative example on this process fdyze the potential curves and nonadiabatic couplings for Li
which we usually choose the O(B)O(3)X0O(3)D0(3) and compare the corresponding lowest energies with values
chain. The O(3X O(3) symmetry is lightly broken, leading obtained by other methods. We observed that the curves
to a reasonable convergence in the composed angular mhave been calculated accurately and the long-range problems
mentum function, which characterizes this subgroup. In opare absent.
position, the O(6) symmetry is strongly broken due to the This paper is organized as follows. In Sec. Il, we review
long range of the electromagnetic interaction. A much morehe HAA approach in order to establish the problem. In Sec.
favorable situation occurs in the nuclear problem, for whichlll, we construct what we refer to as “Laguerre-Jacobi”
the short-range forces confine the particles, enhancing theinctions and we discuss their properties. In Sec. IV, we
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present the solutions of the method for the lion and fi-  —3) representation. The sktrepresents the quantum num-
nally, Sec. V is dedicated to the conclusion. bers that label the channel functions.
Finally, the wave function is expanded in the channel
Il. HYPERSPHERICAL ADIABATIC APPROACH functions

The HAA is an adequate method to trébody systems
interacting with the long-range Coulombian forces due to its
molecularlike description that brings to mind the spirit of the
Born-Oppenheimer approximation. With the choice of ap-resulting in an infinite coupled set of ordinary differential
propriate Jacobi coordinates, the center-of-mass degrees efjuations for the radial amplitude
freedom can be excluded and the hyperspherical coordinates

H(R,Q)=R CN-D2Y F (R)D,(R;Q), (6)
A

are built in order to correlate the remainih-1 radial co- d> 3(3N-4)(2—N) Uy (R)
ordinates. Those coordinates are composed to bring about | gz ™ 4R T T2e AR
only one radial componerR,

— +2 Wy (RIF,(R)=0, )

R?= 2> r? (0=R=x), (D) N
=1
where

and also angular variables that can be related to the Jacobi 4
radial coordinates,,r,, ... y_1 as[12] WW(R)ZZPW(R)d—RJFQw(R) )

ri=Rsin(ay_p)- - -sin(ay)sin(ay), ) . . .
are the nonadiabatic coupling terms with

r,=Rsin(ay_5)- - -sin(az)cod ay),

d
’ = (I) = (I) ’
r3:RSirKOZN,2)"'COSO’2), P)\)\ (R) < . dR’ . >, (9)
d2
QM'(R):<®>\ 4R ‘I’w>- (10

'n-2=Rsin(ay-z)cod ay-3),
The brackets above mean integration over all angular vari-
rn-1=Rcofayn-3) (Osajs=7/2). (2 ables.

This approach differs from the traditional expansions on
O(3N—3) harmonics due to the fact that the interactions are
taken into account in the calculation of the angular functions.
The obtainment of the potential curves is almost as difficult
as the solution of the full problem; however, such decompo-
sition has several advantages. The first of them is the physi-
cal interpretation of any quantum system in terms of poten-

wheres is the system energy and the operalf.tirR'Q) de- fial curves and nonadiabatic couplings. A second important

With those coordinates, the hyperspherical Sdhrger
equation has the compact form

d2 (3N-4) d URQ)
—+ —+
dR? R dR R?

+2¢ | Yy(R,Q)=0, (3

; _ i int is the energy independence of the potential curves.

pends on all compact variablés=(a;,¢;,6;;i=1,... N  PON .
—2:j=1,... N—1) and on the hyperradil® through the ane obtained, they can be used for both bound an.d con-
expression tinuum energy solutions. The potential curves are a universal
characteristic of the system and do not depend on specific
0=C,[O(3N—-3)]+RVR:Q), 4) experimental situations. This means that excited states, reso-

nances, and continuum properties in general can be studied

where C, is the Casimir operator of the OKB-3) group by the same set of radial equations after the calculation of the

Aol . . . angular solutions.
andV/R is the interparticle potential energy. In the case of 9

Coulombic interactionV is independent oR. This means a
simple linear dependence d¢hthat the HAA exploits fully
using this coordinate as an adiabatic one. Similarly to the Our goal is to construct a new class of functions under
Born-Oppenheimer method, one angular equation is definedome requirements. First of all, the set of functions should be
able to solve the potential curve equatidi for the three-
U(R;Q)CDX(R;Q)zU)\(R)CI>A(R;Q), (5) body problems precisely, in fulR-region with moderate
computational efforts. Second, it should be useful for the
for each parametrized value 8 The eigenvalues are usu- general many-body problem as building blocks in the same
ally called potential curves and the corresponding eigenfuncsense that hydrogenic functions on Hartree solutions can be
tions are the channel functions constructed for eachND(3 used for the many-electron atoms. This means that the func-

Ill. ANGULAR SOLUTIONS FOR HELIUMLIKE ATOMS
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tions should be generated by numerically exact computewhere
codes and also that they should have analytical asymptotic
and long-range properties.

LM _ . .
U/l/z/i/é(a):(sma’)/l “1(cosa)’2" "2
A. Angular equation
LM |\ LM
o 8 VIV ) 15
Considering the nucleugshargeZ) as the center of mass, VAanVIY ) (15)

the hyperradiu® and the hyperangle will be related to the
spherical radial coordinates of the electransandr, as

given below: At R=0, the interaction terms vanish and the functi;f)(hl/2

assumes the form
r{=Rsina, r,=Rcosq,

A2/ 5+ 102
RE=rf+13, (1) G) Oy =P 2 R cos ), (16)

r . . .
tana= — . where the function®’ 112" 2"Y2 3re the Jacobi polynomi-

r K .

2 als[19]. The corresponding eigenvalues are

In atomic units, the angular hyperspherical equation for the
channel functions and potential curves for this three-body Un(0)=—2u+/1+/2+2)%> (u=0,1,2...).
problem is a7

dz 1 2 2zrR 2zR
e - - B. Laguerre-Jacobi functions
de? sife cofa SiNa cosa

To make clear the topological properties of Efid), we

2R introduce the variable=tan(a/2) [7]. This change provides
+ —~U,(R) coupled differential equations with rational coefficients that
V1-sin(2a)cosé allows solutions by the use of Frobenius method. Unlike the
expansion of the trigonometric coefficients of E4), pre-
X(sina cosa) ~'®,(R; Q) =0, (12 vious studied7] showed fast convergence of the expanded

R R channel functions in power series in this new variable.
wherei? andi3 are the usual angular momentum operators The z variable is defined in the region<0z=<1. For heli-
and cos9=?1-F2. To preserve the individuality of the elec- umlike atoms, the solutions can be limited to the region 0
trons with respect to the angular motion, the channel func=z=<(\2—1) by imposing Cauchy’s continuity relations.
tions are now expanded in the basis of the coupled orbitaf\lSo, it is numerically convenient to impose polynomial so-
angular momenturd’"M, as lutions to the channel functions in the limi®=0 andR

ve —oo by the following change:

(I)A(R;Q)z/E (sina)’t**(cosa) 2*? G) ,(Ri2)=(1+2%)"2*ePL) , (Riz), (18
172
XY (11,126}, (Ria), (13)  wherep=—2ZR/n,, andn, is the principal quantum num-

ber of the Hé ion. This change produces the relations
where the total angular momentumis limited by the rela-

tion |/1—/,|<L</,+/, and the unit vectors; represent

2
the angular spherical variables, 6, of the coordinate; . A(z)d_ﬂgl; . (z)diJrC’; , (R;2) 5”/ ,(R;z)
The functions simr and cosy take part of this expansion to dz? ve dzo e v
eliminate the quadratic poles in the angular equation. The
resulting equations are =R E Ic/l/i/z/é(z)£>’/’(R;Z)’ (19
/:,L/é 12

2
— +2[(/1+1)cota—(/ o+ 1)tana]di
da « A(2)=2(1-22)(1+22)2, (20)

—U,(R)—(/1+/2+2)%|G) , (R;
WRI=(7a4 7242167, (Rie) B, (2)=2(/1+1)+2pz=2(4u+/ 1+4/ ,+4)7°

+2p22—2(/1+4/,+5)*—2p2
:RZ, Ub:/l/z/i/é(a)g),\/i/é(R;a), (14) p (71 ,+5)z*—2p
A +2(4u+/)2°-2p7, (21)
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Cﬁl/z(R;z)=4ZR+2p(/1+1)+[p2+82R—4Ux(R) (02 i w12\ [t + 12
710 \UiZ)= _
—A(/ 1/ 3+ 2) 2~ 4u(2/1+3)]2 v m=0 m pom
(At /A A2 X (=122 M(1-2), (27)
+[p2+8ZR+4(/ 1+ /»+2)%+4U,(R) with the eigenvalues
+16u(/1+2/,+3)]2° Ul (0)==Qu+/1+/+ 2)2. (28)
4
—2[2ZR+(/1+4/5,+5)p]z At R—x, the expressions for the eigenstates has the follow-
— [P+ 16u2+4u(2/,+1)]2 ing Laguerre polynomial structure:
+2p(dp+ /1) 28— p?Z, (22 FL,(Ree2)=L 10 (p)
with the coupling term ”Vél’l - n+/1 p™
= -1 ) N
I = =1 n,—~1—1+mj/ m’
’C/l/z/i/é(z):(lJrzz) E 2/ 1=/ 143435/ 1= /1+14) (29
L wherep=2ZRzandL?1"* are the Laguerre polyno-
X(l—ZZ)/Z /' ‘]X/l/z/i/ér (23) P n}\f/lfl(p) g polyi

mials[19]. In this limit, the potential curves have a defined

, b : ) asymptotic form:
where Jin=max(/1—/1],|/>—7/%]) and Jpnau=min(/,

+/1,/5+73). The tensor)(',‘/Jl/z/i/é can be defined using P 72 2(Z-1) M2=2/1(/1+1)—/o(/3+1)
=—+ +
the 34 and 6§ notations as follows: u/l/z( ) nf R 2R2
X = (D 21+ 1)(2/ 2+ 1) ) O( 1 ) 0
R3)’
1 4 1/2 /1 //i J
X(2/1+1)(2/5+1)] 0 0 o0 where higher corrections could be obtained using perturba-

tive methodq20]. The asymptotic quantum number that de-
lo 5 N[/ /2 L fines each potential curve at the dissociation limit is related
(24 to the sef{u,/1,/,} through the relation

0 0 0/|7 71 3|
The Laguerre-Jacobi functlorﬁﬁl/z(R;z) are obtained as §+/1+1 ML even
eigenstates of the decoupled terms of E@), or explicitly, n, = (32)

w1
& E+/l+§ n odd,

d
A(2) PR BBy T Crr (D =REs /11,0 (2)

which is no longer valid for eigenvalues of the coupled an-
gular equation(14) as the nondiagonal terms force the

Xj:/l/z(R'Z) “avoided crossings” of the potential curves.

=u?  (R\FY , (R;z2). 25

A (RF7(Ri2) 29 IV. APPLICATION OF THE METHOD

The variation of the paramet& from zero to infinity builds In this section, we analyze the performance of Laguerre-

potential curvesu” /Z(R) for the eigenstatest” /Z(R;z)_ Jacobi functions on the diagonalization of the hyperspherical
/17 1/

The structure of this equation allows the use of the Frobeniu&ngular equation. The chosen system is the ion with L

method to obtain the functio” ,_, which is expanded in 0 and total spirS=0. This is a good system to deal with
the form below: 12 as it can be compared with the well-known solutions and,

using thez variable, we can solve the coupled angular equa-
tion directly to compare the results.
FE (Riz)=> AL (RiK)ZX. (26) Initially, the dgcoupled differential equation®5) are
172 K 12 solved by Frobenius method for each value of the quantum
numbersy and /7 up to the maximum numberg ., and
One of the main characteristics of this expansion is its poly-",.x, where/=/,=/, for L=0. The resulting potential
nomial form at the limitsR=0 and R—o. At R=0, the curves, labeled by the paiu(/), are shown in Figs. (&)
functions are and Ib) where we can see the lowest-energy spectrum. Con-
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FIG. 1. Potential curves of the one-channel functions compared with the results of the coupled angular dquétiothe decoupled
solution and(c) for the coupled one are shown close to the origin to show their similarity. The main difference between the decoupled and
exact solution inb) and(d), respectively, is related to the avoided crossing of the curves on the exact solution due to the coupling between

angular components of different angular momenta.

sidering that different angular momentum solutions are not We note that the curves in Figs(al and 1b) resemble
coupled by the interaction terms, the potential curves mayhose of Figs. (c) and Xd), except that the crossings are
cross each other. Besides, it is possible to associate ttevoided in the latter. This means that E81) is no longer
asymptotic quantum numbers with those numberR=at0, valid. In the region of the avoided crossings, the angular
as in Eqg.(31). The eigenstates of these potential curves obfunctions have sharp transitions as the behavior of the two
tained from unidimensional equations are easily calculatedngular channels changes into one another. This is reflected
with great precision for all of the range of the hyperradius. on the nonadiabatic couplings, especially on g, .’s,
After the normalization of the angular basis functions, wewhich involve second derivatives of the angular functions.
proceed to the diagonalization of the total angular operatorAn example is shown in Fig. 2 where some representative
The resulting corrected potential curves are shown in Figscouplings between the first three potential curves present
1(c) and 1d) and the efficiency of the process can be verifiedpeaks related to the avoided crossings of the potential curves.
in Table I, where we show the convergence of the lowest an@he avoided crossings also affect the behavior of the angular
most important potential curve for some representative valehannel functions generating sharp transitions, which are not
ues ofR with the varying size of the diagonalization matrix. present in the physical system. Their effect is further cor-
The maximum value of the angular momentufp,, is re-  rected by the radial coefficients,(R) of the adiabatic ex-
lated with the truncation of the expansion of the channepansion for each energy of the system.
functions in the total angular momentum basis as given in The potential curves of the Laguerre-Jacobi solutions can
Eqg. (13). We can see that the convergenceuip., is very  be compared with the exact ones in a more familiar picture
fast, for all values of 4 listed and for all regions dR. The  when divided byR?, as shown in Fig. 3. We observe that,
angular momentum expansion is not as fast or efficient, esexcept in the avoided-crossing regions, the deviations are
pecially for the minimum of the potential curve, but the more pronounced on the minimum of the potential well as
choice of the coupled angular momentum is standard in thexpected, since the interaction potential for small and
literature as it allows the simultaneous diagonalization of theasymptotic values oR is not strongly dependent on the off-
angular operators of each electron. diagonal angular momentum coupling.
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TABLE I. Convergence of the diagonalizing process for the first potential curve. The indjggsand
/ max @re the maximum value of the Jacobi and angular momentum labels used to construct the diagonaliza-
tion basis. The resulting matrix has the dimensiQp,umad2 (1 is even forL=0, S=0 states The point
R=0.45 a.u. corresponds approximately to the minimum of the potential curve well.

R (@.u) max 2 4 6 8 9
0.04  pmax
2 -—3.6401197175-3.640119713 —3.6401197122 —3.640119712 —3.640119712
6 —3.6401142350—3.640114223 —3.640114 2214 —3.640114 221 —3.640114 221
10 —3.6401136032 —3.640113587 —3.6401135847 —3.640113584 —3.640113584
14 —3.6401134455—3.640113427 —3.6401134239 —3.640113423 —3.640113423
18 —3.6401133894 —3.640113369 —3.6401133660 —3.640113 365 —3.640 113 365
0.45
2 43647270127 4.364 729119 4.364 729 321 4.364 729 358 4.364 729 365
6 4.366 710629 2 4.366 715 245 4366715771 4.366 715880 4.366 715901
10 4.366 9268933 4.366 932873 4.366 933 634 4.366 933 806 4.366 933839
14 4.366979986 8 4.366 986 747 4.366 987 673 4.366 987 894 4.366 987 938
18 4.366998 736 8 4.367 005967 4.367 007 010 4.367 007 269 4.367 007 322
2.00
2 45.400931 036 45.400933 27 45.40093357 45.400933 63 45.400933 64
6 45.404 243197 45.404 247 97 45.404 248 65 45.404 248 81 45.404 248 84
10  45.404533682 45.404539 76 45.404 540 68 45.404 540 90 45.404 540 94
14  45.404599778 45.404 606 58 45.404 607 66 45.404 607 93 45.404 607 98
18 45.404 622 325 45.404 629 57 45.404 630 75 45.404 631 06 45.404 63112
10.00
2 940.567 83259 940.567 903 9 940.567 9334 940.567942 8 940.567 944 6
6 940.567 83355 940.567 905 6 940.567 9354 940.567 944 8 940.567 946 6
10 940.567 83355 940.567 905 6 940.567 9354 940.567 944 8 940.567 946 6
14 940.567 83355 940.567 905 6 940.567 9354 940.567 944 8 940.567 946 6
18 940.567 83355 940.567 905 6 940.567 9354 940.567 944 8 940.567 946 6

ization basis in the angular channel functions as a function of T>max,ﬂmax
a, we have squared the channel function and integrated it (32
over the spherical angle®;={46;,¢;}, i=1,2. Such a pro-

cedure is defined as follows:

In order to analyze the effect of the size of the diagonal-
(R,CY):J |¢A(R;Q,Ql,92)|2dﬂld92.

Using the channel function corresponding to the lowest po-
tential curve § =1), we have computed the function@p),
2 for different values ofR, using only one Laguerre-Jacobi
- function, labeled by the pair/(,ax.tmad=(0,0), and then
using /' ma=9 and uma=9. The comparison between these
two calculations is shown in Fig. 4. In this figure we can see
that there is no apparent difference between both calculations
for each chosen value & This difference is shown in detail
in Fig. 5, where it can be observed that even for the mini-
mum of the potential curve, abot&=0.45 a.u., the differ-
ence between the solutions is very small. This is a strong
indication of the appropriated choice of the diagonalization
basis. It is important to note that the good result is due to the
continuous transformation of the angular basis as the hyper-
radius changes, avoiding the necessity of different ap-
proaches for each region & An example of such a case
would be the analytical solutions &=0, which fail to re-
FIG. 2. Some representative nonadiabatic coupliigstomic ~ produce the asymptotic behavior, and also the hydrogenic
units) for the first three angular channels. The largest peaks argolutions for large values d®, which lack completeness un-
related to inflections of the potential curves, becoming especiallyess the hard-dealing continuum solutions are taken into ac-
sharp in the region of avoided-crossings. count.

Nonadiabatic couplings

R (a.u.)
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FIG. 3. Comparison between potential curve wells of thé.Li
(a) Decoupled solutiongb) The exact solutions. The lowest poten-
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FIG. 5. Difference between the solutions shown in Fig(a}.
For small and large values & (b) For intermediate values &}

With the angular solutions calculated, we can now solve

tial curve, which gives the bound states, is deeper for the decoupleghe radial equation for the bound states of thé.LThe de-

solution than for the exact one since it does not take into account a{
the effects of the electron-electron repulsion. For large and dRnall

the differences between the solutions become smaller.

o (R; @)

FIG. 4. Behavior of the coupled angular channel functiGns
atomic unit$ as given by Eq.32), with (umax,” mad=(9,9) for

brmination of the energy lines is done in a systematic way
by truncating the adiabatic expansion into a maximum num-
ber N, of coupled channels. The calculated energy for each
approximation is related to the exact value in an upper and
lower bound schemg21,27, i.e.,

EEAAS €exactS ECAASEUAA » (33

where the EAA(extreme adiabatic approximatijpapproach
corresponds to neglecting all couplings, the UAMcoupled
adiabatic approximatiorcorresponds to the inclusion of the
diagonal coupling, and the nondiagonal couplings are taken
into account on the CAAcoupled adiabatic approximatipn
approaching the exact energy as more radial channels are
coupled. This behavior is clear in Table I, where the calcu-
lated energy converges to the variational re$28] as the
number ofN. coupled channels increases. The convergence
is not uniform because channels related with the same angu-
lar momentum of the first channel are expected to give the
most important contributions. With 13 coupled channels, the
error obtained is less than 1 ppm. In the same table, we show
that the convergence pattern is similar to the helium case

different values of the hyperradius. The dots are the same calculd18], even with the significative difference in the calculated
tion using only the lowest basis eigenstates, which corresponds tenergy. This suggests the use of this basis for the calculation

(Mmax:/max):(olo)-

of energies in the isoelectronic series of the helium.
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TABLE Il. Ground-state energje, (a.u)] convergence of the TABLE Ill. Lowest binding energiesg (a.u), of the Li* for

Li* as a function of the numbe, of coupled angular states in the N.=21 coupled angular states in the radial equations compared
radial equations. It used 30 coupled angular momenta for the firswvith the variational energies,,, from Ref. [24], except for the
potential curve and for the corresponding diagonal nonadiabatiground-state energy, which is from RE23].

coupling Q4. All other potential curves were obtained using 10
coupled angular momenta. The first row*,1corresponds to the Energy Variational (— &4 (evar—€)evar
lower bound calculatiofEAA approach. The variational result State (—¢) [24] (ppm)
(evan is from Ref.[23]. The convergence follows a similar pattern

to that observed for the He atof8]. Isls  7.2799108 7.279913 39 0.35
1s2s 5.0408659 5.040876 74 2.15
N,  Energy Ceo)  (evar— o)/ €var (PPM) He [18] 1s3s  4.7337250 4.733756 6.55
1s4s 4.6297491 4.629783 7.34
1* 7.332 345 38 —7202.28 —9060.02 1s5s 45824015 4.582 427 5.57
1 7.262 640 06 2372.74 2813.91
2 7.267016 80 1771.53 1748.85
3 7.279704 90 28.64 38.88 . . . . .
4 727973128 25 02 31.66 radlal equations. Ir_1accurames on those quantities will dete-
5 7979734 27 24.60 30.30 riorate the calculation of energies an_d radial amphtud_es.
6 2979756 47 21 55 29 69 The method of analytical expansions developed in Ref.
5 7'279 89774 2'15 2'52 [7] solves the pr_oblems for most of _the Fhree—body systems.
8 7'279 89778 2'14 2'50 The understanding that the expansion in _harmonlcs_, associ-
9 7'279 897 90 2'13 2.46 f'ited to the O(BI—_3) symmetry is not eff|C|ent even in the
' : : intermediateR-region suggested the solution of the equations
10 727989792 213 2.45 by power series in an appropriated angular variable. The ex-
11 127989797 2.12 242 tension of the method for more complex problems is, how-
12 727989842 2.06 2:22 ever, unpractical. ThBI>3 problem requires several angular
13 727990925 0.57 048 | ariables and therefore multivariable power expansion tech-
14 727990926 0.57 niques are extremely difficult. However, the calculation of
15 727990927 0.57 potential curves foN>3 can proceed by the construction of
16 727990928 0.56 a new class of one-dimensionB®dependent functions to
L 727990928 0.56 replace the ordinary Jacobi basis.
18 727990929 0.56 The eigenstates of the decoupled angular equation, the
19 727990929 0.56 one-channel functions, fill those requirements when the vari-
20 727990931 0.56 ablezis introduced. With this variable, the angular differen-
21 7.27991083 0.35

tial equation for each channel may be changed to furnish

polynomial solutions at the limitR=0 andR—o°. The use

, . . . . of the Frobenius method leads to very fast convergent expan-

ThThe f|rstbtexcnzdf-state;henerg|es atre f“Stetd Itn ITabIe III'sions of the eigenstates in the fRIregion. The main aspect

h ey are g taltne rom be ts?hme se OI po er]l lal curves faéf the angular basis constructed with these functions is the
€ ground-state energy, bul there IS a 10ss ot accuracy Cdeate of the basis witR as it carries the information of the

th_e Iowe;t states due to the behavior .Of nonadlabatlp COLHiagonal components of the interaction. The result of this
plings with R. This effect becomes less important for higher

: . . . . procedure is the fast convergence in all of the diagonaliza-
excited states, whose wave functions’ main bodies are dl% g 9

tributed | | & where th i on process, especially at the dissociation region. For the
ributed over larger vaiues &, where the couplings are very positive ion of the lithium, the energy obtained with these
small, as seen in Fig. 2.

potential curves has an accuracy of a few parts per million.
In this paper, we show a significant gain in efficiency

diagonalizing the angular heliumlike atom equation with the

) ) i , one-channel basis instead of the pure hyperspherical harmon-
The solution of a system of partial equations iIN34 o5 The hope to use it for the many-body problem functions

angular variables is a formidable and sometimes unpracticenerated by the three-body problems lies in the fact that the

task. Direct solutions are difficult even in the=3 helium-  yinetic-energy operator in hyperspherical coordinates is con-

like case. The long-range interactions cause three differenfycted recursively from lower dimensions to higher ones.
regimes, in which the solutions differ totally. Aside from the

spherical harmonics, the=0 free particle functions are Ja-
cobi polynomials in essence. In the asymptotic region, the
bound behavior will dominatéhydrogenic in the helium
casg and the intermediate region is a transition between both This work was supported by the Brazilian Agencies Con-
behaviors. Therefore, a proper numerical technique for onselho Nacional de Desenvolvimento Cidicb e Tecno-
region will be inaccurate and instable in the other regionslogico (CNPg and Fundaa de Amparo a&Pesquisa do Es-
These problems are significative due to the fact that channéhdo de Sa Paulo (FAPESP, Processes Nos. 98/03044-7
functions and potential curves are the basic input for theand 97/06271-1.
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