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Analytical functions for the calculation of hyperspherical potential curves of atomic systems
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We present angular basis functions for the Schro¨dinger equation of two-electron systems in hyperspherical
coordinates. By using the hyperspherical adiabatic approach, the wave functions of two-electron systems are
expanded in analytical functions, which generalizes the Jacobi polynomials. We show that these functions,
obtained by selecting the diagonal terms of the angular equation, allow efficient diagonalization of the Hamil-
tonian for all values of the hyperspherical radius. The method is applied to the determination of the1Se energy
levels of the Li1 and we show that the precision can be improved in a systematic and controllable way.

PACS number~s!: 31.25.2v, 31.15.Ja, 31.15.Ar
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I. INTRODUCTION

Hyperspherical coordinates have been used, for a l
time, to solve theN-body quantum problems in molecula
@1–5#, atomic @6–11#, and nuclear physics@12–14#. The
standard approach begins with the introduction of Jac
variables to eliminate the center-of-mass coordinates.
remaining 3N23 degrees of freedom are described by
~hyper-! radius R and 3N24 angular variables V
5(v1 , . . . ,v3N24) composed byN22 hyperspherical an
gular variables and by the 2N22 usual spherical angula
variablesu i and f i . The nonrelativistic kinetic-energy op
erator is separable on those variables and its angular par
be identified with the Casimir operator of the O(3N23)
symmetry group. The problem of constructing angular ba
functions, which diagonalize the kinetic operator, is reduc
to the well-established problem of construction of harmo
functions for the orthogonal groups. The irreducible rep
sentations of these groups can be labeled by a setl of inte-
ger indices, and angular functions can be constructed u
Jacobi polynomials for each representation.

In concrete applications, the attention is focused on
properties of the wave functions; however, the procedure
part of the so-called algebraic methods@13#, in which a sym-
metry group G is decomposed in a chain of subgrou
G.G1.•••.O(3) ending in the tridimensional rotatio
group. The multidimensional orthogonal symmetry is b
ken, not spontaneously by its subgroups but by the inter
ticle interactions. The effects on the calculation will be t
lack of convergence in the expansion by harmonic functi
and the need of a large basis to reproduce the wave f
tions. The intensity of this effect will depend on ho
‘‘badly’’ the symmetry was broken. The Coulombic thre
body systems are an illustrative example on this process
which we usually choose the O(6).O(3)3O(3).O(3)
chain. The O(3)3O(3) symmetry is lightly broken, leading
to a reasonable convergence in the composed angular
mentum function, which characterizes this subgroup. In
position, the O(6) symmetry is strongly broken due to t
long range of the electromagnetic interaction. A much m
favorable situation occurs in the nuclear problem, for wh
the short-range forces confine the particles, enhancing
1050-2947/2000/62~3!/032508~9!/$15.00 62 0325
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role of the kinetic terms. As a result, calculations of the wa
function for nuclei with a mass number between two and
have been reported@12#. In the atomic counterpart, the ap
plications are mainly limited to the three- and four-bo
case.

An alternative approach to the use of the multidime
sional orthogonal basis is to solve the partial different
equation for the angular variables directly by expanding
angular function in a power series in appropriated variab
@7#. The functions will not be eigenstates of the orthogon
group but will fully incorporate the interparticle interaction
This approach has been used in calculations of poten
curves for helium, H2, D2

1 , DDm, excitons and other spe
cies @2,15,16#. The inclusion of nonadiabatic couplings ha
been reported and accurate ground-state@17# and excited-
state@18# energies were obtained.

The generalization of the hyperspherical adiabatic
proach~HAA ! to complex atoms will require the solution o
an infinite set of partial equations instead of ordinary eq
tions as in the three-body case, which is unpractical eve
the lithium case. With this in mind, we reviewed the HAA
searching for a basis that can be used as building blocks
atomic and molecular calculations. The set of functions
pends parametrically on the hyperspherical radiusR. At the
R50 limit, they reproduce the Jacobi polynomials and at
R→` limit, the Laguerre functions behavior, which chara
terizes the Coulombic problem, is exactly achieved. T
functions are obtained extracting the diagonal part of
interactions for all angular momentum manifolds. The fun
tions are transcendental but their Taylor expansion coe
cients can be calculated with arbitrary precision.

In order to verify the efficiency of our procedure, we an
lyze the potential curves and nonadiabatic couplings for L1

and compare the corresponding lowest energies with va
obtained by other methods. We observed that the cur
have been calculated accurately and the long-range prob
are absent.

This paper is organized as follows. In Sec. II, we revie
the HAA approach in order to establish the problem. In S
III, we construct what we refer to as ‘‘Laguerre-Jacob
functions and we discuss their properties. In Sec. IV,
©2000 The American Physical Society08-1
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present the solutions of the method for the Li1 ion and fi-
nally, Sec. V is dedicated to the conclusion.

II. HYPERSPHERICAL ADIABATIC APPROACH

The HAA is an adequate method to treatN-body systems
interacting with the long-range Coulombian forces due to
molecularlike description that brings to mind the spirit of t
Born-Oppenheimer approximation. With the choice of a
propriate Jacobi coordinates, the center-of-mass degree
freedom can be excluded and the hyperspherical coordin
are built in order to correlate the remainingN21 radial co-
ordinates. Those coordinates are composed to bring a
only one radial componentR,

R25 (
i 51

N21

r i
2 ~0<R<`!, ~1!

and also angular variables that can be related to the Ja
radial coordinatesrW1 ,rW2 , . . . ,rWN21 as @12#

r 15R sin~aN22!•••sin~a2!sin~a1!,

r 25R sin~aN22!•••sin~a2!cos~a1!,

r 35R sin~aN22!•••cos~a2!,

A

r N225R sin~aN22!cos~aN23!,

r N215R cos~aN22! ~0<a i<p/2!. ~2!

With those coordinates, the hyperspherical Schro¨dinger
equation has the compact form

F d2

dR2
1

~3N24!

R

d

dR
1

Û~R;V!

R2
12«Gc~R,V!50, ~3!

where« is the system energy and the operatorÛ(R;V) de-
pends on all compact variablesV5(a i ,f j ,u j ; i 51, . . . ,N
22; j 51, . . . ,N21) and on the hyperradiusR through the
expression

Û5C2@O~3N23!#1RV̂~R;V!, ~4!

where C2 is the Casimir operator of the O(3N23) group
and V̂/R is the interparticle potential energy. In the case
Coulombic interaction,V̂ is independent ofR. This means a
simple linear dependence onR that the HAA exploits fully
using this coordinate as an adiabatic one. Similarly to
Born-Oppenheimer method, one angular equation is defin

Û~R;V!Fl~R;V!5Ul~R!Fl~R;V!, ~5!

for each parametrized value ofR. The eigenvalues are usu
ally called potential curves and the corresponding eigenfu
tions are the channel functions constructed for each O(N
03250
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23) representation. The setl represents the quantum num
bers that label the channel functions.

Finally, the wave function is expanded in the chann
functions

c~R,V!5R2(3N24)/2(
l

Fl~R!Fl~R;V!, ~6!

resulting in an infinite coupled set of ordinary differenti
equations for the radial amplitude

F d2

dR2
1

3~3N24!~22N!

4R
1

Ul~R!

R2
12«GFl~R!

1(
l8

Wll8~R!Fl8~R!50, ~7!

where

Wll8~R!52Pll8~R!
d

dR
1Qll8~R! ~8!

are the nonadiabatic coupling terms with

Pll8~R!5 K FlU d

dRUFl8L , ~9!

Qll8~R!5K FlU d2

dR2UFl8L . ~10!

The brackets above mean integration over all angular v
ables.

This approach differs from the traditional expansions
O(3N23) harmonics due to the fact that the interactions
taken into account in the calculation of the angular functio
The obtainment of the potential curves is almost as diffic
as the solution of the full problem; however, such decom
sition has several advantages. The first of them is the ph
cal interpretation of any quantum system in terms of pot
tial curves and nonadiabatic couplings. A second import
point is the energy independence of the potential curv
Once obtained, they can be used for both bound and c
tinuum energy solutions. The potential curves are a unive
characteristic of the system and do not depend on spe
experimental situations. This means that excited states, r
nances, and continuum properties in general can be stu
by the same set of radial equations after the calculation of
angular solutions.

III. ANGULAR SOLUTIONS FOR HELIUMLIKE ATOMS

Our goal is to construct a new class of functions und
some requirements. First of all, the set of functions should
able to solve the potential curve equation@6# for the three-
body problems precisely, in fullR-region with moderate
computational efforts. Second, it should be useful for
general many-body problem as building blocks in the sa
sense that hydrogenic functions on Hartree solutions can
used for the many-electron atoms. This means that the fu
8-2
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ANALYTICAL FUNCTIONS FOR THE CALCULATION OF . . . PHYSICAL REVIEW A 62 032508
tions should be generated by numerically exact comp
codes and also that they should have analytical asymp
and long-range properties.

A. Angular equation

Considering the nucleus~chargeZ) as the center of mass
the hyperradiusR and the hyperanglea will be related to the
spherical radial coordinates of the electronsr 1 and r 2 as
given below:

r 15R sina, r 25R cosa,

R25r 1
21r 2

2 , ~11!

tana5
r 1

r 2
.

In atomic units, the angular hyperspherical equation for
channel functions and potential curves for this three-bo
problem is

F d2

da2
2

l̂ 1
2

sin2a
2

l̂ 2
2

cos2a
2

2ZR

sina
2

2ZR

cosa

1
2R

A12sin~2a!cosu
2Ul~R!G

3~sina cosa!21Fl~R;V!50, ~12!

where l̂ 1
2 and l̂ 2

2 are the usual angular momentum operat

and cosu5r̂1•r̂2. To preserve the individuality of the elec
trons with respect to the angular motion, the channel fu
tions are now expanded in the basis of the coupled orb
angular momentumY l 1l 2

LM as

Fl~R;V!5 (
l 1l 2

~sina! l 111~cosa! l 211

3Y l 1l 2

LM ~ r̂ 1 , r̂ 2!G l 1l 2

l ~R;a!, ~13!

where the total angular momentumL is limited by the rela-
tion ul 12l 2u<L<l 11l 2 and the unit vectorsr̂ i represent
the angular spherical variablesf i , u i of the coordinaterW i .
The functions sina and cosa take part of this expansion t
eliminate the quadratic poles in the angular equation. T
resulting equations are

F d2

da2
12@~ l 111!cota2~ l 211!tana#

d

da

2Ul~R!2~ l 11l 212!2GG l 1l 2

l ~R;a!

5R (
l 18l 28

v
l 1l 2l

18l
28

LM
~a!G

l
18l

28
l

~R;a!, ~14!
03250
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v
l 1l 2l

18l
28

LM
~a!5~sina! l 182l 1~cosa! l 282l 2

3^Y l 1l 2

LM uV̂uY
l

18l
28

LM
&. ~15!

At R50, the interaction terms vanish and the functionG l 1l 2

l

assumes the form

G l 1l 2

l ~0;a!5Pm
l 111/2,l 211/2

~cos 2a!, ~16!

where the functionsPm
l 111/2,l 211/2 are the Jacobi polynomi

als @19#. The corresponding eigenvalues are

Ul~0!52~2m1l 11l 212!2 ~m50,1,2, . . . !.
~17!

B. Laguerre-Jacobi functions

To make clear the topological properties of Eq.~14!, we
introduce the variablez5tan(a/2) @7#. This change provides
coupled differential equations with rational coefficients th
allows solutions by the use of Frobenius method. Unlike
expansion of the trigonometric coefficients of Eq.~14!, pre-
vious studies@7# showed fast convergence of the expand
channel functions in power series in this new variable.

The z variable is defined in the region 0<z<1. For heli-
umlike atoms, the solutions can be limited to the region
<z<(A221) by imposing Cauchy’s continuity relations
Also, it is numerically convenient to impose polynomial s
lutions to the channel functions in the limitsR50 and R
→` by the following change:

G l 1l 2

l ~R;z!5~11z2!22mepzL l 1l 2

l ~R;z!, ~18!

wherep522ZR/nl , andnl is the principal quantum num
ber of the He1 ion. This change produces the relations

FA~z!
d2

dz2
1Bl 1l 2

m ~z!
d

dz
1Cl 1l 2

m ~R;z!GL l 1l 2

l ~R;z!

5R (
l 18l 28

Kl 1l
18l 2l

28
~z!L

l
18l

28
l

~R;z!, ~19!

A~z!5z~12z2!~11z2!2, ~20!

Bl 1l 2

m ~z!52~ l 111!12pz22~4m1l 114l 214!z2

12pz322~ l 114l 215!z422pz5

12~4m1l 1!z622pz7, ~21!
8-3
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Cl 1l 2

m ~R;z!54ZR12p~ l 111!1@p218ZR24Ul~R!

24~ l 11l 212!224m~2l 113!#z

22p~4m1l 114l 214!z2

1@p218ZR14~ l 11l 212!214Ul~R!

116m~ l 112l 213!#z3

22@2ZR1~ l 114l 215!p#z4

2@p2116m214m~2l 111!#z5

12p~4m1l 1!z62p2z7, ~22!

with the coupling term

Kl 1l 2l
18l

28
~z!5~11z2! (

J5Jmin

Jmax

2l 182l 1131Jzl 182l 1111J

3~12z2! l 282l 22Jx
l 1l 2l

18l
28

LJ
, ~23!

where Jmin5max(ul 12l 18u,ul 22l 28u) and Jmax5min(l 1

1l 18 ,l 21l 28). The tensorx
l 1l 2l

18l
28

LJ
can be defined using

the 3-j and 6-j notations as follows:

x
l 1l 2l

18l
28

LJ
5~21!J1L@~2l 111!~2l 211!

3~2l 1811!~2l 2811!#1/2S l 1 l 18 J

0 0 0
D

3S l 2 l 28 J

0 0 0
D H l 1 l 2 L

l 28 l 18 JJ . ~24!

The Laguerre-Jacobi functionsF l 1l 2

m (R;z) are obtained as

eigenstates of the decoupled terms of Eq.~19!, or explicitly,

FA~z!
d2

dz2
1Bl 1l 2

~z!
d

dz
1Cl 1l 2

~z!2RKl 1l 1l 2l 2
~z!G

3F l 1l 2

m ~R;z!

5ul 1l 2

m ~R!F l 1l 2

m ~R;z!. ~25!

The variation of the parameterR from zero to infinity builds
potential curvesul 1l 2

m (R) for the eigenstatesF l 1l 2

m (R;z).

The structure of this equation allows the use of the Froben
method to obtain the functionF l 1l 2

m , which is expanded in

the form below:

F l 1l 2

m ~R;z!5(
k

Al 1l 2

m ~R;k!zk. ~26!

One of the main characteristics of this expansion is its po
nomial form at the limitsR50 and R→`. At R50, the
functions are
03250
s

-

F l 1l 2

m ~0;z!5 (
m50

m S m1l 111/2

m D S m1l 211/2

m2m D
3~21!m2m~2z!2(m2m)~12z2!2m, ~27!

with the eigenvalues

ul 1l 2

m ~0!52~2m1l 11l 212!2. ~28!

At R→`, the expressions for the eigenstates has the follo
ing Laguerre polynomial structure:

F l 1l 2

m ~R→`;z!5Lnl2l 121
2l 111

~r!

5 (
m50

nl2l 121

~21!mS nl1l 1

nl2l 1211mD rm

m!
,

~29!

wherer52ZRzandLnl2l 121
2l 111 (r) are the Laguerre polyno

mials @19#. In this limit, the potential curves have a define
asymptotic form:

ul 1l 2

m ~R!5
Z2

nl
2

1
2~Z21!

R
1

nl
222l 1~ l 111!2l 2~ l 211!

2R2

1OS 1

R3D , ~30!

where higher corrections could be obtained using pertur
tive methods@20#. The asymptotic quantum number that d
fines each potential curve at the dissociation limit is rela
to the set$m,l 1 ,l 2% through the relation

nl5H m

2
1l 111 m even

m

2
1l 11

1

2
m odd,

~31!

which is no longer valid for eigenvalues of the coupled a
gular equation~14! as the nondiagonal terms force th
‘‘avoided crossings’’ of the potential curves.

IV. APPLICATION OF THE METHOD

In this section, we analyze the performance of Laguer
Jacobi functions on the diagonalization of the hyperspher
angular equation. The chosen system is the Li1 ion with L
50 and total spinS50. This is a good system to deal wit
as it can be compared with the well-known solutions a
using thez variable, we can solve the coupled angular eq
tion directly to compare the results.

Initially, the decoupled differential equations~25! are
solved by Frobenius method for each value of the quan
numbersm and l up to the maximum numbersmmax and
l max, where l 5l 15l 2 for L50. The resulting potentia
curves, labeled by the pair (m,l ), are shown in Figs. 1~a!
and 1~b! where we can see the lowest-energy spectrum. C
8-4
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FIG. 1. Potential curves of the one-channel functions compared with the results of the coupled angular equation.~a! for the decoupled
solution and~c! for the coupled one are shown close to the origin to show their similarity. The main difference between the decoup
exact solution in~b! and~d!, respectively, is related to the avoided crossing of the curves on the exact solution due to the coupling b
angular components of different angular momenta.
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sidering that different angular momentum solutions are
coupled by the interaction terms, the potential curves m
cross each other. Besides, it is possible to associate
asymptotic quantum numbers with those numbers atR50,
as in Eq.~31!. The eigenstates of these potential curves
tained from unidimensional equations are easily calcula
with great precision for all of the range of the hyperradiu

After the normalization of the angular basis functions,
proceed to the diagonalization of the total angular opera
The resulting corrected potential curves are shown in F
1~c! and 1~d! and the efficiency of the process can be verifi
in Table I, where we show the convergence of the lowest
most important potential curve for some representative
ues ofR with the varying size of the diagonalization matri
The maximum value of the angular momentuml max is re-
lated with the truncation of the expansion of the chan
functions in the total angular momentum basis as given
Eq. ~13!. We can see that the convergence inmmax is very
fast, for all values ofl max listed and for all regions ofR. The
angular momentum expansion is not as fast or efficient,
pecially for the minimum of the potential curve, but th
choice of the coupled angular momentum is standard in
literature as it allows the simultaneous diagonalization of
angular operators of each electron.
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We note that the curves in Figs. 1~a! and 1~b! resemble
those of Figs. 1~c! and 1~d!, except that the crossings ar
avoided in the latter. This means that Eq.~31! is no longer
valid. In the region of the avoided crossings, the angu
functions have sharp transitions as the behavior of the
angular channels changes into one another. This is refle
on the nonadiabatic couplings, especially on theQll8’s,
which involve second derivatives of the angular function
An example is shown in Fig. 2 where some representa
couplings between the first three potential curves pres
peaks related to the avoided crossings of the potential cur
The avoided crossings also affect the behavior of the ang
channel functions generating sharp transitions, which are
present in the physical system. Their effect is further c
rected by the radial coefficientsFm(R) of the adiabatic ex-
pansion for each energy of the system.

The potential curves of the Laguerre-Jacobi solutions
be compared with the exact ones in a more familiar pict
when divided byR2, as shown in Fig. 3. We observe tha
except in the avoided-crossing regions, the deviations
more pronounced on the minimum of the potential well
expected, since the interaction potential for small a
asymptotic values ofR is not strongly dependent on the of
diagonal angular momentum coupling.
8-5
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9 365
5 901
3 839
7 938
7 322

3 64
8 84
0 94
7 98
1 12
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6 6
6 6
6 6
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TABLE I. Convergence of the diagonalizing process for the first potential curve. The indicesmmax and
l max are the maximum value of the Jacobi and angular momentum labels used to construct the diago
tion basis. The resulting matrix has the dimensionl maxmmax/2 (m is even forL50, S50 states!. The point
R50.45 a.u. corresponds approximately to the minimum of the potential curve well.

R ~a.u.! l max 2 4 6 8 9

0.04 mmax

2 23.640 119 717 5 23.640 119 713 23.640 119 712 2 23.640 119 712 23.640 119 712
6 23.640 114 235 0 23.640 114 223 23.640 114 221 4 23.640 114 221 23.640 114 221

10 23.640 113 603 2 23.640 113 587 23.640 113 584 7 23.640 113 584 23.640 113 584
14 23.640 113 445 5 23.640 113 427 23.640 113 423 9 23.640 113 423 23.640 113 423
18 23.640 113 389 4 23.640 113 369 23.640 113 366 0 23.640 113 365 23.640 113 365

0.45
2 4.364 727 012 7 4.364 729 119 4.364 729 321 4.364 729 358 4.364 72
6 4.366 710 629 2 4.366 715 245 4.366 715 771 4.366 715 880 4.366 71

10 4.366 926 893 3 4.366 932 873 4.366 933 634 4.366 933 806 4.366 93
14 4.366 979 986 8 4.366 986 747 4.366 987 673 4.366 987 894 4.366 98
18 4.366 998 736 8 4.367 005 967 4.367 007 010 4.367 007 269 4.367 00

2.00
2 45.400 931 036 45.400 933 27 45.400 933 57 45.400 933 63 45.400 93
6 45.404 243 197 45.404 247 97 45.404 248 65 45.404 248 81 45.404 24

10 45.404 533 682 45.404 539 76 45.404 540 68 45.404 540 90 45.404 54
14 45.404 599 778 45.404 606 58 45.404 607 66 45.404 607 93 45.404 60
18 45.404 622 325 45.404 629 57 45.404 630 75 45.404 631 06 45.404 63

10.00
2 940.567 832 59 940.567 903 9 940.567 933 4 940.567 942 8 940.567 94
6 940.567 833 55 940.567 905 6 940.567 935 4 940.567 944 8 940.567 94

10 940.567 833 55 940.567 905 6 940.567 935 4 940.567 944 8 940.567 94
14 940.567 833 55 940.567 905 6 940.567 935 4 940.567 944 8 940.567 94
18 940.567 833 55 940.567 905 6 940.567 935 4 940.567 944 8 940.567 94
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In order to analyze the effect of the size of the diagon
ization basis in the angular channel functions as a functio
a, we have squared the channel function and integrate
over the spherical anglesV i5$u i ,f i%, i 51,2. Such a pro-
cedure is defined as follows:

FIG. 2. Some representative nonadiabatic couplings~in atomic
units! for the first three angular channels. The largest peaks
related to inflections of the potential curves, becoming especi
sharp in the region of avoided-crossings.
03250
l-
of
it

Tl max,mmax

l ~R;a!5E uFl~R;a,V1 ,V2!u2dV1dV2 .

~32!

Using the channel function corresponding to the lowest
tential curve (l51), we have computed the functional~32!,
for different values ofR, using only one Laguerre-Jacob
function, labeled by the pair (l max,mmax)5(0,0), and then
using l max59 andmmax59. The comparison between thes
two calculations is shown in Fig. 4. In this figure we can s
that there is no apparent difference between both calculat
for each chosen value ofR. This difference is shown in detai
in Fig. 5, where it can be observed that even for the m
mum of the potential curve, aboutR50.45 a.u., the differ-
ence between the solutions is very small. This is a stro
indication of the appropriated choice of the diagonalizat
basis. It is important to note that the good result is due to
continuous transformation of the angular basis as the hy
radius changes, avoiding the necessity of different
proaches for each region ofR. An example of such a cas
would be the analytical solutions atR50, which fail to re-
produce the asymptotic behavior, and also the hydroge
solutions for large values ofR, which lack completeness un
less the hard-dealing continuum solutions are taken into
count.

re
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FIG. 3. Comparison between potential curve wells of the L1.
~a! Decoupled solutions.~b! The exact solutions. The lowest pote
tial curve, which gives the bound states, is deeper for the decou
solution than for the exact one since it does not take into accoun
the effects of the electron-electron repulsion. For large and smaR,
the differences between the solutions become smaller.

FIG. 4. Behavior of the coupled angular channel functions~in
atomic units! as given by Eq.~32!, with (mmax,l max)5(9,9) for
different values of the hyperradius. The dots are the same calc
tion using only the lowest basis eigenstates, which correspond
(mmax,l max)5(0,0).
03250
With the angular solutions calculated, we can now so
the radial equation for the bound states of the Li1. The de-
termination of the energy lines is done in a systematic w
by truncating the adiabatic expansion into a maximum nu
ber Nc of coupled channels. The calculated energy for ea
approximation is related to the exact value in an upper
lower bound scheme@21,22#, i.e.,

«EAA<«exact<«CAA<«UAA , ~33!

where the EAA~extreme adiabatic approximation! approach
corresponds to neglecting all couplings, the UAA~uncoupled
adiabatic approximation! corresponds to the inclusion of th
diagonal coupling, and the nondiagonal couplings are ta
into account on the CAA~coupled adiabatic approximation!,
approaching the exact energy as more radial channels
coupled. This behavior is clear in Table II, where the calc
lated energy converges to the variational result@23# as the
number ofNc coupled channels increases. The converge
is not uniform because channels related with the same a
lar momentum of the first channel are expected to give
most important contributions. With 13 coupled channels,
error obtained is less than 1 ppm. In the same table, we s
that the convergence pattern is similar to the helium c
@18#, even with the significative difference in the calculat
energy. This suggests the use of this basis for the calcula
of energies in the isoelectronic series of the helium.

ed
all

la-
to

FIG. 5. Difference between the solutions shown in Fig. 4.~a!
For small and large values ofR. ~b! For intermediate values ofR.
8-7



III
s

f
o
e
di
y

tic

re
e
-
th

o
on
ns
nn
th

te-

ef.
ms.
oci-

e
ns
ex-
w-

ar
ch-
of

of

the
ari-
n-
ish

an-
t
the

his
iza-
the
se
n.

cy
he
on-

ns
the
on-
s.

n-

-
-7

e
fir
at
0

rn

red

J. J. DE GROOTE, MAURO MASILI, AND J. E. HORNOS PHYSICAL REVIEW A62 032508
The first excited-state energies are listed in Table
They are obtained from the same set of potential curve
the ground-state energy, but there is a loss of accuracy
the lowest states due to the behavior of nonadiabatic c
plings with R. This effect becomes less important for high
excited states, whose wave functions’ main bodies are
tributed over larger values ofR, where the couplings are ver
small, as seen in Fig. 2.

V. CONCLUSION

The solution of a system of partial equations in 3N24
angular variables is a formidable and sometimes unprac
task. Direct solutions are difficult even in theN53 helium-
like case. The long-range interactions cause three diffe
regimes, in which the solutions differ totally. Aside from th
spherical harmonics, theR50 free particle functions are Ja
cobi polynomials in essence. In the asymptotic region,
bound behavior will dominate~hydrogenic in the helium
case! and the intermediate region is a transition between b
behaviors. Therefore, a proper numerical technique for
region will be inaccurate and instable in the other regio
These problems are significative due to the fact that cha
functions and potential curves are the basic input for

TABLE II. Ground-state energy@«0 ~a.u.!# convergence of the
Li1 as a function of the numberNc of coupled angular states in th
radial equations. It used 30 coupled angular momenta for the
potential curve and for the corresponding diagonal nonadiab
coupling Q11. All other potential curves were obtained using 1
coupled angular momenta. The first row, 1* , corresponds to the
lower bound calculation~EAA approach!. The variational result
(«var) is from Ref.@23#. The convergence follows a similar patte
to that observed for the He atom@18#.

Nc Energy (2«0) («var2«0)/«var ~ppm! He @18#

1* 7.332 345 38 27 202.28 29 060.02
1 7.262 640 06 2 372.74 2 813.91
2 7.267 016 80 1 771.53 1 748.85
3 7.279 704 90 28.64 38.88
4 7.279 731 28 25.02 31.66
5 7.279 734 27 24.60 30.30
6 7.279 756 47 21.55 22.69
7 7.279 897 74 2.15 2.52
8 7.279 897 78 2.14 2.50
9 7.279 897 90 2.13 2.46
10 7.279 897 92 2.13 2.45
11 7.279 897 97 2.12 2.42
12 7.279 898 42 2.06 2.22
13 7.279 909 25 0.57 0.48
14 7.279 909 26 0.57
15 7.279 909 27 0.57
16 7.279 909 28 0.56
17 7.279 909 28 0.56
18 7.279 909 29 0.56
19 7.279 909 29 0.56
20 7.279 909 31 0.56
21 7.279 910 83 0.35
03250
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radial equations. Inaccuracies on those quantities will de
riorate the calculation of energies and radial amplitudes.

The method of analytical expansions developed in R
@7# solves the problems for most of the three-body syste
The understanding that the expansion in harmonics ass
ated to the O(3N23) symmetry is not efficient even in th
intermediateR-region suggested the solution of the equatio
by power series in an appropriated angular variable. The
tension of the method for more complex problems is, ho
ever, unpractical. TheN.3 problem requires several angul
variables and therefore multivariable power expansion te
niques are extremely difficult. However, the calculation
potential curves forN.3 can proceed by the construction
a new class of one-dimensionalR-dependent functions to
replace the ordinary Jacobi basis.

The eigenstates of the decoupled angular equation,
one-channel functions, fill those requirements when the v
ablez is introduced. With this variable, the angular differe
tial equation for each channel may be changed to furn
polynomial solutions at the limitsR50 andR→`. The use
of the Frobenius method leads to very fast convergent exp
sions of the eigenstates in the fullR region. The main aspec
of the angular basis constructed with these functions is
update of the basis withR as it carries the information of the
diagonal components of the interaction. The result of t
procedure is the fast convergence in all of the diagonal
tion process, especially at the dissociation region. For
positive ion of the lithium, the energy obtained with the
potential curves has an accuracy of a few parts per millio

In this paper, we show a significant gain in efficien
diagonalizing the angular heliumlike atom equation with t
one-channel basis instead of the pure hyperspherical harm
ics. The hope to use it for the many-body problem functio
generated by the three-body problems lies in the fact that
kinetic-energy operator in hyperspherical coordinates is c
structed recursively from lower dimensions to higher one
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TABLE III. Lowest binding energies,« ~a.u.!, of the Li1 for
Nc521 coupled angular states in the radial equations compa
with the variational energies«var from Ref. @24#, except for the
ground-state energy, which is from Ref.@23#.

State
Energy
(2«)

Variational (2«var)
@24#

(«var2«)/«var

~ppm!

1s1s 7.279 910 8 7.279 913 39 0.35
1s2s 5.040 865 9 5.040 876 74 2.15
1s3s 4.733 725 0 4.733 756 6.55
1s4s 4.629 749 1 4.629 783 7.34
1s5s 4.582 401 5 4.582 427 5.57
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