

MARCOS ANDRÉ DE JESUS DELGADO

OTIMIZAÇÃO DE SISTEMAS DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA RADIAIS USANDO PROGRAMAÇÃO CÔNICA DE SEGUNDA ORDEM INTEIRA MISTA

Ilha Solteira - SP 2015

MARCOS ANDRÉ DE JESUS DELGADO

OTIMIZAÇÃO DE SISTEMAS DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA RADIAIS USANDO PROGRAMAÇÃO CÔNICA DE SEGUNDA ORDEM INTEIRA MISTA

Tese apresentada à Faculdade de Engenharia do Câmpus de Ilha Solteira – UNESP como parte dos requisitos para obtenção do título de Doutor em Engenharia Elétrica.

Especialidade: Automação.

Orientador: Prof. Dr. Marcos Julio Rider Flores

Ilha Solteira 2015

FICHA CATALOGRÁFICA Desenvolvido pelo Serviço Técnico de Biblioteca e Documentação

Delgado, Marcos André de Jesus.

S333o

Otimização de sistemas de distribuição de energia elétrica radiais usando programação cônica de segunda ordem inteira mista / Marcos André de Jesus Delgado. -- Ilha Solteira: [s.n.], 2015

211 f.: il.

Tese (doutorado) - Universidade Estadual Paulista. Faculdade de Engenharia de Ilha Solteira. Área de conhecimento: Automação, 2015

Orientador: Marcos Julio Rider Flores Inclui bibliografia

 Otimização de sistemas elétricos de potência.
 Programação não-linear inteira mista.
 Programação cônica de segunda ordem.
 CPLEX.

UNIVERSIDADE ESTADUAL PAULISTA

CAMPUS DE ILHA SOLTEIRA FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA

CERTIFICADO DE APROVAÇÃO

TÍTULO: OTIMIZAÇÃO DE SISTEMAS DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA RADIAIS USANDO PROGRAMAÇÃO CÔNICA DE SEGUNDA ORDEM INTEIRA MISTA

AUTOR: MARCOS ANDRÉ DE JESUS DELGADO

ORIENTADOR: Prof. Dr. MARCOS JULIO RIDER FLORES

Aprovado como parte das exigências para obtenção do Título de DOUTOR EM ENGENHARIA ELÉTRICA, Área: AUTOMAÇÃO, pela Comissão Examinadora:

JULIO RIDER FLORES

Departamento de Engenharia Elétrica / Faculdade de Engenharia de Ilha Solteira

Prof. Dr. RUBEN AUGUSTO ROMERO LAZARO

Departamento de Engenharia Elétrica / Faculdade de Engenharia de Ilha Solteira

Prof. Dr. JOSE ROBERTO SANCHES MANTOVANI

Departamento de Engenharia Elétrica / Faculdade de Engenharia de Ilha Solteira

PROP. Dr. ANTÔNIO CÉSAR BALEEIRO ALVES

Departamento de Engenharia Elétrica e de Computação / Universidade Federal de Goias

Prof. Dr. GERALDO ROBERTO MARTINS DA COSTA

Departamento de Engenharia Elétrica / Escola de Engenharia de São Carlos-Usp

Data da realização: 27 de fevereiro de 2015.

AGRADECIMENTOS

Agradeço a Deus pela vida e pelas oportunidades que tive, sempre preparadas por Ele. Agradeço aos professores da pós (pelas "aulas show"), em especial ao Marcos Rider, ao Ruben Romero e ao Mantovani.

Agradeço aos colegas Dércio e João pela amizade e por nossos churrascos no almoço.

Agradeço ao Marlon pelos "papos cabeça" que muito me ajudaram no entendimento.

Agradeço ao Leonardo pelas correções.

Ao Ruben novamente por ter me recebido e encaminhado para trabalhar com o Rider.

Ao meu orientador Marcos Rider, pela atenção, paciência e amizade.

À nossa convivência globalizada no Lapsee, de brasileiros com colombianos, peruanos e iranianos,...

Agradeço à FEPISA e a CAPES pelo apoio financeiro.

A todos que de alguma forma contribuíram.

"Falar o fácil difícil é fácil, difícil é falar o difícil fácil" Homenagem a todos os mestres que ao longo da existência ensinam a falar o difícil fácil.

RESUMO

Neste trabalho foi desenvolvida uma estratégia de resolução de problemas de otimização em sistemas de distribuição de energia elétrica que são modelados como problemas de programação não linear inteira mista (PNLIM), através da teoria de programação cônica de segunda ordem (PCSO) com variáveis inteiras e contínuas (PCSOIM). Apesar dos modelos de PNLIM e de PCSOIM, não serem problemas de otimização equivalentes, foi provado que é possível garantir, mediante algumas condições, que a solução encontrada pelo modelo de PCSOIM é a solução ótima para o problema de PNLIM. A estratégia traçada nesta tese permite a substituição de alguns problemas de PNLIM, com região de busca não convexa, de difícil resolução, de grande porte, e sem garantia de ótimo global; por problemas de PCSOIM que possuem formulação convexa, com solução ótima garantida pelo solver comercial robusto. Os modelos foram implementados em linguagem AMPL e foram utilizados os solvers CPLEX e KNITRO para a resolução. A metodologia proposta foi avaliada para os seguintes problemas de otimização em sistemas de distribuição de energia elétrica: reconfiguração de sistemas de distribuição, análise de sistemas de distribuição com geração distribuída, operação ótima e alocação ótima de banco de capacitores e reguladores de tensão e operação ótima de dispositivos de armazenamento de energia em sistemas com fontes renováveis. Os sistemas testados foram os de 3, 11, 33, 42, 70, 136, 202 e de 400 nós.

Palavras-chave: Otimização de sistemas elétricos de potência. CPLEX. KNITRO. Programação não-linear inteira mista. Programação cônica de segunda ordem.

ABSTRACT

In this work it is presented a strategy for solving optimization problems in power distribution systems that are modeled as mixed integer nonlinear programming (MINLP) problems, through the theory of second-order cone programming (SOCP) with integer and continuous variables (MISOCP). Despite MINLP models and MISOCP optimization problems are not equivalent, it was proven that it is possible to guarantee, through some conditions, that the solution found by the MISOCP model is the optimal solution to the MINLP problem. The strategy outlined in this thesis, allows the replacement of some MINLP problems, with a nonconvex region of search, difficult to solve, large, and with no guarantee of global optimal convergence, by MISOCP problems that have convex formulation, for which optimal solution convergence can be ensured by robust commercial solvers. The models were implemented in AMPL language and solved by CPLEX and KNITRO. The proposed methodology was evaluated for the following distribution problems: reconfiguration of distribution systems, analysis of distribution systems with distributed generation, optimal operation and optimal allocation of capacitor banks and voltage regulators and optimal operation of energy storage devices in networks with renewable energy sources. The 3, 11, 33, 42, 70, 136, 202 and 400 bus systems were tested.

Keywords: Optimization of electric power systems. CPLEX. KNITRO. Mixed Integer Nonlinear Programming. Second Order Cone Programming.

LISTA DE FIGURAS

Figura 1 - Escala dos tipos de problemas convexos segundo o grau de generalidade	40
Figura 2 - Representação de uma região convexa e uma não convexa respectivamente	41
Figura 3 - Cone de Lorentz	43
Figura 4 - Sistema de distribuição de três nós	51
Figura 5 - Superficie não convexa que representa a restrição de não linearidade	54
Figura 6 - Cone convexo que representa a restrição cônica de segunda ordem	55
Figura 7 - Diagrama unifilar do sistema de 33 nós	59
Figura 8 - Magnitude de tensão nas barras para o sistema de 33 nós	60
Figura 9 - Magnitude de corrente nos ramos para o sistema de 33 nós	60
Figura 10 - Diagrama unifilar do sistema de 70 nós	62
Figura 11 - Magnitude de tensão nas barras para o sistema de 70 nós	62
Figura 12 - Magnitude de corrente nos ramos para o sistema de 70 nós	63
Figura 13 - Diagrama unifilar do sistema de 136 nós	64
Figura 14 - Representação da tensão para o sistema de 136 nós	65
Figura 15 - Magnitude de corrente nos ramos para o sistema de 136 nós	65
Figura 16 - Diagrama unifilar do sistema de 400 nós	67
Figura 17 - Magnitude de tensão nas barras para o sistema de 400 nós	67
Figura 18 - Magnitude de correntes nos ramos para o sistema de 400 nós	68
Figura 19 - Diagrama unifilar do sistema de 3 nós	69
Figura 20 - Magnitude de tensão nas barras para o sistema de 3 nós	70
Figura 21 - Magnitude de corrente nos ramos para o sistema de 3 nós	70
Figura 22 - Diagrama unifilar do sistema de 202 nós	72
Figura 23 - Magnitude de tensão nas barras para o sistema de 202 nós	72
Figura 24 - Magnitude de corrente nos ramos para o sistema de 202 nós	73
Figura 25 - Intervalos da partição	75
Figura 26 - Linearização de P_{ij}^2	77
Figura 27 - Magnitude de tensão nas barras para o sistema de 3 nós	80
Figura 28 - Magnitude de corrente nos ramos para o sistema de 3 nós	80
Figura 29 - Representação das formas de operação de um gerador	87
Figura 30 - Curva de Capacidade	88
Figura 31 - Diagrama do sistema de 33 nós com geradores distribuídos	91

Figura 32 - Perfil da magnitude de tensão nas barras para o sistema de 33 nós	91
Figura 33 - Magnitude dos fluxos de corrente para o sistema de 33 nós	92
Figura 34 - Diagrama do sistema de 42 nós com geradores distribuídos	93
Figura 35 - Perfil da magnitude de tensão nas barras para o sistema de 42 nós	94
Figura 36 - Magnitude dos fluxos de corrente para o sistema de 42 nós	94
Figura 37 - Diagrama do sistema de 70 nós com geradores distribuídos	96
Figura 38 - Perfil da magnitude de tensão nas barras para o sistema de 70 nós	96
Figura 39 - Magnitude dos fluxos de corrente para o sistema de 70 nós	97
Figura 40 - Potência ativa fornecida pelos geradores distribuídos.	98
Figura 41 - Diagrama do sistema de 136 nós com geradores distribuídos	99
Figura 42 - Perfil da magnitude de tensão nas barras para o sistema de 136 nós	99
Figura 43 - Magnitude dos fluxos de corrente para o sistema de 136 nós	100
Figura 44 - Potência ativa dos geradores para o sistema de 136 nós	101
Figura 45 - Potência reativa dos geradores para o sistema de 136 nós	101
Figura 46 - Diagrama do sistema de 202 nós com geradores distribuídos	102
Figura 47 - Perfil da magnitude de tensão nas barras para o sistema de 202 nós	103
Figura 48 - Magnitude dos fluxos de corrente para o sistema de 202 nós	103
Figura 49 - Potência ativa dos geradores para o sistema de 202 nós	105
Figura 50 - Potência ativa dos geradores para o sistema de 202 nós linearizado	107
Figura 51 - Fonte de energia renovável	108
Figura 52 - Dispositivos de armazenamento de energia	109
Figura 53 - Diagrama unifilar do sistema de 11 nós	113
Figura 54 - Tensão mínima em todos os níveis de demanda	114
Figura 55 - Perdas de potência ativa em todos os níveis de demanda (PCSO)	115
Figura 56 - Perdas de potência reativa em todos os níveis de demanda (PCSO)	115
Figura 57 - Potência injetada pelos geradores de fontes renováveis em cada nível de	demanda
	116
Figura 58 - Potência injetada pelos DAE	116
Figura 59 - Diagrama do sistema de 33 nós com interconexões	124
Figura 60 - Perfil da magnitude de tensão nas barras para o sistema de 33 nós	126
Figura 61 - Magnitude de corrente nos ramos para o sistema de 33 nós	126
Figura 62 - Diagrama do sistema de 70 nós com interconexões	127
Figura 63 - Variação da magnitude de tensão para o sistema de 70 nós	128
Figura 64 - Variação da magnitude de corrente para o sistema de 70 nós	128

Figura 65 - Diagrama do sistema de 136 nós com interconexões	129
Figura 66 - Variação da magnitude de tensão para o sistema de 136 nós	131
Figura 67 - Variação da magnitude de corrente para o sistema de 136 nós	131
Figura 68 - Alocação de bancos de capacitores fixos e chaveados	134
Figura 69 - Variação da magnitude de tensão para o sistema de 70 nós (PCSOIM)	138
Figura 70 - Variação da magnitude de corrente (PCSOIM)	139
Figura 71 - Variação da potência reativa (PCSOIM)	139
Figura 72 - Variação da magnitude de tensão para o sistema de 136 nós (PCSOIM)	141
Figura 73 - Variação da magnitude de corrente (PCSOIM)	141
Figura 74 - Variação da potência reativa (PCSOIM)	142
Figura 75 - Variação da magnitude de tensão para o sistema de 202 nós (PCSOIM)	144
Figura 76 - Variação da magnitude de corrente (PCSOIM)	144
Figura 77 - Variação da potência reativa (PCSOIM)	145
Figura 78 - Variação da magnitude de tensão para o sistema de 202 nós (PCSOIM)	146
Figura 79 - Variação da magnitude de corrente (PCSOIM)	146
Figura 80 - Variação da potência reativa (PCSOIM)	147
Figura 81 - Esquema de um regulador de tensão	148
Figura 82 - Diagrama unifilar do sistema de 11 nós	153
Figura 83 - Preço de compra da energia da subestação (SE)	153
Figura 84 - Potência ativa total demandada para o sistema de 11 nós	153
Figura 85 - Potência reativa total demandada para o sistema de 11 nós	154
Figura 86 - Tensão mínima no sistema em todos os níveis de demanda	155
Figura 87 - Perda de potência ativa no sistema em todos os níveis de demanda	156
Figura 88 - Potência ativa na SE e potência ativa demandada em todos os níveis de dem	ıanda
	156
Figura 89 - Potência ativa injetada pelos dois geradores de fontes renováveis (PCSOIM)	157
Figura 90 – Soma da potência ativa injetada e extraída pelos dois dispositivo armazenamento	s de 157
Figura 91 - Estado de carga dos DAE (kWh)	158
Figura 92 - Perdas de potência reativa em todos os níveis de demanda	158
Figura 93 - Potência reativa na SE e potência reativa demandada em todos os níve	is de
demanda	159
Figura 94 - Diagrama unifilar do sistema de 42 nós	160
Figura 95 - Preço de compra da energia da subestação (SE)	160

Figura 96 - Potência ativa total demandada para o sistema de 42 nós.	161
Figura 97 - Potência reativa total demandada para o sistema de 42 nós	161
Figura 98 - Tensão mínima no sistema em todos os níveis de demanda	163
Figura 99 - Perdas de potência ativa no sistema em todos os níveis de demanda	163
Figura 100 - Potência ativa na SE e potência ativa demandada em todos os níveis de d	lemanda
	164
Figura 101 - Potência ativa injetada pelos dois geradores distribuídos (PCSOIM)	164
Figura 102 - Potência ativa injetada pelos dispositivos de armazenamento	165
Figura 103 - Potência ativa extraída pelos dispositivos de armazenamento	165
Figura 104 - Soma da potência ativa injetada e extraída pelos dispositivos de armazer	namento
	166
Figura 105 - Estado de carga dos DAE	166
Figura 106 - Potência ativa injetada pelos geradores renováveis (PCSOIM)	167
Figura 107 - Potência reativa na SE e potência reativa demandada em todos os n	íveis de
demanda	167

LISTA DE TABELAS

Tabela 1 - Resultados para o sistema teste de 33 nós	61
Tabela 2 - Resultados para o sistema teste de 70 nós	63
Tabela 3 - Resultados para o sistema teste de 136 nós	66
Tabela 4 - Resultados para o sistema teste de 400 nós	68
Tabela 5 - Resultados para o sistema teste de 3 nós	71
Tabela 6 - Resultados para o sistema teste de 202 nós	73
Tabela 7 - Resultados para o sistema teste de 03 nós com linearização	79
Tabela 8 - Resultados para o sistema teste de 202 nós com linearização	81
Tabela 9 - Resultados para o sistema teste de 33 nós com geradores distribuídos	92
Tabela 10 - Resultados para o sistema teste de 42 nós com geradores distribuídos	95
Tabela 11 - Resultados para o sistema teste de 70 nós com geradores distribuídos	97
Tabela 12 - Resultados para o sistema teste de 136 nós com geradores distribuídos	100
Tabela 13 - Resultados para o sistema teste de 202 nós com geradores distribuídos	104
Tabela 14 - Resultados para o sistema teste de 202 nós com linearização	106
Tabela 15 - Resultados para o sistema teste de 11 nós	114
Tabela 16 - Resultados para o sistema teste de 33 nós para o problema de RSDEE	125
Tabela 17 - Resultados para o sistema teste de 70 nós para o problema de RSDEE	127
Tabela 18 - Resultados para o sistema teste de 136 nós para o problema de RSDEE	130
Tabela 19 - Resultados para o sistema teste de 70 nós	137
Tabela 20 - Resultados para o sistema teste de 136 nós	140
Tabela 21 - Resultados para o sistema teste de 202 nós	143
Tabela 22 - Resultados para o sistema teste de 202 nós com linearização	145
Tabela 23 - Resultados para o sistema teste de 11 nós	154
Tabela 24 - Resultados para o sistema teste de 42 nós	162

LISTA DE ABREVIATURAS E SIGLAS

AMPL Modeling Language for Mathematical Programming

BC Banco de Capacitores

CNOPO Condições Necessárias de Otimalidade de Primeira Ordem

CPLEX Solver "Algoritmo Simplex com linguagem C++"

DAE Dispositivo de Armazenamento de Energia

FC Fluxo de Carga

GD Gerador Distribuído Despachável

KKT Karush-Kuhn-Tucker

MINLP Mixed Integer Nonlinear Programming

MISOCP Mixed Integer Second-Order Cone Programming

PL Programação Linear

PLIM Programação Linear Inteira Mista

PNL Programação Linear

PNLIM Programação não Linear Inteira Mista

PC Programação Cônica

PCO Programação Convexa

PCSO Programação Cônica de Segunda Ordem

PCSOIM Programação Cônica de Segunda Ordem Inteira Mista
PEST Planeiamento da Expansão de Sistemas de Transmissã

PEST Planejamento da Expansão de Sistemas de Transmissão

POSD Planejamento de Operação de Sistemas de Distribuição

POSDEE Planejamento de Operação de Sistemas de Distribuição de Energia

Elétrica

PQ Programação Quadrática

PQRQ Programação Quadrática com Restrições Quadráticas

PSD Programação Semidefinida

RSDEE Reconfiguração de Sistemas de Distribuição de Energia Elétrica

RT Regulador de Tensão

SDEE Sistema de Distribuição de Energia Elétrica

SE Subestação

SOCP Second-Order Cone Programming

LISTA DE SÍMBOLOS

Conjuntos

 \mathbb{R}^n Conjunto dos números reais n-dimensional

 \mathbb{N}^p Conjunto dos números naturais p-dimensional

 Ω_b Conjunto de nós

 Ω_l Conjunto de ramos

 Ω_{bc} Conjunto de bancos de capacitores

 Ω_d Conjunto de níveis de demanda

 Ω_{qd} Conjunto de geradores distribuídos despacháveis.

 Ω_{rs} Conjunto de geradores de fontes renováveis

 Ω_{hs} Conjunto de armazenadores de energia

 $N_{\varepsilon}(\bar{x})$ Conjunto aberto centrado em \bar{x} , com raio ε

 $S \cap N_{\varepsilon}(\bar{x})$ Intersecção dos conjuntos $S \in N_{\varepsilon}(\bar{x})$

 \mathbb{R}_+ Conjunto dos números reais positivos

 \mathbb{R}^n_+ Conjunto dos números reais positivos n-dimensional

 $\mathbb{R}^{m \times n}$ Conjunto de matrizes $m \times n$

 \mathcal{P} Partição de um intervalo

Funções

 $v(x) = c^T x$ Função linear na variável x

 $f^{T}(x)$ Função transposta na variável x

||.|| Norma euclidiana

 ∇f Gradiente da função f

£ Função lagrangeana

 $L_{ii,r}$ Função de ajuste para garantir a não negatividade do quadrado das potências

ativa e reativa na linearização

 L_{rs} Função que associa a um gerador de fonte renovável uma barra do sistema

 L_{bs} Função que associa a um banco de baterias uma barra do sistema

Constantes

 R_{ij} Resistência no circuito ij

 X_{ii} Reatância no circuito ij

 Z_{ij} Impedância no circuito ij

 P_i^D Potência ativa de demanda no nó i

o D	
Q_i^D	Potência reativa de demanda no nó i
\overline{na}_n^{bc}	Número de submódulos no banco de capacitores <i>n</i>
<u>V</u>	Magnitude de tensão mínima
\overline{V}	Magnitude de tensão máxima
$\overline{\Delta}^V$	Tamanho constante de cada subintervalo
$\overline{\Delta}^S$	Limite superior de cada bloco de discretização do fluxo de potência ativa e reativa
S	Número de discretizações
T	Número de linearizações
$\Delta^P_{ij,r}$	Valor do r-ésimo bloco de linearizações por partes de P_{ij}^2
$m_{ij,r}^S$	Inclinação do r-ésimo bloco do fluxo de potência ativa e reativa no ramo ij
h_k	Medida da altura do r-ésimo bloco de linearizações de P_{ij}^2
$\Delta^Q_{ij,r} \ S^{gd}_i$	Valor do r-ésimo bloco de linearizações por partes de Q_{ij}^2
\mathcal{S}_i^{gd}	Capacidade máxima de geração no nó i
$\underline{pf_i}$	Limite inferior do fator de potência capacitivo para um gerador distribuído no n
	nó i
\overline{pf}_i	Limite inferior do fator de potência indutivo para um gerador distribuído no n
	nó i
$\underline{P}_h^{bs_P}$	Limite mínimo de injeção de potência do dispositivo de armazenamento de
energia h.	
$ar{P}_h^{bs_P}$	Limite máximo de injeção de potência do dispositivo de armazenamento de energia h .
$\underline{P}_h^{bs_S}$	Limite mínimo de extração de potência pelo dispositivo de armazenamento de
<u>-</u> h	energia h .
$\underline{P}_h^{bs_P}$	
$\underline{\underline{r}}_h$	Limite mínimo de extração de potência pelo dispositivo de armazenamento de energia <i>h</i>
C1	Limite térmico do estator
C1 C2	Limite térmico do rotor
C3	Mínima excitação Limita prática da estabilidada
C4	Limite prático de estabilidade
R1	Limite da turbina

- esn			
Q_n^{esp}	Potência reativa de cada submódulo do banco de capacitores <i>n</i>		
\overline{nt}_{ij}	Número total de taps do regulador de tensão ligado entre as barras i e j .		
$ar{arDelta}_{ij}^{rt}$	Variação máxima do número de taps do regulador de tensão ligado entre as		
	barras i e j entre níveis de demanda consecutivos.		
$ar{arDelta}_n^{bc}$	Variação máxima de submódulos ligados entre níveis de demanda consecutivos		
	de cada banco de capacitores n.		
$R_{ij}^{\%}$	Regulação percentual do regulador de tensão ligado entre as barras i e j		
$ar{P}^{rs}_{a,d}$	Capacidade de geração de potência ativa do gerador de fonte renovável a no		
	nível de demanda d		
$E_{0_h}^{bs}$	Estado inicial de carga do banco de baterias h .		
\underline{E}_h^{bs}	Capacidade mínima de armazenamento de energia no dispositivo de		
	armazenamento de energia h .		
$ar{E}_h^{bs}$	Capacidade máxima de armazenamento de energia no dispositivo de		
	armazenamento de energia h .		
$\eta_h^{bs_P}$	Eficiência na injeção de potência do dispositivo de armazenamento de energia h .		
$\eta_h^{bs_S}$	Eficiência na extração da potência pelo dispositivo de armazenamento de		
	energia h .		
$oldsymbol{eta}_h^{bs}$	Taxa de auto-descarga do dispositivo de armazenamento de energia h .		
Δt	Intervalo de tempo de cada nível de demanda utilizado na análise.		
$ar{\it \Delta}_h^{bs}$	Número máximo de modificações de estado de operação de extração ou injeção		
	de potência, dos dispositivos de armazenamento de energia \boldsymbol{h} no período de		
	análise.		
Variáveis Contínuas			

v arravers eo	
V_j^{qdr}	Variável que representa o quadrado da tensão na barra j
I_{ij}^{qdr}	Variável que representa o quadrado da corrente no circuito ij
P_i^G	Potência ativa fornecida pela subestação i
Q_i^G	Potência reativa fornecida pela subestação i
V_i	Tensão na barra i
P_{ij}	Fluxo de potência ativa no circuito ij
Q_{ij}	Fluxo de potência reativa no circuito ij
I_{ij}	Magnitude da corrente no circuito ij

$P_{j,s}^{C}$	Variável de correção de potência usada na discretização de V_j^{qdr} e I_{ij}^{qdr}
P_i^{dg}	Potência ativa fornecida pelo gerador
Q_i^{dg}	Potência reativa fornecida pelo gerador
q_n^{sw}	Tipo do banco de capacitores n . Se $q_n^{sw}=0$: banco fixo, $q_n^{sw}=1$: banco chaveado
$V_{i,d}$	Tensão na barra i no nível de demanda d
$t^{rt}_{ij,d}$	Tap do regulador de tensão ligado entre as barras i e j , no nível de demanda d .
$P_{a,d}^{rs}$	Injeção de potência ativa do gerador de fonte renovável a no nível de demanda d
$P_{h,d}^{bs_P}$	Injeção de potência do dispositivo de armazenamento de energia h , no nível de demanda d
$P_{h,d}^{bs_S}$	Extração de potência pelo dispositivo de armazenamento de energia h , no nível de demanda d
$E_{h,d}^{bs}$	Energia armazenada no dispositivo de armazenamento de energia h , no nível de demanda d
$E_{0_h}^{bs}$	Estado inicial de carga do dispositivo de armazenamento de energia h
$\eta_h^{bs_P}$	Eficiência na injeção de potência do dispositivo de armazenamento de energia h
$\eta_h^{bs_S}$	Eficiência na extração da potência pelo dispositivo de armazenamento de energia h
$oldsymbol{eta}_h^{bs}$	Taxa de auto-descarga do dispositivo de armazenamento de energia h
$P_{j,s}^{C}$	Correções sucessivas de potências
P	Potência ativa
Q	Potência reativa
$Q_{n,d}^{bc}$	Potência reativa gerada pelo banco capacitor n , no nível de demanda d .
$e_{h,d}^+$	Variável auxiliar positiva que indica mudança no estado de operação entre níveis de demanda d consecutivos, para o dispositivo de armazenamento de energia h .
$e_{h,d}^-$	Variável auxiliar negativa que indica mudança no estado de operação entre níveis de demanda d consecutivos, para o dispositivo de armazenamento de energia h .

Variáveis inteiras e binárias

$x_{j,s}$	Variável binária na discretização de V_j^{qdr}
$na_{n,d}^{bc}$	Número de submódulos ligados no banco de capacitores n , no nível de
	demanda d
$nt_{ij,d}^{rt}$	Posição do tap do regulador de tensão ligado entre as barras i e j , no nível de
	demanda d
$e_{h,d}$	Estado de operação do dispositivo de armazenamento de energia h , no nível de
	demanda d . Se $e_{h,d}=0$: extrai potência da rede $e_{h,d}=1$:injeta potência na
	rede.

SUMÁRIO

1	INTRODUÇÃO	24
1.1	Objetivos	31
1.2	ESTRUTURA DO TRABALHO	31
CAPI [*]	TULO 2	33
2	PANORAMA DA PROGRAMAÇÃO CÔNICA DE SEGUNDA ORDEM	33
2.1	Contexto histórico	33
2.2	Problemas de otimização	35
2.3	OTIMIZAÇÃO CONVEXA	39
2.4	ASPECTOS TEÓRICOS DA PROGRAMAÇÃO CONVEXA	
2.5	FORMULAÇÃO CÔNICA	
2.5.1	Problema de Programação Cônica	
2.6	FORMULAÇÃO CÔNICA DE SEGUNDA ORDEM	
2.6.1	Alguns dos problemas que podem ser escritos como problemas de PCSO	
2.6.2	Os problemas de PCSO não englobam os problemas de PSD	
2.6.3	PCSO incluindo variáveis inteiras e mistas	
2.7 <i>2.7.1</i>	CONDIÇÕES NECESSÁRIAS DE KARUSH-KUHN-TUCKER (KKT)	
CAPI	TULO 3	50
3 SEGU	ANÁLISE DE SISTEMAS DE DISTRIBUIÇÃO RADIAIS UTILIZANDO UMA FORMULAÇÃO CÔNION NDA ORDEM	
3.1	CÁLCULO DO PONTO DE OPERAÇÃO EM REGIME PERMANENTE DE UM SISTEMA DE DISTRIBUIÇÃO RADIAL UTIL	
ғокм 3.2	JLAÇÃO CÔNICA DE SEGUNDA ORDEM	
3.2 3.3	A EQUIVALÊNCIA DE SOLUÇÃO ENTRE UM PROBLEMA DE PNL E UM PROBLEMA DE PCSO PARA O PONTO DE	
3.4	TESTES E RESULTADOS	•
3.4.1	Indicador de precisão erro _{ij}	
3.4.2	Teste do sistema de 33 nós	
3.4.3	Teste do sistema de 70 nós	
3.4.4	Teste do sistema de 136 nós	
3.4.5	Teste do sistema de 400 nós	66
3.5	CASOS CRÍTICOS	69
3.5.1	Teste do sistema de 3 nós	69
3.5.2	Teste do sistema de 202 nós	
3.6	Linearização	74
3.6.1	Linearização de $V_{j}^{qdr}I_{ij}^{qdr}$ Erro! Indicador	não definido.
3.6.2	Linearização de P_{ij}^2 e Q_{ij}^2	não definido.
3.7	APLICAÇÃO DA LINEARIZAÇÃO NOS CASOS CRÍTICOS	78
3.7.1	Teste do sistema de 03 nós	
3.7.2	Teste do sistema de 202 nós	
3.8	CONCLUSÕES DO CAPÍTULO	82
CAPÍ	TULO 4	83
4 DIST	EQUIVALÊNCIA DE SOLUÇÕES ENTRE PROBLEMAS DE PCSO E PROBLEMAS DE PNL EM SIST	EMAS DE
	RIBUIÇÃO RADIAIS	
4.1	Análise de um problema de PNL utilizando uma formulação cônica de segunda ordem	83

4.2	FORMULAÇÃO DO PROBLEMA DE PNL EM UM SISTEMA DE DISTRIBUIÇÃO RADIAL COM GERAÇÃO DISTRIBUÍDA	
4.2.1	A modelagem de geradores distribuídos	
4.2.2	A formulação matemática do modelo de PNL para otimização de sistemas de distribuição com	geração
distrib		
4.3	TESTES E RESULTADOS	
4.3.1	Teste do sistema de 33 nós com geração distribuída	
4.3.2	Teste do sistema de 42 nós para um sistema de distribuição com geração distribuída	
4.3.3	Teste do sistema de 70 nós para um sistema de distribuição com geração distribuída	
4.3.4	Teste do sistema de 136 nós para um sistema de distribuição com geração distribuída	
4.3.5	Teste do sistema de 202 nós para um sistema de distribuição com geração distribuída	
4.3.6	Teste do sistema de 202 nós com utilização da linearização	
4.4	FORMULAÇÃO DO MODELO PARA O PLANEJAMENTO DA OPERAÇÃO DE SISTEMAS DE DISTRIBUIÇÃO DE ENERGIA ELI	
	S COM FONTES RENOVÁVEIS E ARMAZENAMENTO DE ENERGIA	
4.4.1	Geradores Distribuídos Erro! Indicador não	-
4.4.2	Fontes de energia renovável	
4.4.3	Dispositivos de armazenamento de energia	
4.4.4	Um caso particular para o planejamento da operação de sistemas de distribuição de energia e	
	s com fontes renováveis e armazenamento de energia, modelado como um problema de PNL	111
4.5	TESTES E RESULTADOS	
4.5.1	Teste do sistema de 11 nós	
4.6	CONCLUSÕES DO CAPÍTULO	117
CAPÍT	ULO 5	118
5	EQUIVALÊNCIA DE SOLUÇÃO ENTRE OS PROBLEMAS DE PCSOIM E DE PNLIM PARA SISTEMAS D	\E
	EQUIVALENCIA DE SOLOÇÃO ENTRE OS PROBLEMAS DE POSOIM E DE PNEIM PARA SISTEMAS L IBUIÇÃO DE ENERGIA ELÉTRICA RADIAIS	
DISTR		
5.1	A EQUIVALÊNCIA DE SOLUÇÃO ENTRE UM PROBLEMA DE PNLIM E UM PROBLEMA DE PCSOIM	118
5.2	Formulação do modelo de PNLIM em sistemas de distribuição radiais: aplicação no problema de	
RECON	figuração do sistema de distribuição de energia elétrica (RSDEE)	
5.2.1	A modelagem matemática	
5.2.2	O modelo de RSDEE	
5.3	TESTES E RESULTADOS PARA O PROBLEMA DE RSDEE	
5.3.1	Teste do sistema de 33 nós para o problema de RSDEE	
5.3.2	Teste do sistema de 70 nós para o problema de RSDEE	
5.3.3	Teste do sistema de 136 nós para o problema de RSDEE	
5.4	FORMULAÇÃO DO PROBLEMA DE PNLIM PARA O PROBLEMA DE ALOCAÇÃO DE BANCO DE CAPACITORES	
5.4.1	Banco de Capacitores	
5.4.2	O Modelo de Alocação Ótima de Bancos de Capacitores em SDEE	
5.5	TESTES E RESULTADOS PARA O PROBLEMA DE ALOCAÇÃO ÓTIMA DE BANCOS DE CAPACITORES EM SDEE RADIAIS	
5.5.1	Teste do sistema de 70 nós para o problema de alocação de banco de capacitores	
5.5.2	Teste do sistema de 136 nós para o problema de alocação de banco de capacitores	
5.5.3	Teste do sistema de 202 nós para o problema de alocação de banco de capacitores	
5.5.4	Teste do sistema de 202 nós para o problema de alocação de banco de capacitores com utiliza	ıção da
	ização 145	
5.6	Planejamento da operação de sistemas de distribuição de energia elétrica radiais com fontes renov	
	ENAMENTO DE ENERGIA	
5.6.1	Reguladores de Tensão	
5.6.2	Formulação matemática do problema de otimização da operação de sistemas de distribuição	
_	ia elétrica radiais com fontes renováveis e armazenamento de energia	
5.7	TESTES E RESULTADOS PARA O SISTEMA DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA RADIAL COM FONTES RENOVÁVEIS	
	ENAMENTO DE ENERGIA	
5.7.1	Teste com o sistema de 11 nós	
5.7.2	Teste do sistema de 42 nós	
5.8	CONCLUSÕES DO CAPÍTULO	168
CAPÍT	ULO 6	169
6	CONSIDERAÇÕES FINAIS	160
U	CONSIDERAÇÕES I IIAAS	

	6.1	Conclusão	169
	6.2	Trabalhos Futuros	170
		NCIAS	171
	ANEXO	A - TRABALHOS PUBLICADOS PELO AUTOR	177
		B - DADOS DOS SISTEMAS TESTE PARA O PROBLEMA DE DISTRIBUIÇÃO	
	B. 1 - D.	ADOS DO SISTEMA DE 3 NÓS	178
	B. 2 I	DADOS DO SISTEMA DE 33 NÓS.	178
		ADOS DO SISTEMA DE 70 NÓS	
		ADOS DO SISTEMA DE 136 NÓS	
		ADOS DO SISTEMA DE 202 NÓS	
	B. 6 - D.	ADOS DO SISTEMA DE 400 NÓS	195
		C - DADOS PARA O PROBLEMA DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA RADIAL COM FONTES ÁVEIS E ARMAZENAMENTO DE ENERGIA	210
		ADOS DO SISTEMA DE 11 NÓS	
	C. 2 - D.	ADOS DO SISTEMA DE 42 NÓS	210

CAPÍTULO 1

OTIMIZAÇÃO DE SISTEMAS DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA RADIAIS USANDO PROGRAMAÇÃO CÔNICA DE SEGUNDA ORDEM INTEIRA MISTA

1 INTRODUÇÃO

Um problema de otimização de sistemas, é composto de duas fases muito bem definidas: a) a elaboração da modelagem matemática do problema; e b) a escolha da metodologia de solução para resolver o modelo matemático formulado. Segundo (PEDREGAL, 2004), é preciso um elo de compromisso entre estas duas fases.

Assim, a modelagem matemática deve representar de maneira adequada o problema da vida real que se pretende otimizar e, além disso, permitir sua resolução por meio das técnicas disponíveis e com esforços computacionais aceitáveis. Neste contexto, o conceito de modelagem matemática varia com o tempo, porque modelos matemáticos com uma formulação mais complexa e de difícil resolução com as técnicas disponíveis hoje, podem tornar-se adequados no futuro, com o aparecimento de novas técnicas de solução e *softwares* e/ou desenvolvimento de *hardwares* muito mais velozes que os disponíveis atualmente (CASTILLO et. al, 2001). Ou seja, compromisso entre modelo e método de solução é relativo e dependente do avanço tecnológico de determinada época.

Frequentemente, a modelagem matemática para um problema de otimização pode ser classificada de acordo com as características do problema, como um problema de programação linear (PL), programação não linear (PNL), programação linear inteira mista (PLIM) ou programação não linear inteira mista (PNLIM). Para cada tipo de problema, existe na literatura especializada diversas técnicas de otimização clássicas ou exatas conhecidas. Por exemplo, problemas de PL, possuem uma função objetivo linear e restrições lineares que representam uma região de busca convexa. Para esse tipo de problema, existem ferramentas de busca eficientes, como o algoritmo simplex, ou um método de ponto interior, e outros que devido à linearidade e convexidade do problema, conseguem garantir a convergência para o ótimo global (BAZARAA, 2011).

Para problemas de PNL podem ser usadas várias técnicas tradicionais de otimização, como as técnicas baseadas em gradiente, relaxação Lagrangeana, método de Newton, programação linear e/ou quadrática sucessiva, etc. ou metodologias mais recentes, como o método de pontos interiores ou de região de confiança (BAZARAA, 2006).

A classe dos problemas de PNL é muito abrangente e a teoria desenvolvida em torno do assunto precisa estabelecer algumas condições para a resolução deste tipo de problema, como por exemplo, as condições de Karush-Kuhn-Tucker, ou alguma característica específica sobre a função objetivo ou sobre algumas restrições. Sabe-se também que grande parte da teoria desenvolvida para a resolução de problemas de PNL, necessita da convexidade da região de busca para garantir a otimalidade. Por outro lado, para resolver um problema de PLIM pode ser usada a decomposição matemática de Benders, planos de corte de Gomory ou um algoritmo tipo *Branch and Bound* (e suas versões modernas *Branch and Cut* ou *Branch and Price*), (LAND; DOIG, 1960).

Finalmente, resolver um problema de PNLIM é uma tarefa muito complicada e a teoria relacionada com a otimização clássica é escassa. Todavia, a maioria dos modelos matemáticos para retratar mais fielmente uma situação real, são formulados como problemas de PNLIM. Nesse sentido existem modelos que devido a sua grande complexidade não podem ser aplicados para representar o problema, devido a uma dificuldade enorme de solução. Uma opção que tem sido uma via de investigação interessante é a linearização dos modelos, todavia, por este caminho, geralmente não se alcança um modelo equivalente para muitos casos, e os modelos relaxados na maioria dos casos não garantem uma solução de boa qualidade, principalmente para os sistemas de grande porte.

Cabe destacar que para os problemas de PL e PLIM existem condições necessárias e suficientes de otimalidade teoricamente provadas que garantem se uma dada solução factível é ótima ou não. Porém, para problemas de PLIM de grande porte, as técnicas de otimização clássicas apresentam problemas de tempo de processamento para encontrar soluções ótimas ou subótimas de boa qualidade. Para problemas de PNL e PNLIM não existem tais condições de otimalidade, exceto através da comparação explícita ou implícita desta solução com cada uma das soluções do espaço de busca (CASTILLO et. al, 2001) e (PEDREGAL, 2004). Porém, a maioria dos problemas de otimização de sistemas reais são modelados corretamente como problemas de PNLIM ou de PLIM de grande porte, os quais não podem ser resolvidos de forma satisfatória usando técnicas de otimização clássicas ou exatas.

Neste sentido, as heurísticas e/ou metaheurísticas tentam resolver estes tipos de problemas de otimização de forma aproximada. Um fato importante a ser observado é que quando são usadas heurísticas ou meta-heurísticas, não existe uma separação bem definida entre a modelagem matemática e a técnica de solução. Quando são utilizadas as heurísticas ou meta-heurísticas, o que permanece claramente diferenciado é a técnica de otimização (um tipo de heurística ou meta-heurística). No caso das meta-heurísticas o objetivo é avaliar a

factibilidade de centenas ou milhares de possíveis soluções criadas de forma aleatória ou usando uma estratégia determinística, e sempre armazenar a melhor ou as melhores soluções.

Outro fato importante a ser observado é que as heurísticas ou meta-heurísticas podem resolver problemas de otimização onde não é possível obter uma modelagem matemática ou, se existe, então esse modelo matemático ainda não é conhecido. Embora as meta-heurísticas em geral sejam fáceis de programar, simples de entender, robustas, flexíveis e proporcionam bons resultados em tempos aceitáveis, elas apresentam sérios problemas, tais como a elevada demanda computacional, o ajuste ou sintonização de parâmetros, a definição do critério de parada e a incapacidade de garantir que a solução obtida é ótima, (GOLDBERG, 1989), (MICHALEWICZ, 1996), (MITCHELL, 1996), (GLOVER; LAGUNA, 1996).

Assim, uma linha de pesquisa atual e desafiadora é o desenvolvimento de novas técnicas de otimização clássica (ou exatas) e aproximadas (heurísticas ou meta-heurísticas) para a solução de problemas de PNLIM ou de PLIM de grande porte com um esforço computacional aceitável. Alguns trabalhos nessa direção foram desenvolvidos e estão disponíveis em (LAPSEE).

No caso dos sistemas de energia elétrica, a maioria dos problemas de otimização são modelados corretamente como problemas de PNLIM ou de PLIM de grande porte. Porém, pode-se verificar que nas décadas de 1950, 1960 e 1970, os recursos computacionais eram escassos e o algoritmo simplex e a programação dinâmica eram as principais técnicas de otimização disponíveis na época. Tais técnicas eram aplicadas apenas para problemas cujos modelos matemáticos eram formulados como um problema de PL como por exemplo, o problema de despacho econômico, o planejamento de sistemas hidrotérmicos e o problema de pré-despacho. Também nessas décadas, as técnicas de otimização clássicas como o algoritmo *Branch and Bound* foram aplicadas apenas para problemas de otimização que usavam modelos matemáticos relaxados ou simplificados, de forma a obter um problema de PLIM, e eram basicamente testados para sistemas de pequeno porte (WOOD; WOLLENBERG, 1984).

Na década de 1980 apareceram as primeiras aplicações da técnica de decomposição de *Benders* para resolver problemas de PLIM e de PNLIM, porém apenas para sistemas de pequeno e médio porte. Também, nessa década foi usada a técnica decomposição de Dantzig-Wolfe para resolver problemas de PL de grande porte decorrentes de problemas de otimização. Por esses motivos, nas décadas de 1950 a 1980 os algoritmos heurísticos construtivos foram as técnicas de otimização usadas com maior sucesso para resolver problemas de PLIM e PNLIM de grande porte, relacionados com a otimização de sistemas de energia elétrica, mesmo sabendo que eram técnicas de otimização não muito eficientes, porém

práticas. Neste contexto, a busca por modelos matemáticos dos problemas de otimização de sistemas de energia elétrica, cada vez mais realistas, não era um tópico relevante nessas décadas, (PEARL, 1984).

Na década de 1990 as meta-heurísticas foram as técnicas de otimização aplicadas com maior sucesso, para otimizar diferentes problemas relacionados com sistemas de energia elétrica. Parte deste sucesso é devido ao surgimento de computadores economicamente acessíveis e com um bom desempenho computacional (GOLDBERG, (MICHALEWICZ, 1996), (MITCHELL, 1996), (GLOVER; LAGUNA, 1996). Novamente, o desenvolvimento e aprimoramento de modelos matemáticos realistas não foi considerado um assunto relevante. Entretanto, a década de 2000 trouxe novos fatos no mundo da otimização de sistemas de energia elétrica. O fato mais relevante foi que os solvers comerciais para PL e PLIM (como o CPLEX (ILOG, 2009), XPRESS (2009), GUROBI (2013), MOSEK (2013)) e PNL (KNITRO (BYRD; NOCEDAL; WALTZ, 2006), IPOPT (WÄCHTER; BIEGLER, 2005), CONOPT(2013), LOQO (2006)) baseados em técnicas de otimização clássica tornaram-se extremamente eficientes com o avanço das novas técnicas de resolução baseadas no método de pontos interiores e algoritmos Branch and Bound modernos. Particularmente, solvers de problemas de PLIM como o CPLEX (ILOG, 2009) e seus concorrentes (XPRESS (2009), GUROBI (2013), etc.) atingiram uma superioridade em eficiência, quando comparados com suas versões da década de 1990.

Por outro lado, pode-se observar que os *solvers* comerciais que se propõem a resolver diretamente problemas de PNLIM (KNITRO (BYRD; NOCEDAL; WALTZ, 2006), BONMIN (2007)), baseados em algoritmos tipo *Branch and Bound* ou de técnicas de *decomposição*, não evoluíram com a mesma eficiência. Desta forma, ainda existe a necessidade do desenvolvimento de um algoritmo *Branch and Bound* especializado para a resolução de problemas de PNLIM gerais. Adicionalmente, nesta época também apareceram os servidores de cálculo dedicados, economicamente acessíveis e com um alto desempenho computacional (JÜNGER et. al, 2010).

Neste contexto, pode-se observar que os pesquisadores na área de otimização de problemas envolvendo sistemas de energia elétrica assumiram novas estratégias de pesquisa: (i) desenvolver modelos matemáticos para os problemas de otimização de sistemas de energia elétrica em que não se conhecem seus respectivos modelos matemáticos; (ii) desenvolver modelos matemáticos mais realistas de diversos problemas de otimização de sistemas de energia elétrica existentes na literatura especializada, (iii) se os modelos matemáticos são de PLIM então usar diretamente os *solvers* comerciais de PLIM, como o CPLEX e/ou seus

concorrentes (XPRESS, GUROBI, etc.), (iv) se os modelos matemáticos são de PNLIM, então esses problemas devem ser transformados em problemas de PLIM "equivalentes" ou "linearizados", caso seja possível; caso contrário, usar *solvers* comerciais de PNLIM como por exemplo, o KNITRO e/ou BONMIN, mesmo sabendo que esses *solvers* comerciais não são muito eficientes. A possibilidade de usar *solvers* comerciais eficientes baseados em técnicas de otimização clássica tornou relevante a pesquisa em desenvolvimento de modelos matemáticos dedicados a problemas de otimização de sistemas de energia elétrica e, portanto, esse tópico de pesquisa tornou a modelagem matemática num tema de investigação intensa entre os pesquisadores na área de otimização de problemas de sistemas de energia elétrica, (CASTILLO et. al, 2001).

Por este motivo, nos últimos anos aumentou-se muito o número de publicações relacionadas com a otimização de sistemas de energia elétrica em que é priorizado o desenvolvimento de modelos matemáticos cada vez mais sofisticados, complexos e próximos da realidade, os quais, posteriormente são resolvidos usando *solvers* comerciais. Esse tema deve continuar relevante nos próximos anos, especialmente se os *solvers* comerciais tornarem-se cada vez mais eficientes aliados com a fabricação de computadores cada vez mais velozes.

Como exemplo, para mostrar a evolução do interesse em desenvolver modelos matemáticos cada vez mais realistas para problemas de otimização em sistemas de energia elétrica, pode-se destacar a evolução do problema de planejamento da expansão de sistemas de transmissão de energia elétrica (PEST). Nesse caso, o primeiro modelo matemático quase formal foi apresentado por Garver (1970), como um modelo de transportes. Mesmo assim, na publicação apresentada por Garver não apareceu uma modelagem matemática de maneira completamente formal como é conhecida atualmente. Além disso, foi utilizado um algoritmo heurístico construtivo para resolver o problema de PEST. No algoritmo heurístico construtivo, foi solucionado em cada passo um tipo especial de problema de PL chamado de problema de fluxo em redes. Assim, a modelagem matemática formal como enunciada inicialmente por Garver para o modelo de transportes apareceu apenas na década de 1980, onde realmente o modelo foi caracterizado como sendo um problema de PLIM e, portanto, o uso de um algoritmo *Branch and Bound* seria uma alternativa.

Ainda sobre o PEST, o modelo CC, na maneira formal também apareceu apenas na década de 1970, mas não se discutiu muito sobre a natureza do modelo, como sendo um problema de PNLIM até a década de 1980 quando apareceu a modelagem conhecida atualmente, com tentativa de resolução através da decomposição matemática de *Benders*

(ROMERO; MONTICELLI, 1994). Nesse tempo já se falava do problema de PEST multiestágio, com uma formulação usando a modelagem CA e do PEST com restrições de segurança. Entretanto, não aparecem nas publicações anteriores ao ano 2000 os modelos matemáticos exatos desses problemas, devido a sua complexidade de solução.

Assim, naquele tempo esses problemas eram resolvidos apenas usando heurísticas ou meta-heurísticas (LATORRE et. al, 2003), (LEE, et. al, 2006). Entretanto, no final da década de 1990 foi apresentado o modelo linear disjuntivo para o problema de PEST, representando uma proposta nova em termos de modelagem (BAHIENSE et. al, 2001). Assim, podemos observar que apenas na última década foram desenvolvidos modelos matemáticos eficientes para o PEST multiestágio (ESCOBAR; GALLEGO; ROMERO, 2004), para o PEST com restrições de segurança (SILVA et. al, 2005), para o modelo CA (RIDER; GARCIA; ROMERO, 2007), entre outros. Portanto, se incrementou muito o interesse por desenvolver modelos matemáticos cada vez mais próximos da realidade e, cada vez mais complexos. Essa tendência deve continuar, com atividade crescente, especialmente se os *solvers* comerciais se tornarem cada vez mais eficientes.

Outros problemas que também podem ser mencionados são os problemas de reconfiguração de alimentadores (KUMAR et. al, 2013) e do planejamento da expansão de sistemas de distribuição (GANGULY; SAHOO; DAS, 2013) em que não eram conhecidos os modelos matemáticos que incorporam de forma explícita e através de relações algébricas simples a restrição de radialidade da topologia. Esse fato não permitia resolver esses problemas através de *solvers* comerciais e o uso de heurísticas ou meta-heurísticas era necessária. Porém, em 2012, foi provado que esses modelos matemáticos podem ser formulados, e o uso de *solvers* comerciais tornou-se factível (LAVORATO et. al, 2012). Assim, os modelos podem ser melhorados, possibilitando a descrição de um problema de forma mais realista e prática.

A modelagem dos problemas que podem ser descritos como um problema de PNLIM é muito abrangente. É possível que em um problema a função objetivo e todas as restrições sejam não lineares, com a região de busca não convexa, ou por outro lado existe a possibilidade de o problema conter apenas uma restrição de não linearidade, independente se a região de busca é ou não convexa.

Assim, mediante a vasta generalidade de problemas que podem ser descritos como problemas de PNLIM, sob algumas hipóteses adicionais, é possível catalogar esses problemas de acordo com particularidades de cada um. Por exemplo, um problema convexo, possui a característica "convexidade" que facilita a convergência devido ao desenvolvimento da teoria

de programação convexa, um pouco mais apurada que a teoria geral para problemas de PNL. Assim, os problemas de PNLIM mais específicos podem ser classificados por categorias de acordo com particularidades dos grupos de problemas a serem resolvidos. Nesse contexto, é importante observar que desde o final da década do ano 2000 vem sendo aplicada a programação cônica de segunda ordem inteira mista (PCSOIM) em alguns problemas de otimização em sistemas de energia elétrica que são originalmente modelados como problemas de PNLIM.

A PCSOIM é uma área de crescimento constante pela diversidade de problemas de programação que vem sendo explorados à medida que seus modelos matemáticos são desenvolvidos. Em específico, a PCSOIM surge como uma nova alternativa para solucionar diversos problemas que até então eram de dificil resolução por se tratarem de problemas de PNLIM não convexos e de grande porte. A PCSOIM surgiu em modelos financeiros ou modelos de mercado (como a minimização de portfólios), em que a função objetivo a ser minimizada é uma função de segundo grau, sujeito a restrições lineares e não lineares, com grande possibilidade de confrontar-se com problemas não convexos. Estes problemas passaram de "teoricamente interessantes" para "praticamente significativos" com o desenvolvimento de métodos do gênero, pois qualquer problema de otimização convexa quadrática pode ser reformulado como um problema de PCSOIM (BOYD; VANDENBERGHE, 2004), (ALIZADEH; GOLDFARB, 2001).

Assim, se o objetivo dos pesquisadores na área de otimização era encontrar uma generalização dos problemas de otimização, essa meta foi alcançada com sucesso, pois este processo de otimização cônica é tratado como revolucionário por vários pesquisadores. A formulação cônica surge como alternativa para a obtenção de resultados que até então, era de grande difícil solução, ou precisava computacional de um custo (BOYD; VANDENBERGHE, 2004), (ALIZADEH; GOLDFARB, 2001). Solvers comerciais que são utilizados na otimização cônica, tal como CPLEX (ILOG, 2009) e MOSEK (2013) são de grande importância, já que permitem o apoio na resolução analítica de um problema para melhorar a eficiência na resolução numérica, de modo a reduzir os custos computacionais.

1.1 Objetivos

O objetivo principal deste trabalho é desenvolver uma estratégia de resolução de problemas de PNLIM através da teoria de programação cônica para problemas de otimização em sistemas de distribuição de energia elétrica. Apesar dos modelos de PNLIM e de PCSOIM, para problemas de otimização em sistemas de distribuição de energia elétrica não serem problemas de otimização equivalentes, provar-se-á mediante algumas condições que a solução encontrada pelo modelo de PCSOIM é a solução ótima para o problema de PNLIM.

O modelo proposto de PCSOIM é convexo e permite encontrar a solução ótima de um problema usando um *solver* comercial. Por outro lado, um modelo de PNLIM é um problema não linear com variáveis inteiras, com região de busca não convexa, de difícil resolução e sem garantia de ótimo global.

1.2 Estrutura do trabalho

Este trabalho está organizado da seguinte forma:

No Capítulo 2 é apresentado um breve panorama da PCSO, com uma localização do assunto num contexto histórico onde é feita uma breve revisão bibliográfica sobre o assunto. São tratados alguns aspectos teóricos da programação convexa e em seguida são destacadas as formulações cônica e cônica de segunda ordem. São expostos alguns problemas que podem ser reformulados como problemas de PCSO e de PCSOIM.

No Capítulo 3 é abordado o cálculo do ponto de operação em regime permanente de sistemas de distribuição radiais através de uma formulação cônica de segunda ordem, onde primeiramente é discutido o cálculo do fluxo de carga. Em seguida, é demonstrado uma Proposição que garante, sob algumas condições, a equivalência de solução entre um problema de PNL e um problema de PCSO. A eficácia da metodologia é comprovada através do teste de alguns sistemas. Para os sistemas, onde alguma das condições necessárias não é satisfeita, é apresentada uma técnica de linearização da equação do cálculo da corrente, para as linhas onde ocorre um erro maior que o parâmetro de 1% estabelecido. A estratégia de linearização proposta é uma alternativa eficiente e conduz a uma solução do problema de PNL através da resolução de um problema de PCSO.

No Capítulo 4 é demonstrada a equivalência de soluções entre um problema de PCSO e um problema de PNL em sistemas de distribuição que operam de forma radial, através de uma Proposição que garante sob algumas condições obter a solução de um problema de PNL pela resolução de um problema de PCSO. Em seguida, a metodologia é aplicada a alguns sistemas testes. O primeiro sistema testado é um sistema de distribuição com geração distribuída. Depois um sistema de distribuição de energia elétrica radial com fontes renováveis e armazenamento de energia é testado, comprovando a eficácia da estratégia.

No Capítulo 5 é desenvolvida uma extensão do resultado do Capítulo 4 e demonstrado um Teorema que garante a equivalência das soluções ótimas entre problemas de PNLIM e de PCSOIM, para sistemas com operação radial, ou seja, a solução de um problema de PNLIM, mediante algumas condições, pode ser encontrada pela resolução de um problema de PCSOIM. A metodologia é aplicada a alguns problemas de PNLIM, que podem ter restrições não lineares relaxadas e escritas como restrições cônicas de segunda ordem. Para comprovar a eficácia da estratégia, são testados o problema de reconfiguração de sistemas de distribuição de energia elétrica, o problema de alocação de banco de capacitores em sistemas de distribuição e o planejamento da operação de um sistema de distribuição de energia elétrica radial com fontes renováveis e armazenamento de energia, modelado como um problema de PNLIM.

Finalmente, no Capítulo 6 são apresentadas algumas considerações finais e perspectivas de trabalhos futuros.

CAPITULO 2

2 PANORAMA DA PROGRAMAÇÃO CÔNICA DE SEGUNDA ORDEM

2.1 Contexto histórico

A otimização ganhou força durante a segunda guerra mundial, em seguida, as técnicas alcançaram as indústrias, principalmente nas áreas de logística, planejamento e controle de produção. O ápice do processo de otimização na época, ocorreu no final da década de 1950, depois que Dantzig criou o algoritmo Simplex (1947) para a resolução de problemas de PL. Assim, os modelos não lineares eram relaxados para uma possível aplicação do método simplex. No início da década de 1960 já havia uma grande difusão da programação convexa devido às vantagens das propriedades da convexidade, a saber, a garantia de solução global, quando existir; as condições de otimalidade; a teoria de dualidade e a simplicidade de alguns métodos de solução. A partir de 1970 ocorreu mais um desenvolvimento teórico onde surgiu a separação e o suporte através de hiperplanos, bem como o cálculo dos subgradientes (ROCKAFELLAR, 1972).

Neste contexto, o método simplex se destacou na resolução de problemas de PL, com foco na otimização de problemas com função objetivo linear e restrições lineares. Por outro lado, a necessidade por um avanço nas técnicas de modelagem, de processamento de logística e planejamento de problemas, permitiu um desenvolvimento rápido da teoria e algoritmos para a PL, um passo fundamental para uma futura extensão da teoria de PL para outros tipos de problemas.

No início dos anos 1980, concluiu-se que o que torna um problema eficientemente solucionável é a programação convexa, ou seja, um problema com função objetivo e restrições convexas. Específicamente, provou-se que os problemas convexos em geral, são polinomialmente solucionaveis. É importante destacar que, embora a programação convexa tenha estabelecido uma grande estrutura teórica, era tarefa extremamente difícil utilizar essa estrutura, devido aos métodos utilizados em forma de algoritmos "caixas pretas" orientados como sugere Neminrovisck (2006).

Por outro lado em 1984, Kamarkar colaborou com uma enorme contribuição ao desenvolver um eficiente algoritmo para problemas de PL com tempo polinomial, chamado de método de pontos interiores, (KAMARKAR, 1984). Os pesquisadores centraram-se

principalmente na busca e utilização dessa estrutura da programação convexa e também em busca de nova representações de problemas que são convexos, principalmente na forma de problemas de programação cônica.

Durante as décadas de 1980 e 1990, com a criação dos métodos de pontos interiores primal dual, eficazes na resolução de problemas de PNL de grande porte, ocorreu uma extensão na teoria de problemas de PL, para programação cônica e programação semidefinida e que proporcionou um grande número de aplicações. Os problemas formulados em otimização convexa correspondem a uma classe muito mais ampla que PL. Basicamente, um problema pertencente a esta categoria, possui função objetivo convexa e restrições definidas em um conjunto convexo factível (GLINEUR, 2001).

Em 1994, Nemirovski destacou a vantagem da convergência global para os problemas convexos (NEMIROVSKI, 1994).

Em 1997, Lobo apresentou um *software* para problemas de PCSO (LOBO, 1997). Em seguida, o autor desenvolveu uma série de aplicações apresentadas em (LOBO, 1998). Paralelamente, a partir deste trabalho, Vanderbei (1998) descreveu uma série de aplicações de problemas que podem ser formulados ou reformulados como problemas de PCSO, em seguida descreveu como resolver estes problemas usando o solver LOQO, que é um *software* que utiliza um método de pontos interiores geral para a resolução de problemas de PNL não convexos. Para algumas aplicações, foram consideradas diferentes formulações, algumas equivalentes ou quase equivalentes ao problema original, reformuladas de modo a permitir uma melhor resolução.

Segundo Bertrekas (1999), a evolução nas técnicas de otimização convexa permitiram uma formulação mais adequada para problemas de Programação Convexa (PCO), contornando alguns problemas da otimização não linear, como a existência de muitos ótimos locais. Kim e Kojima (2001) mostraram que um problema de otimização quadrática convexo pode ser reformulado em termos de um problema de PCSO.

Nemirovski (2004) apresentou uma teoria geral de algoritmos polinomiais de pontos interiores em programação convexa. Tratando vários tipos de problemas convexos. Nemirovski encerra o trabalho tratando uma classe importante de problemas de programação convexa, a conhecida Programação Semidefinida (PSD). Indicou também vários problemas importantes que se encaixam em PSD.

Em trabalho publicado em 2004, Xiao considerou a dificuldade no reconhecimento de um problema convexo e destacou uma frase de Rockafellar: "O grande divisor de águas na

otimização não é entre linearidade e não-linearidade, mas entre convexidade e não convexidade". (XIAO, 2004).

O texto de Nemirovski (2006) é uma referência interessante no assunto, pois possibilita analisar as expressões de vários tipos de problemas que podem ser formulados ou reformulados como expressões cônicas.

Em (PRUESSNER et. al, 2006), a programação cônica foi destacada como uma programação linear generalizada com a adição de cones convexos, em geral, não lineares. Essa classe da PCO inclui problemas de PL, Programação Quadrática (PQ) convexa e PQ com Restrições Quadráticas (PQRQ).

Li e Tunçel (2006) definiram os problemas de otimização convexa como problemas de minimização de uma função convexa sobre um conjunto de busca convexo, e que estão entre a classe dos mais bem comportados problemas de otimização. Destacaram que atualmente, as abordagens mais bem sucedidas na teoria e algoritmos de tratamento de problemas de otimização convexa estão nos problemas de programação cônica, que analisam a otimização de minimização ou de maximização de uma função linear sujeito a uma região composta pela intersecção entre um subespaço afim e um cone convexo.

O sucesso da programação cônica está no fato que mediante algumas hipóteses, grande parte dos problemas de programação convexa podem ser formulados como problemas de programação cônica.

2.2 Problemas de otimização

Na modelagem original de um problema real, em uma grande maioria dos casos, é necessário agregar algumas variáveis inteiras, para representar condições exigidas de algumas das variáveis de decisão e garantir que o modelo de programação matemática retrate precisamente as condições físicas do problema. Esses tipos de problemas são chamados de problemas de programação linear inteira mista (PLIM) ou não linear inteira mista (PNLIM), conforme a complexidade da modelagem. Existem ainda casos onde variáveis binárias estão incluídas na modelagem, em geral, para indicar dois estados diferentes no sistema.

Em geral, um problema de PLIM pode ser resolvido com algoritmos clássicos, como é o caso do algoritmo *Branch and Bound* (B&B) criado por Land e Doig (1960), ou algum método de corte. É possível também utilizar uma heurística ou meta-heurística para a resolução deste tipo de problema.

Um problema de PLIM tem a forma (1)-(3).

$$\min_{\substack{s. a \\ Ax = b \\ x \in C}} v(x) = c^T x$$

$$(1)$$

$$(2)$$

Onde v é uma função linear, $C \subseteq \mathbb{R}^{n-p} \times \mathbb{N}^p \subseteq \mathbb{R}^n$ é um conjunto convexo, e o vetor x possui p componentes inteiros e n-p reais.

Vantagens de um problema de PLIM:

- Em geral, é um problema mais fácil de resolver em comparação com um problema de PNLIM;
- Garantia de convergência para a solução ótima global;
- Teoria robusta com metodologia confiável;
- Região de busca convexa.

Desvantagens de um problema de PLIM:

- Em geral, a modelagem completa de um problema real não pode ser representada por um problema de PLIM;
- Aplicação restrita a uma pequena quantidade de problemas;
- Para problemas de grandes dimensões (variáveis, restrições, etc.), produz ótimos locais de baixa qualidade quando algum problema de PNLIM é relaxado a um PLIM;

Os problemas de PNLIM são de difícil resolução devido à condição complicante de integralidade aliada com a não linearidade do problema e a não convexidade da região de busca. Além disso, não existem condições de otimização que garantam a otimalidade da solução, pois uma solução viável, quando encontrada por algum processo de busca, é aceita ou não como uma solução de boa qualidade, através de algum processo de comparação explicita ou implícita com um conjunto de soluções favoráveis do problema. Por esses motivos, existe a necessidade de uma metodologia eficiente para resolver problemas de PNLIM de grande porte com região de busca não convexas.

Um problema de PNLIM tem a forma (4)-(7).

$$\min_{\substack{s. a \\ g_i(x) \le 0; i = 1,...,l \\ h_i(x) = 0; i = 1,...,m \\ x \in X}$$
(4)
(5)
(6)

Para uma função objetivo f definida em um conjunto $X \subseteq \mathbb{R}^{n-p} \times \mathbb{N}^p \subseteq \mathbb{R}^n$, com uma região de busca definida pelas restrições de g_i e h_i . O vetor \boldsymbol{x} possui p componentes inteiros e n-p reais.

Vantagens de um problema de PNLIM:

• Em geral, a modelagem completa de um problema real é representada por um problema de PNLIM;

Desvantagens de um problema de PNLIM:

- Geralmente existe um grande número de ótimos locais;
- A não convexidade da região de busca;
- Não existe técnica de solução que garanta convergência para o ótimo global;
- Não existe uma metodologia geral que contempla todos os tipos de problemas.

Em geral, para resolver um problema do tipo inteiro misto através de uma metodologia clássica, é feita uma relaxação, com a retirada da condição de integralidade. A partir do problema relaxado, inicia-se um processo de busca de solução através da resolução de um problema que envolve apenas variáveis reais, seja um problema de PL ou de PNL, até encontrar uma solução que satisfaça as condições de integralidade.

Nesse contexto, um problema de PL, em geral é definido da forma (8)-(10).

$$\min_{S. a} v(x) = c^{T} x$$

$$S. a$$

$$Ax = b$$

$$x \in C$$
(8)
(9)

Para uma função objetivo v linear definida em um conjunto convexo $C \subseteq \mathbb{R}^n$, com uma região de busca gerada pelas restrições lineares $\mathbf{A}\mathbf{x} = \mathbf{b}$, com vetores parâmetros \mathbf{b} e \mathbf{c} e uma matriz \mathbf{A} .

Vantagens de um problema de PL:

- Garantia de convergência para a solução ótima global (quando esta existir);
- Teoria robusta com metodologia confiável;
- Região de busca convexa.

Desvantagens de um problema de PL:

- Em geral, a modelagem completa de um problema real n\u00e3o pode ser representada por um problema de PL;
- Aplicação restrita a uma pequena quantidade de problemas;
- Para sistemas grandes, produz ótimos locais de baixa qualidade quando algum problema de PNL é de alguma forma, relaxado a um PL;

Por outro lado, a otimização não linear engloba um grupo geral de problemas onde a função objetivo e as restrições podem ser não lineares, e a região de busca não convexa. Esse grupo geral de problemas de PNL possui características que dificultam uma convergência global e neste caso os métodos de solução ficam sujeitos às características do problema não linear.

Dado um problema geral de PNL da forma (11)-(14).

$$\min_{\substack{s. a \\ g_i(x) \le 0; i = 1,...,l \\ h_i(x) = 0; i = 1,...,m \\ x \in X}$$
(11)
(12)
(12)

Para uma função objetivo f definida em um conjunto $X \subseteq \mathbb{R}^n$, com uma região de busca definida pelas restrições de g_i e h_i .

Vantagens de um problema de PNL:

• Em geral, a modelagem completa de um problema real é representada por um problema de PNL.

Desvantagens de um problema de PNL:

- Existe um grande número de ótimos locais;
- A não convexidade da região de busca;
- A solução depende de um ponto inicial;
- Não há garantia de um ótimo global;
- Não existe uma metodologia geral que contempla todos os tipos de problemas.

Assim, é possível observar que os problemas de PL e de PNL estão em dois extremos, o primeiro, de fácil resolução com uma aplicação restrita a um número ínfimo de problemas, e o segundo por sua vez descreve os problemas em geral, mas é de difícil resolução devido à generalidade e característica dos modelos.

Nesse sentido, foi conveniente aos pesquisadores ao longo de algumas décadas, estudarem classes de problemas de PNL com características mais específicas para produzir uma teoria de investigação mais apurada e preencher a lacuna existente entre os problemas de PL e de PNL. Assim, tem-se a programação convexa que engloba uma grande parte dos problemas existentes.

2.3 Otimização convexa

A otimização convexa engloba um grupo geral de problemas que inclui os problemas de programação onde a função objetivo é convexa, as restrições de desigualdade são convexas e as restrições de igualdade são afins.

Esse grupo geral de problemas de PNL possui características que facilitam uma convergência global, um problema geral de PCO é da forma (15)-(18).

$$\min_{\substack{s. a \\ g_i(x) \le 0; i = 1,...,l \\ h_i(x) = 0; i = 1,...,m}} (15)$$
(16)
(17)

Para uma função objetivo f convexa definida em um conjunto convexo $X \subseteq \mathbb{R}^n$, com região de busca definida pelas restrições de g_i e h_i .

Vantagens de um problema de PCO:

- Ótimo global pode ser encontrado
- Alguns problemas não-convexos podem ser relaxados para problemas convexos;
- Algoritmos robustos para resolução de várias classes de problemas convexos.

Desvantagens de um problema de PCO:

- Existe dificuldade em verificar a convexidade de um problema, ou seja, a caracterização de funções e conjuntos convexos;
- A relaxação de um problema de PNL, para um problema de PCO, em geral não produz modelos equivalentes.

As classes de problemas gerais que compõem os problemas da otimização convexa são: Programação Linear, Mínimos Quadrados, Programação Quadrática, Programação Cônica (PC), Programação Cônica de Segunda Ordem (PCSO) e Programação Semidefinida (PSD). Um dos principais algoritmos de otimização utilizados na resolução deste tipo de problemas é um método de pontos interiores específico ou então, se formula o problema e emprega um *solver* comercial para a resolução.

Numa hierarquia de classes segundo o grau de generalidade, foi constatado no decorrer deste trabalho que os grupos de problemas convexos dentro do conjunto de todos os problemas de PNL são classificados como mostrado na Figura 1.

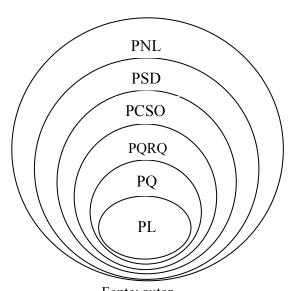


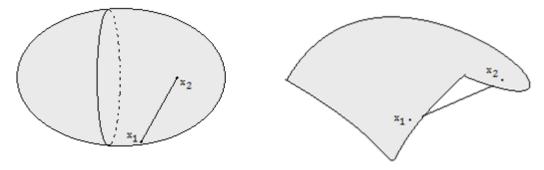
Figura 1 - Escala dos tipos de problemas convexos segundo o grau de generalidade

Fonte: autor

Ou seja, uma escala hierárquica desses tipos de problemas pode ser estabelecida da seguinte forma: $PL \subseteq PQ \subseteq PQRQ \subseteq PCSO \subseteq PSD \subseteq PCO \subseteq PNL$.

Quando são considerados problemas com a adição de variáveis de decisão inteiras e mistas, esta escala é preservada, PLIM ⊆ PQIM ⊆ PQRQIM ⊆ PCSOIM ⊆ PSDIM ⊆ PCOIM ⊆ PNLIN.

A seguir, serão expostas as características e aspectos teóricos, dentro da otimização convexa, a fim de destacar a programação cônica de segunda ordem para utilização neste trabalho.


2.4 Aspectos teóricos da programação convexa

Em geral, para um problema ser considerado convexo é necessário apenas que a função objetivo f(x) seja convexa para x em um conjunto C convexo, que as restrições de desigualdade sejam convexas e que as restrições de igualdade sejam funções afins da forma Ax = b, para uma matriz A e um vetor parâmetro b. O problema em si é minimizar uma função convexa sob uma região de busca convexa. A otimização convexa já possui uma tecnologia avançada com *solvers* conhecidos e eficazes, como o CPLEX, MOSEK e o KNITRO, por exemplo.

Algumas propriedades serão estabelecidas para a definição de um problema de otimização cônica.

Definição 1: Um conjunto $S \subseteq \mathbb{R}^n$ é dito *convexo* se para cada $x_1, x_2 \in S$, o segmento linear $\lambda x_1 + (1 - \lambda)x_2 \in S$, onde o parâmetro $\lambda \in [0,1]$. Neste caso, qualquer ponto $x = \lambda x_1 + (1 - \lambda)x_2$ para $\lambda \in [0,1]$ é uma combinação convexa de x_1 e x_2 . A Figura 2 retrata uma possível forma de uma região convexa e de uma região não convexa.

Figura 2 - Representação de uma região convexa e uma não convexa respectivamente

Fonte: autor

Definição 2: Dado um conjunto convexo não vazio $S \subseteq \mathbb{R}^n$ e uma função $f: S \to \mathbb{R}$ convexa sobre S. Dizemos que f é uma *função convexa* se (19) for satisfeita para todo $x_1, x_2 \in S$ e $\lambda \in [0,1]$ ((BAZARAA, 2006), página 98 e 145).

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2),$$
 (19)

A função f é denominada *estritamente convexa* sobre S se a desigualdade é estrita para cada $x_1 \neq x_2 \in S$, e cada e $\lambda \in [0,1]$.

Definição 3: Seja $f: \mathbb{R}^n \to \mathbb{R}$, e considere o problema (20)-(21)

Um ponto $x \in S$ é denominado um *ponto de solução factível* do problema (20)-(21) se $\bar{x} \in S$ e $f(x) \ge f(\bar{x})$ para cada $x \in S$. Neste caso, $\bar{x} \in S$ é chamado de ponto de solução ótima global ou simplesmente *ponto ótimo* do problema.

Dado $\bar{x} \in S$, se existe $\varepsilon > 0$, tal que para $x \in N_{\varepsilon}(\bar{x}) = (\bar{x} - \varepsilon, \bar{x} + \varepsilon)$ tem-se $f(x) \ge f(\bar{x})$ para cada $x \in S \cap N_{\varepsilon}(\bar{x})$, então \bar{x} é chamado de *ponto ótimo local*. Similarmente, se $\bar{x} \in S$, e se $f(x) > f(\bar{x})$ para todos os valores de $x \in S \cap N_{\varepsilon}(\bar{x})$, com $x \ne \bar{x}$, então \bar{x} é chamado de *ponto de ótimo local estrito* (Adaptado de (BAZARAA, 2006), página 124).

Teorema 2.1: Dado um conjunto convexo não vazio $S \subseteq \mathbb{R}^n$, e uma função $f: S \to \mathbb{R}$ convexa sobre S ((BAZARAA, 2006), página 125).

Considere o problema (22)-(23).

E suponha que $\bar{x} \in S$ é uma solução ótima local para o problema. Então:

- 1. \bar{x} é uma solução ótima global.
- 2. Se \bar{x} é um mínimo local estrito ou f é uma função estritamente convexa, \bar{x} é a única solução ótima global.

Demonstração: Veja Bazaraa (2006), página 126.

2.5 Formulação cônica

Nesta seção vamos tratar de problemas que possuem região de busca determinada por um cone convexo.

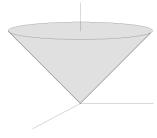
Definição 4: Um conjunto $C \subseteq \mathbb{R}^n$ é um *cone* se para qualquer ponto $x \in C$ tem-se $\lambda x \in C$ para todo $\lambda \in \mathbb{R}_+$.

A definição 4 retrata que um cone é um conjunto fechado pela multiplicação por um escalar não negativo.

Teorema 2.2: Um cone C é convexo se e somente se é um conjunto fechado sobre a adição, isto é, para quaisquer $x, y \in C$, tem-se $x + y \in C$ (GLINEU, 2001).

Da definição 4 e do Teorema 2.2, é possível reformular a definição de cone convexo da forma:

Definição 5: Um conjunto convexo $C \subseteq \mathbb{R}^n$ é um *cone convexo* se para qualquer ponto $x \in C$ tem-se $\lambda x \in C$ para todo $\lambda \in \mathbb{R}_+$.


Por exemplo, o conjunto $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n; x_i \ge 0, i = 1, ..., n\}$ é um cone convexo.

Definição 6: Um conjunto $C \subseteq \mathbb{R}^{n+1}$ é chamado *cone de segunda ordem* quando é um cone normado na norma Euclidiana (24)

$$C = \{(x, t) \in \mathbb{R}^n \times \mathbb{R}, ||x|| \le t\} \subseteq \mathbb{R}^{n+1}$$
(24)

Onde, $||x|| = (x^T.x)^{\frac{1}{2}}$. Observe que o cone de segunda ordem é um cone convexo. O cone C é conhecido como cone *ice cream* no \mathbb{R}^{n+1} , ou ainda como cone de Lorentz, (LOBO et. al, 1998) e (BOYD, 2004), ilustrado na Figura 3.

Figura 3 - Cone de Lorentz

Fonte: autor

Por exemplo, a restrição $\sum_{i=3}^{n} x_i^2 \le x_1 x_2$, para $(x_1, ..., x_n) \in \mathbb{R}^n_+$ é uma restrição cônica de segunda ordem que pode ser deduzida a partir da restrição de Lorentz.

De fato, basta definir $x_1 = u + v$ e $x_2 = u - v$, com $u \ge 0$ e $v \ge 0$. Neste caso a restrição $\sum_{i=3}^n x_i^2 \le x_1 x_2$ torna-se: $\sum_{i=3}^n x_i^2 \le u^2 - v^2$, ou seja,

$$\sum_{i=3}^{n} x_i^2 + v^2 \le u^2, u \ge 0,$$

que é o cone quadrático usual.

Uma restrição cônica de interesse nesse trabalho é $V_j^{qdr} I_{ij}^{qdr} \ge P_{ij}^2 + Q_{ij}^2$. Para esta restrição, ao considerar $x = (x_1, x_2, x_3, x_4) = (V_j^{qdr}, I_{ij}^{qdr}, P_{ij}, Q_{ij})$, tem-se $x_1 x_2 \ge x_3^2 + x_4^2$, que neste caso torna-se, $x_3^2 + x_4^2 + v^2 \le u^2$, $u \ge 0$, onde $V_j^{qdr} = u + v$ e $I_{ij}^{qdr} = u - v$. Portanto, $P_{ij}^2 + Q_{ij}^2 + v^2 \le u^2$, $u \ge 0$, onde $u = \frac{(V_j^{qdr} + I_{ij}^{qdr})}{2}$ e $v = \frac{(V_j^{qdr} - I_{ij}^{qdr})}{2}$.

Com as definições já estabelecidas, é possível definir um problema de otimização cônica como apresentado na seção seguinte.

2.5.1 Problema de Programação Cônica

Seja $C \subseteq \mathbb{R}^n$ um cone convexo com interior não vazio tal que $C \cap -C = \{0\}$, onde $-C = \{x; -x \in -C\}$. O problema de otimização cônica primal é da forma (25)-(27).

$$\min_{S. a} v(x) = c^T x \tag{25}$$

$$Ax = b \tag{26}$$

$$x \in C$$
 (27)

Onde $x \in \mathbb{R}^n$ é a variável de otimização e os dados do problema são dados pelo cone C, A é uma matriz $m \times n$, $b \in \mathbb{R}^m$ e $c \in \mathbb{R}^n$ adaptado de (GLINEUR, 2001), página 06.

A formulação cônica definida em (25) a (27) expressa um problema de programação convexa.

2.6 Formulação cônica de segunda ordem

Os problemas de Programação Cônica de Segunda Ordem são um caso particular de programação convexa, onde ocorre a otimização de uma função linear com restrições lineares e restrições de cone quadrático.

Programação Cônica de Segunda Ordem: Um problema de programação cônica de segunda ordem (PCSO) é um problema de otimização convexa que pode ser representado na forma (28)-(30).

$$\min_{\mathbf{S}} f(\mathbf{x}) = f^T \mathbf{x} \tag{28}$$

s. a

$$||A_i \mathbf{x} + b_i|| \le c_i^T \mathbf{x} + d_i, \quad i = 1, ..., m$$
 (29)

$$Fx = g \tag{30}$$

Onde $\mathbf{x} \in \mathbb{R}^n$ é a variável de otimização e os dados do problema são $c \in \mathbb{R}^n$, $f \in \mathbb{R}^n$, $F \in \mathbb{R}^{m \times n}$, $g \in \mathbb{R}^m$; $\mathbf{b}, \mathbf{d} \in \mathbb{R}^m$ são vetores de coordenadas $b_i \in \mathbb{R}$ $e \ d_i \in \mathbb{R}$ respectivamente; $e \ A_i \in \mathbb{R}^{n_i \times n}$, onde \mathbf{A} é uma matriz $m \times n$, adaptado de (GLINEUR, 2001).

Uma restrição do tipo $||Ax + b|| \le c^T x + d$ é conhecida como restrição cônica de segunda ordem, onde ||. || representa a norma euclidiana de x, $||x|| = (x^T.x)^{\frac{1}{2}}$.

Uma vantagem na utilização dos problemas de PCSO é que qualquer problema de otimização convexa quadrática pode ser reformulado como um problema de PCSO. Lobo et. al (1998) e Boyd (2004) apresentaram uma vasta aplicação de problemas cujas restrições podem ser reescritas como restrições cônicas de segunda ordem, ou seja, apresentaram os tipos de problemas que são equivalentes a um problema de PCSO. Boyd (2004) traz ainda muitos exemplos de regiões que podem ser expressas como cones.

Os problemas de PCSO usufruem de toda a estrutura teórica já estabelecida dentro da otimização convexa. Nesse sentido, um dos importantes resultados que será utilizado diretamente neste trabalho, é uma versão do Teorema (2.1), que garante solução ótima global para problemas de PCSO.

Trabalhos que contemplam de forma mais ampla sobre os aspectos teóricos da teoria convexa foram desenvolvidos em (LOBO et. al, 1998), (GLINEU, 2001), (BOYD, 2004) e (NEMIROVSKI, 2006).

2.6.1 Alguns dos problemas que podem ser escritos como problemas de **PCSO**

Os problemas de PCSO têm uma grande importância dentro da otimização convexa, pois incluem os problemas de programação linear (PL) e PL robusta, programação quadrática (PQ) e PQ robusta, e ainda os problemas de programação quadrática com restrições quadráticas (PQRQ) e alguns problemas de otimização convexa não linear que podem ser reformulados como problemas de PCSO (LOBO et. al, 1998). É possível incluir também problemas que envolvem soma ou máximo de normas e problemas com restrições hiperbólicas convexas.

Apenas para exemplificar, observe que no seguinte problema de PCSO (31)-(33):

$$\min_{\mathbf{S}, \, \mathbf{G}} f(\mathbf{x}) = f^T \mathbf{x} \tag{31}$$

$$\begin{array}{ll}
\text{(31)} \\
s. a \\
||A_i \mathbf{x} + b_i|| \le c_i^T \mathbf{x} + d_i, & i = 1, ..., m
\end{array}$$

$$Fx = g \tag{33}$$

quando $A_i = 0$ para i = 1, ..., m, e f é linear, então o problema torna-se um problema de

programação linear (PL)
$$\begin{cases} \min f(x) = f^T x \\ s. a \\ || b_i || \le c_i^T x + d_i, , i = 1, ..., m \end{cases}$$
(34)

Quando $c_i=0$, para algum i, o problema (34) torna-se um problema de programação quadrática com restrições quadráticas.

Os problemas de PCSO incluem os problemas de PL, PQ e PQRQ que são classes importantes de problemas de otimização convexa.

2.6.2 Os problemas de PCSO não englobam os problemas de PSD

Os problemas de PCSO podem ser escritos como um cone de segunda ordem encaixado em um cone de matrizes semi-definidas positivas.

De fato, para um vetor $x \in \mathbb{R}^n$ e um parâmetro $t \in \mathbb{R}$, escrever a restrição $||x|| \le t$ é equivalente a escrever $\begin{bmatrix} tI & \mathbf{x} \\ \mathbf{x}^T & t \end{bmatrix} \ge 0$, onde o símbolo " \ge " significa $\mathbf{x}^T \mathbf{X} \mathbf{x} \ge \mathbf{x}^T \mathbf{Y} \mathbf{x}$, para todo $\mathbf{x} \in \mathbb{R}^n$ e para as matrizes simétricas $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{n \times n}$.

Dessa forma, um problema de PCSO pode ser expresso como um problema de PSD como segue em (35)-(36)

$$\begin{cases}
min f(x) = f^T x \\
s. a
\end{cases}$$
(35)

$$\begin{cases} mi \, n \, f(x) = f^T x \\ s. \, a \end{cases}$$

$$\begin{cases} (c_i^T x + d_i)I \quad A_i x + b_i \\ (A_i x + b_i)^T \quad c_i^T x + d_i \end{cases} \geqslant 0 \,, i = 1, ..., m$$
(36)

Por outro lado, os problemas de PCSO não englobam os problemas PSD, que são os problemas de minimização de uma função linear sobre a intersecção de um conjunto afim e o cone de matrizes semi-definidas positivas. O número de hiperplanos de intersecção e subespaços que constituem um cone convexo é, possivelmente, mas não necessariamente infinito. Quando o número é finito, o cone é poliédrico, o cone de Lorentz é um cone poliédrico, já o cone das matrizes SDP é um cone não poliedral.

O conjunto de todas as matrizes simétricas $S_+^n = \{A \in \mathbb{R}^{n \times n}; A \ge 0\} =$ $\{\boldsymbol{A} \in \mathbb{R}^{n \times n}; \mathbf{y}^{\mathrm{T}} \mathbf{A} \, \mathbf{y} \geqslant 0\} = \bigcap_{||\boldsymbol{y}||=1} \{\boldsymbol{A} \in \mathbb{R}^{n \times n}; <\mathbf{y}^{\mathrm{T}} \mathbf{y}, \mathbf{A} > \geq 0\} = \{\boldsymbol{A} \in S^n_+; \mathrm{rank} \, \mathbf{A} \leq n\}$ é formado pela intersecção de um número infinito de subespacos.

2.6.3 PCSO incluindo variáveis inteiras e mistas

Um problema de programação cônica de segunda ordem inteiro misto (PCSOIM), é um problema de otimização convexa que pode ser representado na forma (37)-(40).

$$\min f(\mathbf{x}) = f^T \mathbf{x} \tag{37}$$

$$s.a$$

 $||A_i \mathbf{x} + b_i|| \le c_i^T \mathbf{x} + d_i, \quad i = 1, ..., m$ (38)

$$F\mathbf{x} = g \tag{39}$$

$$\mathbf{x} \in \mathbb{R}^n \tag{40}$$

onde a variável de otimização $\mathbf{x} \in \mathbb{R}^{n-p} \times \mathbb{N}^p \subseteq \mathbb{R}^n$ é composta por n-p valores reais e pvalores inteiros. Os dados do problema são $b, d \in \mathbb{R}^m, c \in \mathbb{R}^n, f \in \mathbb{R}^n, d_i \in \mathbb{R}, F \in \mathbb{R}^{l \times n}$ $g \in \mathbb{R}^l \text{ e } A_i \in \mathbb{R}^{n_i \times n}$, onde **A** é uma matriz $m \times n$.

Os solvers comerciais mais utilizados na otimização cônica são o CPLEX (ILOG, 2009) e o MOSEK (2013).

É de interesse neste trabalho investigar sob quais condições é possível trabalhar com problemas de PCSO incluindo variáveis inteiras (PCSOIM).

2.7 Condições necessárias de Karush-Kuhn-Tucker (KKT)

Neste trabalho será utilizado o resultado que trata as condições necessárias para resolução de problemas de PNL, conforme apresentado em Bazaraa (2006). O problema de otimização utilizado no Teorema que trata as condições necessárias de Karush-Kuhn-Tucker, consiste em minimizar um problema de programação não linear sujeito a restrições de igualdade e desigualdade.

Teorema (Condições necessárias de Karush-Kuhn-Tucker)

Seja $X \neq \emptyset$, aberto $X \subset \mathbb{R}^n$ e $f: \mathbb{R}^n \to \mathbb{R}, \ g_i: \mathbb{R}^n \to \mathbb{R}, \ i=1,...,m$ e $h_i: \mathbb{R}^n \to \mathbb{R}, \ i=1,...,l$ e considere o problema P dado por (41)-(44).

$$\min f(x)$$

$$s. a$$

$$g_{i}(x) \leq 0; \quad i = 1, ..., l$$

$$h_{i}(x) = 0; \quad i = 1, ..., m$$

$$x \in X$$

$$(41)$$

$$u_{i}; i = 1, ..., l$$

$$v_{i}; i = 1, ..., m$$

$$(43)$$

onde u_i e v_i representam as variáveis duais associadas às restrições de igualdade e desigualdade respectivamente. Seja \bar{x} uma solução factível e $I = \{i; g_i(\bar{x}) = 0\}$. Suponha que f e g_i para $i \in I$ são diferenciáveis em \bar{x} e para cada $i \notin I$, g_i é contínua em \bar{x} e que cada h_i para i = 1, ... l é continuamente diferenciável em \bar{x} . Suponha ainda que $\nabla g_i(\bar{x})$ para $i \in I$ e $\nabla h_i(\bar{x})$, i = 1, ... l são linearmente independentes. Se \bar{x} resolve localmente o problema P, então existem escalares u_i para $i \in I$ e v_i , para i = 1, ... l, definidos de maneira única, tais que (45) é satisfeita.

$$\nabla f(\bar{x}) + \sum_{i \in I} u_i \, \nabla g_i(\bar{x}) + \sum_{i=1}^l v_i \nabla h_i(\bar{x}) = 0 \tag{45}$$

para todo $u_i \ge 0$, onde $i \in I$.

Além disso, se cada g_i para $i \notin I$, é diferenciável em \bar{x} , as condições de KKT podem ser reescritas como (46)-(48).

$$\nabla f(\bar{x}) + \sum_{i \in I} u_i \, \nabla g_i(\bar{x}) + \sum_{i=1}^l v_i \nabla h_i(\bar{x}) = 0 \tag{46}$$

$$u_i g_i(\bar{x}) = 0; \quad i = 1, ..., m$$
 (47)

$$u_i \ge 0; \quad i = 1, \dots, m \tag{48}$$

A restrição (46) representa a condição de estacionaridade, a equação (47) representa a condição de complementaridade e a equação (48) é a condição de viabilidade dual.

2.7.1 Algumas propriedades importantes provenientes das condições necessárias de KKT

As restrições (42) e (43) possuem escalares u_i e v_i respectivamente, que representam as variáveis duais associadas, trata-se dos multiplicadores de lagrange vinculados. Estes escalares são de suma importância na teoria de otimização devido à sua aplicabilidade nos problemas de engenharia. Os multiplicadores de lagrange associados às restrições fornecem as informações de sensibilidade, isto é, o quanto muda o valor da função objetivo quando há um acréscimo ou decréscimo unitário de valores na restrição.

Das restrições (47) e (48) segue que:

- 1) Se $u_i > 0$ para todo i = 1, ..., m; então $g_i(\bar{x}) = 0$ para todo i = 1, ..., m. Em outras palavras, se as variáveis duais associadas a todas as restrições de desigualdade são estritamente positivas, então estas restrições estão ativas no ponto solução.
- 2) Se $g_i(\bar{x}) > 0$ para algum i = 1, ..., m; então $u_i = 0$. Deste modo, se a restrição de desigualdade não está ativa no ponto de solução, a variável dual associada a esta restrição assume valor nulo.
- \dot{z} É possível que ocorra casos em que $u_i=0$ e $g_i(\bar{x})=0$ para alguns valores de i=1,...,m. Ou seja, as recíprocas das implicações 1) e 2) são falsas.

A condição de KKT representada pela restrição (46) pode ser interpretada geometricamente da forma: $-\nabla f(\bar{x}) = \sum_{i \in I} u_i \nabla g_i(\bar{x}) + \sum_{i=1}^l v_i \nabla h_i(\bar{x})$, ou seja, o oposto do gradiente da função objetivo (que aponta para o maior decrescimento da função objetivo) é formado pela soma de uma combinação linear dos gradientes das restrições de igualdade com uma combinação linear dos gradientes das restrições de desigualdades **ativas** $(g_i(\bar{x}) = 0)$ no ponto de solução \bar{x} .

Para os casos onde alguma das restrições de desigualdade não esteja ativa $(g_i(\bar{x}) > 0)$, o valor $\nabla g_i(\bar{x})$ não é agregado para definir $-\nabla f(\bar{x})$ pois tem-se $v_i = 0$. O mesmo ocorre para os casos em que $(g_i(\bar{x}) = 0)$ e $v_i = 0$ simultaneamente.

Para finalizar, das observações consideradas, conclui-se que:

4) A variável dual u_i positiva garante que a restrição $g_i(\bar{x})$ está ativa no índice i (isto é, $g_i(\bar{x}) = 0$), por outro lado, caso a variável dual u_i seja nula, nada se pode afirmar sobre a posição da restrição de desigualdade $g_i(\bar{x})$ no ponto \bar{x} , que pode ou não estar ativa neste índice.

CAPÍTULO 3

3 ANÁLISE DE SISTEMAS DE DISTRIBUIÇÃO RADIAIS UTILIZANDO UMA FORMULAÇÃO CÔNICA DE SEGUNDA ORDEM

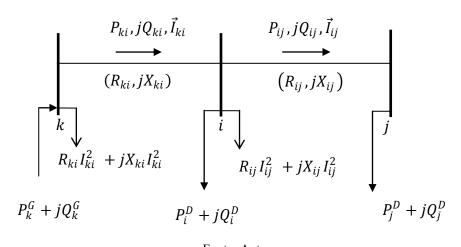
Neste capítulo, utilizar-se-á um modelo de PCSO para calcular o ponto de operação em regime permanente de um sistema de distribuição radial, que pode ser representado por um problema de PNL.

3.1 Cálculo do ponto de operação em regime permanente de um sistema de distribuição radial utilizando uma formulação cônica de segunda ordem

Nesta seção será mostrado que, mediante algumas condições, um modelo de PCSO pode ser utilizado para calcular o ponto de operação em regime permanente de um sistema de distribuição radial, que é representado por um problema de PNL. O modelo proposto de PCSO é uma formulação convexa que permite encontrar a solução ótima do problema usando um *solver* comercial.

De modo geral, o objetivo do Fluxo de Carga (FC) em um sistema de energia elétrica é determinar as tensões nodais, ou seja, calcular as magnitudes de tensão e os ângulos de fase de todos os nós e demais grandezas descendentes destas, como fluxos de potências ativa e reativa, a magnitude de corrente nos circuitos, perdas de potência ativa e reativa, dentre outras (MONTICELLI, 1983).

Matematicamente, um problema de FC pode ser modelado por um conjunto de equações algébricas não lineares. Muitos algoritmos foram desenvolvidos para resolver o problema de FC baseado no Método de Newton, e nas suas versões desacopladas, especificamente para sistemas de transmissão de energia elétrica.


Nos sistemas de distribuição há duas características importantes: a primeira é que apesar destes sistemas geralmente apresentarem estrutura malhada, o sistema de distribuição opera de forma radial. Isso é uma vantagem, pois simplifica a complexidade do problema de FC. A segunda é que normalmente os sistemas de distribuição apresentam uma alta relação R/X (resistência por reatância) e comprimentos de circuitos muito variáveis.

3.2 Equações de fluxo de carga para sistemas de distribuição radiais

Para representar a operação em regime permanente de um sistema de distribuição de energia radial, duas hipóteses devem ser consideradas, de modo geral, essas suposições são utilizadas em programas de FC de varredura:

- As demandas das cargas são representadas como potências ativas e reativas constantes;
- O sistema de distribuição é balanceado e representado por um equivalente monofásico. Essas condições são representadas na Figura 4.

Figura 4 - Sistema de distribuição de três nós

Fonte: Autor

Na Figura 4, os termos \vec{V}_i , \vec{I}_{ij} , $R_{ij}I_{ij}^2$ e $X_{ij}I_{ij}^2$ representam respectivamente os fasores da tensão do nó i, o fasor de corrente no circuito ij e as perdas de potências ativa e reativa do circuito ij.

No circuito ij, a queda de tensão é definida pela equação (49)

$$\vec{V}_i - \vec{V}_j = \vec{I}_{ij} \left(R_{ij} + j X_{ij} \right)$$
 $\forall ij \in \Omega_l$ (49)

Em que \vec{l}_{ij} pode ser calculada por:

$$\vec{I}_{ij} = \left(\frac{P_{ij} + jQ_{ij}}{\vec{V}_j}\right)^*$$
 $\forall ij \in \Omega_l$ (50)

Substituindo a equação (50) em (49) obtêm-se

$$(\vec{V}_i - \vec{V}_i)\vec{V}_i^* = (P_{ij} - jQ_{ij})(R_{ij} + jX_{ij}) \qquad \forall ij \in \Omega_l$$
 (51)

Como $\vec{V}_i = V_i \angle \theta_i$, $\vec{V}_j = V_j \angle \theta_j$ e $\theta_{ij} = \theta_i - \theta_j$, onde θ_i é o ângulo de fase na barra i, a equação (51) pode ser escrita da forma:

$$V_i V_j \left[\cos \theta_{ij} + j \operatorname{sen} \theta_{ij} \right] - V_j^2 = \left(P_{ij} - j Q_{ij} \right) \left(R_{ij} + j X_{ij} \right) \qquad \forall ij \in \Omega_l$$
 (52)

Separando a equação (52) em parte real e imaginária, obtêm-se:

$$V_i V_i \cos \theta_{ii} = V_i^2 + \left(R_{ii} P_{ii} + X_{ii} Q_{ii} \right) \qquad \forall ij \in \Omega_l$$
 (53)

$$V_i V_i \operatorname{sen} \theta_{ii} = X_{ii} P_{ii} - R_{ii} Q_{ii}$$
 $\forall ij \in \Omega_l$ (54)

Elevando ao quadrado as equações (53) e (54), somando-as e aplicando a identidade trigonométrica $sen^2(\theta_{ij}) + cos^2(\theta_{ij}) = 1$, obtemos:

$$V_i^2 - 2(R_{ij}P_{ij} + X_{ij}Q_{ij}) - Z_{ij}^2I_{ij}^2 - V_i^2 = 0 \forall ij \in \Omega_l (55)$$

onde o quadrado da magnitude do fluxo de corrente I_{ij} é dado por

$$I_{ij}^{2} = \frac{P_{ij}^{2} + Q_{ij}^{2}}{V_{i}^{2}}$$
 $\forall ij \in \Omega_{l}$ (56)

Como a equação (55) não depende da diferença entre os ângulos de fases das tensões, é possível obter a magnitude de tensão do último nó (V_j) , em termos da magnitude do nó inicial (V_i) , do fluxo de potência ativa (P_{ij}) , do fluxo de potência reativa (Q_{ij}) , da corrente (I_{ij}) e dos parâmetros elétricos do ramo ij. Neste caso, as equações de balanço de carga convencional são (57) e (58).

$$P_{ki} - \sum_{ij \in \Omega_l} (P_{ij} + R_{ij} I_{ij}^2) + P_i^G = P_i^D \qquad \forall i \in \Omega_b$$
 (57)

$$Q_{ki} - \sum_{ij \in \Omega_l} \left(Q_{ij} + X_{ij} I_{ij}^2 \right) + Q_i^G = Q_i^D \qquad \forall i \in \Omega_b$$
 (58)

onde k representa o nó anterior ao nó i, e j representa o nó posterior ao nó i.

O sistema de equações não lineares dado pelas equações (55)-(58) representa a operação em regime permanente de um sistema de distribuição radial. Por outro lado, como as magnitudes de corrente I_{ij} e de tensão V_j , só aparecem na sua forma quadrática I_{ij}^2 e V_j^2 , nas equações do sistema (55)-(58), é possível fazer uma mudança de variáveis da forma (59).

$$I_{ij}^{qdr} = I_{ij}^2 \quad e \quad V_i^{qdr} = V_j^2 \tag{59}$$

Note que, considerando a radialidade do sistema de distribuição e fixando a magnitude de tensão na subestação, as equações (55)-(58) geram um sistema de equações não lineares com o mesmo número de equações e variáveis. Existem vários métodos na literatura especializada para resolver de forma eficiente este sistema de equações não lineares.

Neste trabalho, este problema de FC é modelado como um problema de programação não linear, pois nos próximos capítulos será desenvolvida uma extensão natural da estratégia aqui utilizada, para problemas relacionados com a operação e planejamento econômico de SDEE.

Assim, o problema de FC pode ser representado por um problema de programação não linear apresentado em (60)-(66).

$$\min v = \sum_{ij \in \Omega_l} R_{ij} I_{ij}^{qdr} \tag{60}$$

Sujeito a

$$P_{ki} - \sum_{ij \in \Omega_l} \left(P_{ij} + R_{ij} I_{ij}^{qdr} \right) + P_i^G = P_i^D \qquad \forall i \in \Omega_b \quad (61)$$

$$Q_{ki} - \sum_{ij \in \Omega_l} \left(Q_{ij} + X_{ij} I_{ij}^{qdr} \right) + Q_i^G = Q_i^D \qquad \forall i \in \Omega_b \quad (62)$$

$$V_i^{qdr} - 2(R_{ij}P_{ij} + X_{ij}Q_{ij}) - Z_{ij}^2 I_{ij}^{qdr} - V_j^{qdr} = 0 \qquad \forall ij \in \Omega_l \quad (63)$$

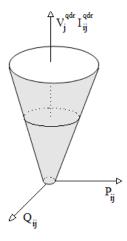
$$V_i^{qdr} I_{ij}^{qdr} = P_{ij}^2 + Q_{ij}^2 \qquad \forall ij \in \Omega_l \quad (64)$$

$$V_i^{qdr} \ge 0 \qquad \forall j \in \Omega_b \quad (65)$$

$$I_{ij}^{qdr} \ge 0 \qquad \forall ij \in \Omega_l \quad (66)$$

A equação (60) representa a função objetivo que consiste em minimizar as perdas de potência ativa que é o somatório da corrente ao quadrado vezes a resistência em cada ramo. A restrição (61) representa o balanço de potência ativa, ou seja, o somatório dos fluxos de potência ativa

que entram numa barra do sistema deve ser igual ao somatório dos fluxos de potência ativa que saem dessa barra, esta propriedade corresponde à primeira lei de Kirchhoff para a potência ativa em cada barra do sistema. A restrição (62) representa o balanço de potência reativa, esta propriedade corresponde à primeira lei de Kirchhoff para a potência reativa em cada barra do sistema. A equação (63) representa a queda de tensão nos ramos, calculada em função de seus parâmetros e dos fluxos de potência ativa, reativa e de corrente. A restrição (64) é não linear) representa o cálculo da magnitude do fluxo de corrente no ramo *ij*. As equações (65) e (66) são restrições de não negatividade.


O problema de FC aqui apresentado, convenientemente, foi modelado matematicamente como um problema de PNL. Para este problema, a função objetivo é linear e todas as restrições são lineares, com exceção para a restrição (64), a saber,

$$V_i^{qdr} I_{ij}^{qdr} = P_{ij}^2 + Q_{ij}^2 \qquad \forall ij \in \Omega_l \quad (64)$$

que é a única restrição não linear do problema.

Essa restrição mostra que o produto da tensão ao quadrado na barra *j* com a corrente pela linha *ij* ao quadrado, deve ser igual à soma do quadrado da potência ativa com o quadrado da potência reativa na linha *ij*. Essa região é uma superfície não convexa representada na Figura 5.

Figura 5 - Superfície não convexa que representa a restrição de não linearidade

Fonte: autor

Por outro lado, a restrição $V_j^{qdr} I_{ij}^{qdr} = P_{ij}^2 + Q_{ij}^2$ representa o fluxo de potência aparente que flui pelo circuito ij ao quadrado $(P_{ij}^2 + Q_{ij}^2)$. Ao relaxar esta restrição (substituindo a restrição de igualdade por uma desigualdade) consegue-se uma restrição cônica de segunda ordem $V_j^{qdr} I_{ij}^{qdr} \ge P_{ij}^2 + Q_{ij}^2$, (conforme a definição 6, seção 2.5), o que permite que o fluxo de potência aparente pelo circuito ij ao quadrado $(P_{ij}^2 + Q_{ij}^2)$ tenha uma variação de zero até o seu limite máximo $V_j^{qdr} I_{ij}^{qdr}$. Essa região é um cone convexo, conforme ilustra a Figura 6.

Figura 6 - Cone convexo que representa a restrição cônica de segunda ordem

Fonte: autor

Neste caso, é possível relaxar a superfície não convexa e gerar um sólido convexo. Assim, o problema que antes era de PNL, é transformado em um problema de PCSO, possibilitando uma aplicação da teoria de programação cônica de segunda ordem na resolução. A grande vantagem em realizar esse tipo de relaxação é a troca de um problema de PNL por um problema de PCSO.

Nos problemas de PCSO, a região de busca é convexa e existem *solvers* eficazes para a resolução dos problemas cônicos com a garantia de convergência para o ótimo global. Por outro lado, os problemas de PNL de grande porte apresentam problemas de convergência e elevado esforço computacional devido a existência de muitos ótimos locais. Além da não convexidade da região de busca, não existe um *solver* eficaz com garantia de convergência para o ótimo global para resolver esse tipo de problema.

Nestas condições, tem-se o problema de programação cônica de segunda ordem dado por (67)-(73).

$$\min v = \sum_{ij \in \Omega_l} R_{ij} I_{ij}^{qdr} \tag{67}$$

Sujeito a

$$P_{ki} - \sum_{ij \in \Omega_l} \left(P_{ij} + R_{ij} I_{ij}^{qdr} \right) + P_i^G - P_i^D = 0 \qquad \qquad \varphi_i : \forall i \in \Omega_b$$
 (68)

$$Q_{ki} - \sum_{ij \in \Omega_I} (Q_{ij} + X_{ij} I_{ij}^{qdr}) + Q_i^G - Q_i^D = 0 \qquad \qquad \omega_i : \forall i \in \Omega_b$$
 (69)

$$V_i^{qdr} - 2(R_{ij}P_{ij} + X_{ij}Q_{ij}) - Z_{ij}^2 I_{ij}^{qdr} - V_i^{qdr} = 0 \qquad \qquad \pi_{ij} : \forall ij \in \Omega_l$$
 (70)

$$V_i^{qdr} I_{ij}^{qdr} \ge P_{ij}^2 + Q_{ij}^2 \qquad \qquad \rho_{ij} \colon \forall ij \in \Omega_l$$
 (71)

$$V_i^{qdr} \ge 0 \qquad \forall j \in \Omega_b \tag{72}$$

$$I_{ii}^{qdr} \ge 0 \qquad \forall ij \in \Omega_l \tag{73}$$

Onde φ_i , ω_i , π_{ij} e ρ_{ij} são as variáveis duais das respectivas restrições. Note que os problemas de PNL e de PCSO não são problemas equivalentes, trata-se de dois tipos diferentes de problemas de otimização, mas a pergunta que surge é: quais são as condições que devem ser satisfeitas para que o problema de PNL e o de PCSO gerem o mesmo ponto de operação de um sistema? Isso equivale a perguntar sob quais condições na solução do problema cônico de segunda ordem (67)-(73) a restrição (71) estará ativa.

3.3 A equivalência de solução entre um problema de PNL e um problema de PCSO para o ponto de operação

Proposição 3.1: Para um sistema de distribuição radial, considere o problema de PNL dado pelas equações (60)-(66) e de PCSO dado por (67)-(73). Se o problema de PCSO tem solução factível e as variáveis duais da restrição (71) são positivas ($\rho_{ij} > 0$, $\forall ij \in \Omega_l$), então a solução ótima do problema de PCSO é uma solução factível do problema de PNL.

Demonstração:

A prova da Proposição (3.1) é uma aplicação direta do Teorema de KKT, ou seja, para um problema de PCSO (67)-(73) que possua solução factível, basta mostrar que no ponto de solução do problema a restrição cônica (71) deve estar ativa, isto é, $V_j^{qdr} I_{ij}^{qdr} = P_{ij}^2 + Q_{ij}^2$. Considere a função lagrangeana \mathcal{L} do problema de PCSO (67)-(73) definida na equação (74).

$$\mathcal{L} = \sum_{ij \in \Omega_{l}} R_{ij} I_{ij}^{qdr} + \sum_{i \in \Omega_{b}} \varphi_{i} \left(P_{ki} - \sum_{ij \in \Omega_{l}} (P_{ij} + R_{ij} I_{ij}^{qdr}) + P_{i}^{G} - P_{i}^{D} \right)
+ \sum_{i \in \Omega_{b}} \omega_{i} \left(Q_{ki} - \sum_{ij \in \Omega_{l}} (Q_{ij} + X_{ij} I_{ij}^{qdr}) + Q_{i}^{G} - Q_{i}^{D} \right)
+ \sum_{ij \in \Omega_{l}} \pi_{ij} \left(V_{i}^{qdr} - 2 \left(R_{ij} P_{ij} + X_{ij} Q_{ij} \right) - Z_{ij}^{2} I_{ij}^{qdr} - V_{j}^{qdr} \right)
+ \sum_{ij \in \Omega_{l}} \rho_{ij} \left(P_{ij}^{2} + Q_{ij}^{2} - V_{j}^{qdr} I_{ij}^{qdr} \right)$$
(74)

Como trata-se de um problema convexo, a solução do PCSO (67)-(73) pode ser calculada como o único ponto estacionário da função Lagrangeana.

Vale observar que ao calcular a derivada parcial da lagrangeana em relação à variável ρ_{ii} , obtemos a equação (75):

$$\frac{\partial \mathcal{L}}{\partial \rho_{ii}} = P_{ij}^2 + Q_{ij}^2 - V_j^{qdr} I_{ij}^{qdr}$$
 $\forall ij \in \Omega_l$ (75)

Neste caso, das condições de viabilidade primal e dual dadas por (76)

$$\begin{cases} P_{ij}^2 + Q_{ij}^2 - V_j^{qdr} I_{ij}^{qdr} \leq 0 & \forall ij \in \Omega_l \\ \rho_{ij} \geq 0 & \forall ij \in \Omega_l \end{cases}$$

$$(76)$$

e da condição de complementaridade do problema de PCSO dada por (77)

$$\left(P_{ij}^2 + Q_{ij}^2 - V_i^{qdr} I_{ij}^{qdr}\right) \rho_{ij} = 0 \qquad \forall ij \in \Omega_l$$

$$(77)$$

conclui-se que, se $\rho_{ij} > 0$ para todas as linhas ij, então a restrição cônica (71) está ativa $(V_j^{qdr} I_{ij}^{qdr} = P_{ij}^2 + Q_{ij}^2, \forall_{ij} \in \Omega_l)$, em outras palavras, a solução do problema de PCSO é uma solução factível do problema de PNL, assim a Proposição (3.1) está provada.

Proposição 3.2: Se a solução do problema PCSO (67)-(73) satisfaz as condições da Proposição 3.1, então esta é a melhor solução do problema de PNL (60)-(66).

Demonstração:

Para provar esta Proposição, considere x^* a solução ótima do problema de PCSO que satisfaz as condições da Proposição 3.1 e v^* o valor da função objetivo da solução. Neste caso, x^* é uma solução factível para o problema de PNL. Qualquer outra solução local \bar{x} do problema de PNL, com função objetivo \bar{v} , é também uma solução factível para o problema de

PCSO, portanto deve satisfazer a relação $\bar{v} \geq v^*$ devido à otimalidade de x^* . Assim, não existe solução \bar{x} do problema de PNL, com uma função objetivo \bar{v} menor que v^* . Portanto x^* é a solução ótima do PNL.

3.4 Testes e resultados

Nesta seção são apresentados os resultados obtidos para avaliar a metodologia proposta para o cálculo do ponto de operação em regime permanente de sistemas de distribuição radiais. Os testes foram executados para os sistemas de 3, 33, 70, 136, 202 e 400 nós. Os dados elétricos dos sistemas usados estão no Anexo B. As implementações foram feitas e testadas em linguagem AMPL (FOURER; GAY; KERNIGHAN, 2002) e foi utilizado o *solver* CPLEX (ILOG, 2008) para resolver os problemas de PCSO. Para os problemas de PNL, foi utilizado o *solver* KNITRO (WALTZ; NOCEDAL, 2003).

O sistema operacional utilizado para os testes foi um Intel Core i7 de 3,10 GHs e RAM de 8 GB.

3.4.1 Indicador de precisão erro_{ii}

O modelo matemático utilizado neste trabalho representa um problema de PCSO onde a restrição cônica é: $P_{ij}^2 + Q_{ij}^2 - V_j^{qdr} I_{ij}^{qdr} \le 0$. Neste caso, as variáveis duais ρ_{ij} associadas a estas restrições são sempre não negativas ($\rho_{ij} \ge 0$).

Sabe-se que cada variável dual ρ_{ij} positiva garante que a restrição cônica está ativa no índice ij (isto é, $P_{ij}^2 + Q_{ij}^2 - V_j^{qdr} I_{ij}^{qdr} = 0$), por outro lado, caso a variável dual ρ_{ij} seja nula para algum ij, nada se pode afirmar sobre a posição da restrição de desigualdade $P_{ij}^2 + Q_{ij}^2 - V_j^{qdr} I_{ij}^{qdr}$ no ponto \bar{x} , que pode ou não estar ativa neste índice.

Cada variável dual ρ_{ij} é um multiplicador de lagrange e indica o quão sensível é a função objetivo em relação à restrição associada. Em geral, esses multiplicadores podem assumir valores positivos muito pequenos, além disso, existe ainda o método de aproximação que é executado internamente pelo solver, nesse contexto, serão computados os valores de ρ_{ij} até o valor 1×10^{-9} .

Nesse sentido para avaliar a precisão dos resultados obtidos pelo *solver* para a metodologia proposta, será utilizado neste trabalho o indicador de precisão $erro_{ij}$ definido pela expressão (78), que calcula a diferença em percentual para o fluxo de potência aparente que flui pelo circuito ij.

$$erro_{ij} = \frac{I_{ij}^{qdr} - (P_{ij}^2 + Q_{ij}^2)/V_j^{qdr}}{I_{ij}^{qdr}} .100, \quad \forall ij \in \Omega_l [\%]$$
 (78)

A equação (78) fornece a diferença porcentual entre a corrente encontrada I_{ij}^{qdr} pelo problema de PCSO, e a corrente calculada $(P_{ij}^2 + Q_{ij}^2)/V_j^{qdr}$.

Este indicador de precisão auxilia na avaliação da restrição cônica para os casos onde valores de ρ_{ij} assumem valores positivos pequenos.

O índice $erro_{ij}$ estabelecido na equação (78) será de grande utilidade também na estratégia de linearização. Para os sistemas testados que não cumprirem as condições das Proposições 3.1 e 3.2 será considerado que a restrição cônica estará ativa na solução do problema de PCSO, se para esta solução, o índice $erro_{ij}$ for sempre menor que 1% para todos os circuitos. Será considerado como erro médio, a soma dos valores do indicador $erro_{ij}$ de todas as linhas dividido pelo número de linhas.

3.4.2 Teste do sistema de 33 nós

Os dados completos do sistema de distribuição de 33 nós estão no Anexo B.2. Este sistema possui uma única subestação localizada no nó 1. O valor da magnitude de tensão na subestação é de 12,66 kV. O diagrama unifilar para o sistema teste de 33 nós é representado na Figura 7.

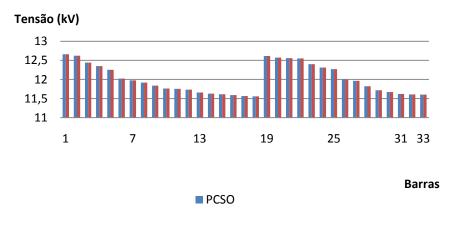
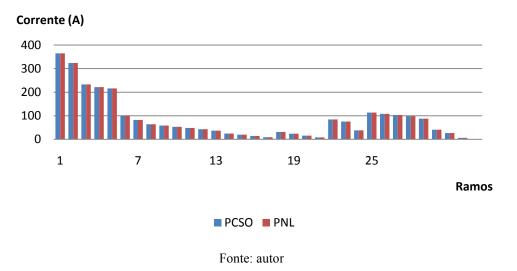

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 23 24 25 26 27 28 29 30 31 32 33

Figura 7 - Diagrama unifilar do sistema de 33 nós

Fonte: autor

O gráfico apresentado na Figura 8 representa as magnitudes de tensão encontradas pelos modelos de PCSO e de PNL para o sistema de 33 nós.


Figura 8 - Magnitude de tensão nas barras para o sistema de 33 nós

Fonte: Autor

O gráfico apresentado na Figura 9 mostra as magnitudes de corrente nos ramos, encontrados pelos modelos de PCSO e de PNL para o sistema de 33 nós.

Figura 9 - Magnitude de corrente nos ramos para o sistema de 33 nós

Na Tabela 1 são apresentados os principais resultados obtidos para o sistema teste de 33 nós.

Tabela 1 - Resultados para o sistema teste de 33 nós

Sistema de 33 nós	PCSO	PNL
Valor mínimo da variável dual associada à restrição cônica $ ho_{ij}$	$1x10^{-6}$	
(circuito)	(1-2)	
Perda de potência ativa no sistema (kW)	202,68	202,68
Máxima magnitude de corrente (A)	364,618	364,362
(circuito)	(1-2)	(1-2)
Máximo erro _{ij} encontrado pelo modelo de PCSO (%)	0	
(circuito)		
Erro médio entre a corrente calculada e a encontrada pelo	0	
modelo de PCSO (%)		
Mínima magnitude de tensão (kV)	11,560	11,560
(nó)	(18)	(18)
Máximo fluxo de potência ativa (kW)	3905,437	3905,437
(circuito)	(1-2)	(1-2)
Máximo fluxo de potência reativa (kVAr)	2428,901	2428,901
(circuito)	(1-2)	(1-2)

Fonte: Dados da pesquisa do autor

Para este sistema de 33 nós, as hipóteses das Proposições 3.1 e 3.2 são satisfeitas, pois o menor valor das variáveis duais foi positivo, $\rho_{1,2}=1$ x 10^{-6} , logo, a restrição cônica (64) do cálculo da corrente está ativa, portanto, a solução encontrada para o problema de PCSO é a solução ótima para o problema de PNL correspondente.

Observe que para este sistema, o $erro_{ij}$ máximo foi de 0%.

3.4.3 Teste do sistema de 70 nós

Os dados completos do sistema de distribuição de 70 nós estão no anexo B.3. Este sistema possui uma única subestação localizada no nó 1. O valor da magnitude de tensão na subestação é de 12,66 kV. O diagrama unifilar para o sistema teste de 70 nós é apresentado na Figura 10.

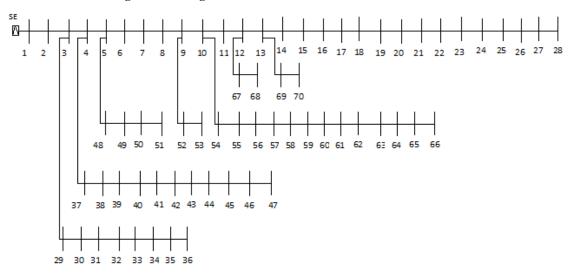


Figura 10 - Diagrama unifilar do sistema de 70 nós

Fonte: autor

O gráfico apresentado na Figura 11 mostra o perfil da magnitude de tensão encontrado pelos modelos de PCSO e de PNL para o sistema de 70 nós.

Tensão (kV) 12,8 12,6 12,4 12,2 12 11,8 11,6 11,4 11,2 11 10,8 7 1 21 35 49 63 70 **Barras** ■ PCSO ■ PNL

Figura 11 - Magnitude de tensão nas barras para o sistema de 70 nós

Fonte: Autor

O gráfico apresentado na Figura 12 mostra os valores das magnitudes dos fluxos de corrente nos ramos, encontrados pelos modelos de PCSO e de PNL para o sistema de 70 nós.

Corrente (A) **Ramos** ■ PCSO ■ PNL

Figura 12 - Magnitude de corrente nos ramos para o sistema de 70 nós

Fonte: Autor

Na Tabela 2 são apresentados os principais resultados obtidos para o sistema teste de 70 nós.

Tabela 2 - Resultados para o sistema teste de 70 nós

Sistema de 70 nós	PCSO	PNL
Valor mínimo da variável dual associada à restrição cônica ρ_{ij}	$1x10^{-9}$	
(circuito)	(3-4)	
Perda de potência ativa (kW)	845,20	845,20
Máxima magnitude de corrente (A)	1560,365	1560,358
(circuito)	(1-2)	(2-3)
Máximo <i>erro</i> _{ij} encontrado pelo modelo de PCSO (%)	0,42	
(circuito)	(67-68)	
Erro médio entre a corrente calculada e a encontrada pelo	0,1	
modelo de PCSO (%)		
Mínima magnitude de tensão (kV)	11,451	11,512
(nó)	(36)	(36)
Máximo fluxo de potência ativa (kW)	15487,964	15487,963
(circuito)	(1-2)	(1-2)
Máximo fluxo de potência reativa (kVAr)	12257,215	12257,214
(circuito)	(1-2)	(1-2)

Fonte: Dados da pesquisa do autor

Para o sistema de 70 nós, as hipóteses das Proposições 3.1 e 3.2 são satisfeitas. Todas as variáveis duais relacionadas à restrição cônica são positivas e o menor valor das variáveis duais foi $\rho_{3,4} = 1 \text{x} 10^{-9}$, logo, a restrição cônica (64) do cálculo da corrente está ativa, portanto, a solução encontrada para o problema de PCSO é a solução ótima para o problema de PNL correspondente.

Observe que para este sistema, o erroij máximo foi de 0,42%.

3.4.4 Teste do sistema de 136 nós

Os dados completos do sistema de distribuição de 136 nós estão no Anexo B.4, este sistema possui uma única subestação localizada no nó 1. O valor da magnitude de tensão na subestação é de 13,8 kV. O diagrama unifilar para o sistema teste de 136 nós é representado na Figura 13.

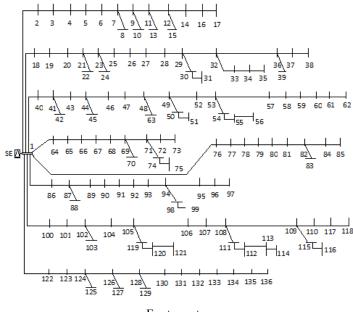


Figura 13 - Diagrama unifilar do sistema de 136 nós

Fonte: autor

O gráfico apresentado na Figura 14 mostra o perfil da magnitude de tensão nas barras encontrado pelos modelos de PCSO e de PNL para o sistema de 136 nós.

Tensão (kV) 14 13,8 13,6 13,4 13,2 13 12,8 12,6 12,4 12,2 36 96 24 48 9 72 84 Nós ■ PCSO ■ PNL

Figura 14 - Representação da tensão para o sistema de 136 nós

Fonte: autor

O gráfico apresentado na Figura 15 mostra os valores das magnitudes de corrente nos ramos, encontrados pelos modelos de PCSO e de PNL para o sistema de 136 nós.

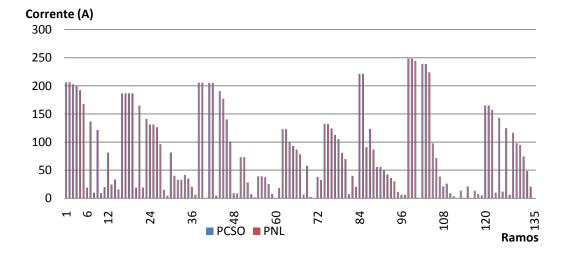


Figura 15 - Magnitude de corrente nos ramos para o sistema de 136 nós

Fonte: autor

Na Tabela 3 são apresentados os principais resultados obtidos para este sistema.

Tabela 3 - Resultados para o sistema teste de 136 nós

Sistema de 136 nós	PCSO	PNL
Valor mínimo da variável dual associada à restrição cônica $ ho_{ij}$	$1x10^{-8}$	
(circuito)	(18-19)	
Perda de potência ativa no sistema (kW)	320,27	320,27
Máxima magnitude de corrente (A)	248,507	248,505
(circuito)	(1-100)	(1-100)
Máximo erro _{ij} encontrado pelo modelo de PCSO (%)	0,45	
(circuito)	(61-62)	
Erro médio entre a corrente calculada e a encontrada pelo	0,01	
modelo de PCSO (%)		
Mínima magnitude de tensão (kV)	12,844	12,844
(nó)	(118)	(117)
Máximo fluxo de potência ativa (kW)	3078,879	3078,879
(circuito)	(1-100)	(1-100)
Máximo fluxo de potência reativa (kVAr)	1507,803	1507,803
(circuito)	(1-100)	(1-2)

Fonte: Dados da pesquisa do autor

Para o sistema de 136 nós, as hipóteses das Proposições 3.1 e 3.2 são satisfeitas. Todas as variáveis duais relacionadas à restrição cônica são positivas e o menor valor das variáveis duais foi $\rho_{18,19} = 1 \times 10^{-8}$, logo, a restrição cônica (64) está ativa na solução encontrada para o problema de PCSO é a solução ótima para o problema de PNL correspondente. Observe que para este sistema o $erro_{ij}$ máximo foi de 0,45%.

3.4.5 Teste do sistema de 400 nós

Os dados completos do sistema de distribuição de 400 nós estão no Anexo B.6. Este sistema possui uma única subestação localizada no nó 1. A magnitude de tensão na subestação é de 11,4 kV. O diagrama unifilar para este sistema é representado na Figura 16.

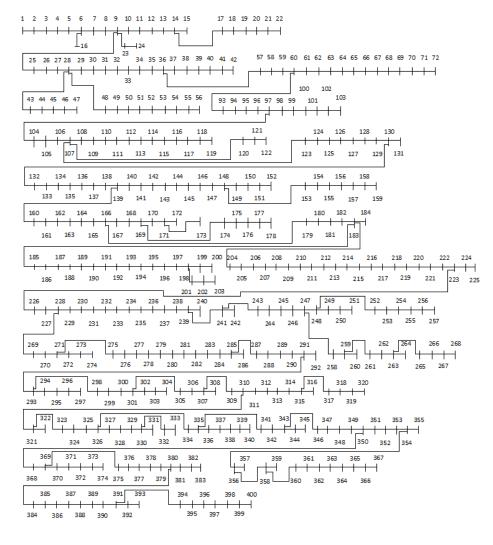


Figura 16 - Diagrama unifilar do sistema de 400 nós

Fonte: autor

O gráfico apresentado na Figura 17 mostra o perfil da magnitude de tensão nas barras encontrado pelos modelos de PCSO e de PNL para o sistema de 400 nós.

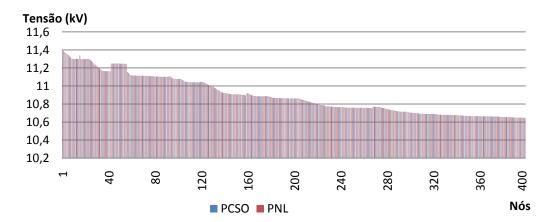


Figura 17 - Magnitude de tensão nas barras para o sistema de 400 nós

Fonte: autor

O gráfico apresentado na Figura 18 mostra os valores das magnitudes dos fluxos de corrente nos ramos encontrados pelos modelos de PCSO e de PNL para o sistema de 400 nós.

Corrente (A) Ramos ■ PCSO ■ PNL

Figura 18 - Magnitude de corrente nos ramos para o sistema de 400 nós

Fonte: autor

Na Tabela 4 são apresentados os principais resultados obtidos para o sistema teste de 400 nós.

Tabela 4 - Resultados para o sistema teste de 400 nós

Sistema de 400 nós	PCSO	PNL
Valor mínimo da variável dual associada à restrição cônica ρ_{ij}	$1,5x10^{-7}$	
(circuito)	(14-15)	
Perda de potência ativa no sistema (kW)	148,34	148,34
Máxima magnitude de corrente (A)	334,902	334,904
(circuito)	(2-3)	(1-2)
Máximo erro _{ij} encontrado pelo modelo de PCSO (%)	0,49	
(circuito)	(358-359)	
Erro médio entre a corrente calculada e a encontrada pelo	0,02	
modelo de PCSO (%)		
Mínima magnitude de tensão (kV)	10,648	10,648
(nó)	(400)	(400)
Máximo fluxo de potência ativa (kW)	3515,901	3515,902
(circuito)	(1-2)	(1-2)
Máximo fluxo de potência reativa (kVAr)	1476,725	1476,779
(circuito)	(1-2)	(1-2)

Fonte: Dados da pesquisa do autor

Para o sistema de 400 nós, as hipóteses das Proposições 3.1 e 3.2 são satisfeitas. Todas as variáveis duais relacionadas à restrição cônica são positivas e o menor valor das variáveis duais foi $\rho_{14,15} = 1.5 \text{x} 10^{-7}$, logo, a restrição cônica (64) está ativa na solução encontrada para o problema de PCSO é a solução ótima para o problema de PNL correspondente. Observe que para este sistema, o $erro_{ij}$ máximo foi de 0,49% e o erro médio foi de 0,02%.

3.5 Casos críticos


Apesar das Proposições 3.1 e 3.2 serem válidas para um grande número de sistemas reais, no cálculo do ponto de operação em sistemas de distribuição radiais podem surgir alguns casos críticos, quando alguma das condições exigidas nas Proposições 3.1 e 3.2 não é satisfeita.

Esses casos são caracterizados se o problema de PCSO não tem solução factível ou se alguma das variáveis duais da restrição cônica (64) for nula.

3.5.1 Teste do sistema de 3 nós

Os dados completos do sistema de distribuição de 3 nós estão no Anexo B.1. Este sistema possui uma única subestação localizada no nó 1. O valor da magnitude de tensão na subestação é de 15 kV. O diagrama unifilar para o sistema teste de 3 nós é representado na Figura 19.

Figura 19 - Diagrama unifilar do sistema de 3 nós

Fonte: autor

O gráfico apresentado na Figura 20 mostra o perfil da magnitude de tensão nas barras encontrado pelos modelos de PCSO e de PNL para o sistema de 3 nós.

Tensão (kV)

16,5

16

15,5

15

14,5

nó 1 nó 2 nó 3

Figura 20 - Magnitude de tensão nas barras para o sistema de 3 nós

Fonte: autor.

Para este sistema, o resultado obtido pela resolução do problema de PCSO alcançou valores de tensão nas barras abaixo dos valores encontrados pelo problema de PNL.

O gráfico apresentado na Figura 21 mostra os valores das magnitudes dos fluxos de corrente nos ramos para os modelos de PCSO e de PNL para o sistema de 3 nós.

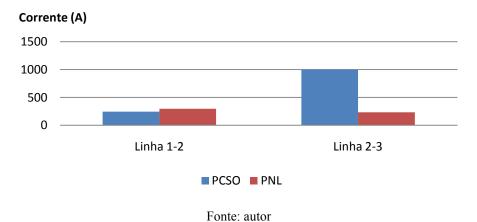


Figura 21 - Magnitude de corrente nos ramos para o sistema de 3 nós

Para este sistema de 3 nós, houve uma variação entre a corrente encontrada pela resolução do problema de PCSO comparado com a corrente obtida pelo modelo de PNL.

Na Tabela 5 são apresentados os principais resultados obtidos para o sistema.

Tabela 5 - Resultados para o sistema teste de 3 nós

Sistema de 3 nós	PCSO	PNL
Valor mínimo da variável dual associada à restrição cônica ρ_{ij}	0	
(circuito)	(2-3)	
Perda de potência ativa no sistema (kW)	789,42	883,47
Máxima magnitude de corrente (A)	998,999	295,406
(circuito)	(2-3)	(1-2)
Máximo erro _{ij} encontrado pelo modelo de PCSO (%)	3,19	
(circuito)	(2-3)	
Erro médio entre a corrente calculada e a encontrada pelo	1,6	
modelo de PCSO (%)		
Mínima magnitude de tensão (kV)	15	15
(nó)	(1)	(1)
Máximo fluxo de potência ativa (kW)	699,600	510,818
(circuito)	(1-2)	(1-2)
Máximo fluxo de potência reativa (kVAr)	-2200	-2200
(circuito)	(2-3)	(2-3)

Fonte: Dados da pesquisa do autor

Para o sistema de 3 nós, uma das hipóteses da Proposição 3.1 não é satisfeita, pois pelo menos uma das variáveis duais relacionadas à restrição cônica (64) é nula, a saber, $\rho_{2,3}=0$.

Neste caso, a restrição cônica (64) não está ativa na solução do problema de PCSO, portanto não satisfaz o problema de PNL.

Observe que para este sistema o $erro_{ij}$ máximo foi de 3,19% e o erro médio foi de 1,6%.

3.5.2 Teste do sistema de 202 nós

Os dados completos do sistema de distribuição de 202 nós estão no Anexo B.5. Este sistema possui uma única subestação localizada no nó 1. O valor da magnitude de tensão na subestação é de 13,8 kV. O diagrama unifilar para o sistema teste de 202 nós é representado na Figura 22.

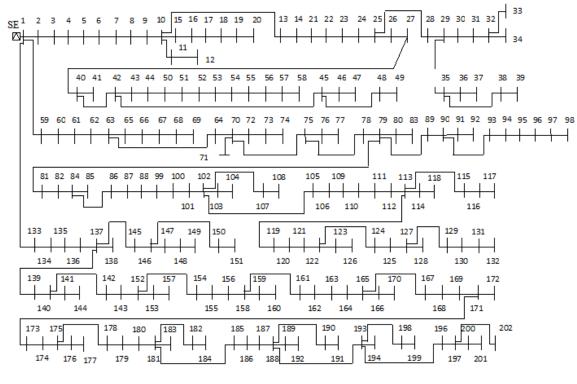


Figura 22 - Diagrama unifilar do sistema de 202 nós

Fonte: autor

O gráfico apresentado na Figura 23 mostra o perfil da magnitude de tensão nas barras encontrado pelos modelos de PCSO e de PNL para o sistema de 202 nós.

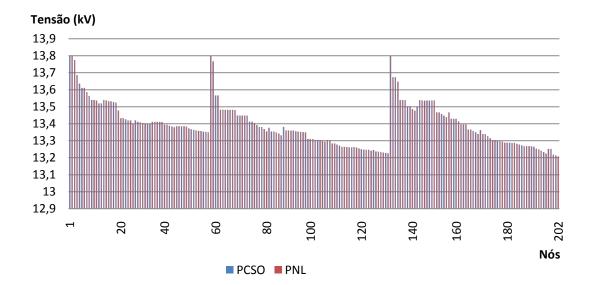


Figura 23 - Magnitude de tensão nas barras para o sistema de 202 nós

Fonte: autor

O gráfico apresentado na Figura 24 mostra os valores das magnitudes de corrente nos ramos encontrados pelos modelos de PCSO e de PNL para o sistema de 202 nós.

Corrente (A)

1000

800

600

400

200

0

Ramos

Fonte: autor

Figura 24 - Magnitude de corrente nos ramos para o sistema de 202 nós

Para este sistema de 202 nós houve uma pequena variação entre a corrente encontrada pela resolução do problema de PCSO comparado com a corrente obtida ao solucionar o problema de PNL. Esta variação ocorreu apenas em alguns ramos com níveis mais baixos de magnitude de fluxo de corrente. Na Tabela 6 são apresentados os principais dados obtidos para o sistema teste de 202 nós.

Tabela 6 - Resultados para o sistema teste de 202 nós

Sistema de 202 nós	PCSO	PNL
Valor mínimo da variável dual associada à restrição cônica $ ho_{ij}$	0	
(circuito)	(1-59)	
Perda de potência ativa no sistema (kW)	552,02	552,01
Máxima magnitude de corrente (A)	910,918	910,025
(circuito)	(1-59)	(59-60)
Máximo erro _{ij} encontrado pelo modelo de PCSO (%)	6,55	
(circuito)	(70-72)	
Erro médio entre a corrente calculada e a encontrada pelo	0,21	
modelo de PCSO (%)		
Mínima magnitude de tensão (kV) (nó)	13,208 (202)	13,208 (202)
Máximo fluxo de potência ativa	10503,255	10503,254
(circuito)	(1-59)	(1-59)
Máximo fluxo de potência reativa	6884,282	6884,280
(circuito)	(1-59)	(1-59)

Fonte: Dados da pesquisa do autor

Para o sistema de 202 nós, uma das hipóteses da Proposição 3.1 não é satisfeita, pois pelo menos uma variável dual relacionada à restrição cônica (64) é nula, a saber, $\rho_{1,59} = 0$.

Neste caso, a restrição cônica (64) não está ativa na solução do problema de PCSO, portanto, não satisfaz o problema de PNL

Observe que para este sistema, o $erro_{ij}$ máximo foi de 6,55% e o erro médio foi de 0,21%.

Para esses casos críticos apresentados, foi destacado que de alguma forma as condições das Proposições 3.1 e 3.2 não foram totalmente satisfeitas, neste caso além de os problemas de PCSO e PNL não estarem relacionados pela própria diferença de natureza de cada um, não se tem o mesmo ponto de operação garantido pelas Proposições 3.1 e 3.2.

A pergunta que surge é: Seria possível traçar alguma estratégia para contornar este tipo de problema e alcançar através do problema de PCSO o mesmo ponto de operação do problema de PNL? Na próxima seção será discutida esta questão.

3.6 Linearização

Apesar de as Proposições 3.1 e 3.2 serem válidas para um grande número de sistemas reais, casos críticos podem surgir quando algumas das condições exigidas nestas Proprosições não são satisfeitas, para estes casos, é possível traçar uma estratégia alternativa para que a solução ativa do problema de PCSO seja alcançada.

A ideia é continuar utilizando o modelo de PCSO para calcular o ponto de operação que pode ser obtido pelo problema de PNL. Sendo assim, ao surgir algum caso em que a solução do problema cônico não esteja ativa em alguma linha, é possível a partir desta solução, linearizar a restrição cônica $V_j^{qdr}I_{ij}^{qdr} \ge P_{ij}^2 + Q_{ij}^2$ apenas na linha que apresenta o maior erro porcentual entre a corrente encontrada e a corrente calculada e resolver o problema de PCSO novamente. Este processo deve ser repetido até que se atinja uma margem de erro menor que 1% para todas as linhas do sistema.

O método de linearização utilizado neste trabalho é o apresentado por Gonçalves (2013). Nas subseções 3.6.1 e 3.6.2 a seguir será apresentado um esboço do processo de linearização do produto $V_j^{qdr} I_{ij}^{qdr}$ e da soma $P_{ij}^2 + Q_{ij}^2$ respectivamente.

3.6.1 Linearização de $V_j^{qdr} I_{ij}^{qdr}$

Para a linearização da parte referente ao produto $V_j^{qdr} I_{ij}^{qdr}$, Gonçalves (2013) apresenta em detalhes o método descrito em Franco et al. (2011).

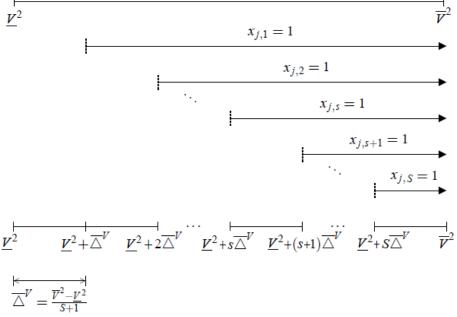
Como $\underline{V}^2 \leq V_j^{qdr} \leq \overline{V}^2$, considere uma partição do intervalo $\left[\underline{V}^2, \overline{V}^2\right]$ da forma: $\mathcal{P} = \{\underline{V}^2, \ \underline{V}^2 + \overline{\Delta}^V, \ \underline{V}^2 + 2\overline{\Delta}^V, ..., \ \underline{V}^2 + S\overline{\Delta}^V, \ \overline{V}^2 \}$, onde S+1 é o número de intervalos da partição e cada subintervalo possui o tamanho constante $\overline{\Delta}^V = \frac{\overline{V}^2 - \underline{V}^2}{S+1}$.

Em seguida, é conveniente definir a variável binária $x_{j,s}$, adaptado de Gonçalves (2013), para apenas um nível de demanda como mostrado em (79).

$$x_{j,s} = \begin{cases} 1, & se \ V_j^{qdr} > \underline{V}^2 + s\overline{\Delta}^V \\ 0, & caso \ contrário \end{cases} \quad \forall j \in \Omega, \quad s = 1, ..., S$$
 (79)

onde o valor da variável $x_{j,s}$ é obtido da equação (80).

$$\underline{V}^{2} + \sum_{s=1}^{S} x_{j,s} \, \overline{\Delta}^{V} \leq V_{j}^{qdr} \leq \underline{V}^{2} + \sum_{s=1}^{S} x_{j,s} \, \overline{\Delta}^{V} + \overline{\Delta}^{V}, \qquad \forall j \in \Omega$$


$$x_{j,s} \leq x_{j,s-1}, \qquad \forall j \in \Omega, \qquad s = 2, \dots, S$$

$$x_{j,s} \in \{0,1\}, \qquad \forall j \in \Omega, \qquad s = 1, \dots, S$$

$$(80)$$

A Figura 25 ilustra os valores de $x_{j,s}$ para cada V_j^{qdr} que é definido como o ponto médio do primeiro intervalo da partição somado a um múltiplo de $\bar{\Delta}^V$ da forma (81).

Figura 25 - Intervalos da partição

Fonte: Adaptado de Gonçalves (2013)

A expressão (81) representa a definição de V_j^{qdr} .

$$V_j^{qdr} := \underline{V}^2 + \frac{1}{2}\bar{\Delta}^V + \sum_{s=1}^S x_{j,s}\bar{\Delta}^V$$
 (81)

Portanto, pode-se escrever o produto $V_j^{qdr} I_{ij}^{qdr}$ da forma (82).

$$V_j^{qdr} I_{ij}^{qdr} := \left(\underline{V}^2 + \frac{1}{2}\bar{\Delta}^V + \sum_{s=1}^S x_{j,s} \bar{\Delta}^V\right) I_{ij}^{qdr}$$
 (82)

Ou equivalentemente como (83).

$$V_j^{qdr} I_{ij}^{qdr} = \left(\underline{V}^2 + \frac{1}{2} \bar{\Delta}^{V}\right) I_{ij}^{qdr} + \sum_{s=1}^{S} x_{j,s} \bar{\Delta}^{V} I_{ij}^{qdr}$$
(83)

É necessário ainda uma linearização da parcela não linear $\sum_{s=1}^{S} x_{j,s} \, \overline{\Delta}^{V} I_{ij}^{qdr}$, como mostrado em (84).

$$\begin{cases}
\sum_{s=1}^{S} x_{j,s} \, \bar{\Delta}^{V} I_{ij}^{qdr} = \sum_{s=1}^{S} P_{j,s}^{C} & \forall ij \in \Omega \\
0 \leq \bar{\Delta}^{V} I_{ij}^{qdr} - P_{j,s}^{C} \leq \bar{\Delta}^{V} \bar{I}_{ij}^{2} (1 - x_{j,s}) & \forall ij \in \Omega, s = 1, ..., S \\
0 \leq P_{j,s}^{C} \leq \bar{\Delta}^{V} \bar{I}_{ij}^{2} x_{j,s} & \forall ij \in \Omega, s = 1, ..., S
\end{cases} (84)$$

Onde os valores de $P_{j,s}^{\mathcal{C}}$ são as correções sucessivas de potências e dependem de I_{ij}^{qdr} , $x_{j,s}$ e de $\bar{\Delta}^{V}$.

Após uma substituição conveniente, obtém-se a linearização de $V_j^{qdr}I_{ij}^{qdr}$ dada pela expressão (85).

$$\begin{cases} V_{j}^{qdr} I_{ij}^{qdr} = \left(\underline{V}^{2} + \frac{1}{2}\overline{\Delta}^{V}\right) I_{ij}^{qdr} + \sum_{s=1}^{S} P_{j,s}^{C} & \forall ij \in \Omega \\ 0 \leq \overline{\Delta}^{V} I_{ij}^{qdr} - P_{j,s}^{C} \leq \overline{\Delta}^{V} \overline{I}_{ij}^{2} \left(1 - x_{j,s}\right), & \forall ij \in \Omega, s = 1, ..., S \\ 0 \leq P_{j,s}^{C} \leq \overline{\Delta}^{V} \overline{I}_{ij}^{2} x_{j,s} & \forall ij \in \Omega, s = 1, ..., S \end{cases}$$

$$(85)$$

Conforme Gonçalves (2013).

3.6.2 Linearização de P_{ij}^2 e Q_{ij}^2

Para a linearização dos termos quadráticos P_{ij}^2 e Q_{ij}^2 , considere uma partição $\mathcal{P}=\{0,\bar{\Delta}_{ij}^S,\,2\bar{\Delta}_{ij}^S,\,...,R\bar{\Delta}_{ij}^S\}$, do intervalo $\left[0,\bar{V}\bar{I}_{ij}\right]$. Em seguida, inicia-se a construção de uma aproximação linear $L_{ij,r}$ baseada no método dos mínimos quadrados para as funções $P_{ij}^2\colon \left[0,\bar{V}\bar{I}_{ij}\right]\to\mathbb{R}$ e $Q_{ij}^2\colon \left[0,\bar{V}\bar{I}_{ij}\right]\to\mathbb{R}$, restritas ao r-ésimo subintervalo $\left[(r-1)\bar{\Delta}_{ij}^S,r\bar{\Delta}_{ij}^S\right]$. Assim, define-se $L_{ij,r}$ com um ajuste quando r=1 para garantir a não negatividade, onde $L_{ij,1}(P_{ij})\coloneqq\frac{5}{6}\bar{\Delta}_{ij}^SP_{ij}$ e $L_{ij,1}(Q_{ij})\coloneqq\frac{5}{6}\bar{\Delta}_{ij}^SQ_{ij}$, conforme apresentado por Gonçalves (2013). A partir desta definição para r=1, como para cada $P_{ij}\in \left[0,\bar{V}\bar{I}_{ij}\right]$ existe algum $r\in\{1,...,R\}$ com $(r-1)\bar{\Delta}_{ij}^S\leq P_{ij}\leq r\bar{\Delta}_{ij}^S$.

Assim, P_{ij}^2 pode ser aproximado pelo valor numérico da r-ésima função afim $L_{ij,r}(P_{ij})$, neste caso é conveniente definir o valor $\Delta_{ij,r}^P$ do r-ésimo bloco de linearizações por partes de P_{ij}^2 , satisfazendo (86).

$$\begin{cases} P_{ij} = \sum_{r=1}^{R} \Delta_{ij,r}^{P} & \forall ij \in \Omega \\ 0 \leq \Delta_{ij,r}^{P} \leq \bar{\Delta}_{ij}^{S}, & \forall ij \in \Omega, r = 1, ..., R \\ 0 \leq P_{ij} & \forall ij \in \Omega \end{cases}$$

$$(86)$$

considerando que, para $P_{ij} \in [(r-1)\overline{\Delta}_{ij}^S, r\overline{\Delta}_{ij}^S]$ fica estabelecido que $\Delta_{ij,r+1}^P = \Delta_{ij,r+2}^P = \cdots = \Delta_{ij,R}^P = 0$, como representado na Figura 26:

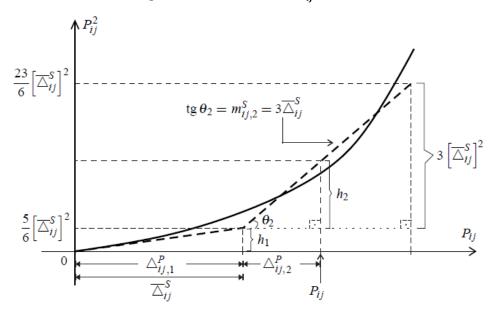


Figura 26 - Linearização de P_{ij}^2

Fonte: Adaptado de Gonçalves (2013)

Observe que o valor de $L_{ij,r}(P_{ij}) = \sum_{k=2}^{R} h_k$, onde h_k é a soma das medidas das alturas $h_k = m_{ij,k}^S \Delta_{ij,k}^P$ e $m_{ij,k}^S$ é a $\operatorname{tg}\theta_k$. Dessa forma, com um raciocínio análogo para Q_{ij}^2 , uma linearização da soma $P_{ij}^2 + Q_{ij}^2$ pode ser representada da forma mostrada em (87) e (88).

$$L_{ij,r}(P_{ij}) \coloneqq \frac{5}{6} \overline{\Delta}_{ij}^S \Delta_{ij,1}^P + \sum_{r=2}^R m_{ij,r}^S \Delta_{ij,r}^P , \forall ij \in \Omega$$
 (87)

e

$$L_{ij,r}(Q_{ij}) \coloneqq \frac{5}{6} \overline{\Delta}_{ij}^S \Delta_{ij,1}^Q + \sum_{r=2}^R m_{ij,r}^S \Delta_{ij,r}^Q, \forall ij \in \Omega$$
 (88)

A função $L_{ij,r}$ é não negativa e contínua em todo o intervalo $[0, \overline{V}\overline{I}_{ij}]$.

Portanto, uma linearização da soma $P_{ij}^2 + Q_{ij}^2$ pode ser representada da forma (89).

$$P_{ij}^{2} + Q_{ij}^{2} = \frac{5}{6} \overline{\Delta}_{ij}^{S} \Delta_{ij,1}^{P} + \sum_{r=2}^{R} m_{ij,r}^{S} \Delta_{ij,r}^{P} + \frac{5}{6} \overline{\Delta}_{ij}^{S} \Delta_{ij,1}^{Q} + \sum_{r=2}^{R} m_{ij,r}^{S} \Delta_{ij,r}^{Q} \quad \forall ij \in \Omega$$

$$P_{ij} = \sum_{r=1}^{R} \Delta_{ij,r}^{P} \quad \forall ij \in \Omega$$

$$Q_{ij} = \sum_{r=1}^{R} \Delta_{ij,r}^{Q} \quad \forall ij \in \Omega$$

$$0 \leq \Delta_{ij,r}^{P} \leq \overline{\Delta}_{ij}^{S} \quad \forall ij \in \Omega, r = 1, ..., R$$

$$0 \leq A_{ij,r}^{Q} \leq \overline{\Delta}_{ij}^{S} \quad \forall ij \in \Omega$$

$$0 \leq Q_{ij}, \forall ij \in \Omega$$

$$0 \leq Q_{ij}, \forall ij \in \Omega$$

onde a constante $\bar{\Delta}_{ij}^S = \frac{VI_{ij}}{R}$, $\forall ij \in \Omega$ é o tamanho de cada passo na linearização e $m_{ij,r}^S = (2r-1)/\bar{\Delta}_{ij}^S$, $\forall ij \in \Omega, r=2,...,R$, é a inclinação da r-ésima aproximação linear $L_{ij,r}$.

3.7 Aplicação da linearização nos casos críticos

Agora será utilizada a estratégia de linearização como uma alternativa para os casos em que alguma das condições das Proposições 3.1 e 3.2 não foi satisfeita.

Para a análise dos casos críticos, o modelo utilizado foi representado pelo problema de PCSO dado pelas equações (60)-(66), acrescido das equações de linearização do produto de $V_j^{qdr} I_{ij}^{qdr}$ e da soma $P_{ij}^2 + Q_{ij}^2$, representados respectivamente pelas equações dadas em (85) e (89).

Para estes casos de sistemas que não cumprirem alguma das condições das Proposições 3.1 e 3.2, será utilizado o indicador de precisão $erro_{ij}$ estabelecido na equação (78) como parte da estratégia de linearização, ou seja, as equações de linearização são utilizadas sempre que for encontrado algum circuito com um valor porcentual erro(ij) entre a corrente encontrada I_{ij}^{qdr} e a corrente calculada $(P_{ij}^2 + Q_{ij}^2)/V_j^{qdr}$ maior ou igual a 1%.

Como critério de parada no processo de linearização, será considerado que a restrição cônica estará ativa na solução do problema de PCSO se para esta solução o valor $erro_{ij}$, for sempre menor que 1% para todos os circuitos.

Neste caso, ao resolver o modelo de PCSO e identificar o ramo que apresentou o maior valor $erro_{ij}$, as restrições cônicas são substituídas pelas restrições linearizadas somente neste ramo, e o problema é resolvido novamente. Esse processo segue até que seja encontrada uma solução com erro porcentual menor que 1% para todos os ramos do sistema.

As implementações dos modelos e da linearização foram feitas e testadas em linguagem AMPL (FOURER; GAY; KERNIGHAN, 2002) e foi utilizado o solver CPLEX (ILOG, 2008) para resolver os problemas de PCSO.

3.7.1 Teste do sistema de 03 nós

Na Tabela 7 são apresentados os principais resultados obtidos para o sistema teste de 3 nós, após a linearização da equação do cálculo na corrente da linha que apresentou o maior erro.

Tabela 7 - Resultados para o sistema teste de 03 nós com linearização

Sistema de	Perda	Mag.	Linha	Erro	Linha	Erro	Mag.	barra	Fluxo de	Fluxo de
03 nós	Ativa	Corrente		Máximo		Médio	Tensão		Potência	Potência
	(kW)	Máx(A)		erro(ij)			Mín.(kV)		Ativa	Reativa
				(%)					Máxima	Máxima
									(kW)	(kVAr)
PCSO	789,42	998,999	2-3	3,19 %	2-3	1,60 %	15 kV	1	699,600	-2200,000
inicial										
Linha		(R	esultado do	PCSO após	a lineariza	ção da linh	a que apreser	ntou o ma	nior erro)	
2-3	883,34	295,353	1-2	0,01 %	2-3	0,00 %	15 kV	1	511,009	-2200,000
PNL	883,47	295,406	1-2				15 kV	1	510,818	-2200,000
	L									

Fonte: Dados da pesquisa do autor

Para um caso crítico como o sistema de 3 nós apresentado, a estratégia de linearização da equação do cálculo da corrente na linha que apresenta o maior erro porcentual proporcionou após uma iteração, uma solução com valor máximo *erro*_{ij} de apenas 0,01%. Sendo assim, a solução do problema de PCSO pode ser utilizada como solução do problema de PNL, ou seja, é possível encontrar o ponto de operação do problema de PNL calculando o ponto de operação do problema de PCSO através do processo de linearização.

O gráfico apresentado na Figura 27 mostra o perfil da magnitude de tensão nas barras, encontrado pelos modelos de PCSO e de PNL para o sistema de 3 nós, após a linearização da equação do cálculo da corrente no circuito 2-3.

Tensão (kV)

16,5

16

15,5

15

14,5

nó 1

nó 2

nó 3

■ PCSO ■ PNL

Fonte: autor

Figura 27 - Magnitude de tensão nas barras para o sistema de 3 nós

O gráfico apresentado na Figura 28 mostra os valores das magnitudes dos fluxos de corrente nos ramos para os modelos de PCSO e de PNL para o sistema de 3 nós.

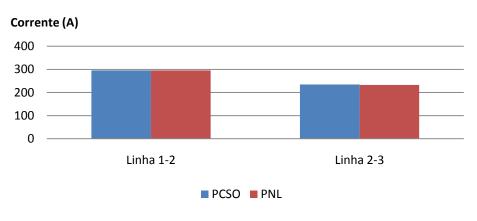


Figura 28 - Magnitude de corrente nos ramos para o sistema de 3 nós

Fonte: autor

3.7.2 Teste do sistema de 202 nós

Na Tabela 8 são apresentados os principais resultados obtidos para o sistema teste de 202 nós, após a linearização da equação do cálculo da corrente na linha que apresentou o maior valor para o indicador $erro_{ij}$.

Tabela 8 - Resultados para o sistema teste de 202 nós com linearização

Sistema de	Perda	Mag.	Linh	erro(ij)	Linha	Erro	Mag.	barra	Potência	Potência
202 nós	Ativa	Corrente	a	Máx		Médio	Tensão		Ativa Máx	Reativa
	(kW)	Máx(A)		(%)			Mín.(kV)		(W)	Máx(VAr)
PCSO	552,02	986,299	1-59	6,55 %	70-72	0,21 %	13,208	202	10503,255	6884,281
inicial										
Linha	((Resultado	do PC	SO após a	lineariza	ção do cir	cuito que a	apresen	tou o maior o	erro)
70-72	552,02	986,303	1-59	2,61 %	137-138	0,18 %	13,208	202	10503,255	6884,281
137-138	552,02	986,388	1-59	2,10 %	146-150	0,17%	13,208	202	10503,255	6884,281
146-150	552,02	987,478	1-59	2,09 %	140-141	0,16%	13,208	202	10503,255	6884,281
140-141	552,02	988,088	1-59	2,08 %	152-153	0,15%	13,208	202	10503,255	6884,281
152-153	552,02	988,908	1-59	2,07%	35-36	0,14%	13,208	202	10503,255	6884,281
35-36	552,02	989,106	1-59	2,07%	45-46	0,13%	13,208	202	10503,255	6884,281
45-46	552,02	1013,167	1-59	2,06%	102-103	0,13%	13,208	202	10503,256	6884,283
102-103	552,02	1000,583	1-59	2,05%	113-114	0,12%	13,208	202	10503,256	6884,282
113-114	552,02	978,825	1-59	1,58 %	67-68	0,10%	13,208	202	10503,255	6884,281
67-68	552,01	983,918	1-59	1,56 %	147-148	0,09%	13,208	202	10503,255	6884,281
147-148	552,01	965,623	1-59	1,52 %	35-38	0,08%	13,208	202	10503,255	6884,281
35-38	552,02	987,797	1-59	1,53 %	90-91	0,08%	13,208	202	10503,255	6884,281
90-91	552,02	989,313	1-59	1,36 %	181-182	0,07%	13,208	202	10503,255	6884,281
181-182	552,01	983,369	1-59	1,32 %	65-66	0,06%	13,208	202	10503,255	6884,281
65-66	552,01	983,878	1-59	1,18 %	188-190	0,06%	13,208	202	10503,255	6884,281
188-190	552,01	984,102	1-59	1,10 %	175-176	0,05 %	13,208	202	10503,255	6884,281
175-176	552,02	991,277	1-59	1,09 %	137-145	0,05 %	13,208	202	10503,255	6884,281
137-145	552,01	987,344	1-59	0,93 %	79-80	0,04 %	13,208	202	10503,255	6884,281
79-80	552,01	985,081	1-59	0,92 %	122-123	0,03 %	13,208	202	10503,255	6884,281
122-123	552,01	990,747	1-59	0,82 %	188-189	0,03 %	13,208	202	10503,255	6884,281
188-189	552,02	992,041	1-59	0,77 %	75-76	0,03 %	13,208	202	10503,255	6884,281
75-76	552,02	1000,429	1-59	0,78 %	10-11	0,03 %	13,208	202	10503,255	6884,281
10-11	552,02	1006,295	1-59	0,75 %	10-15	0,03 %	13,208	202	10503,256	6884,283
10-15	552,02	1004,873	1-59	0,70 %	45-48	0,02 %	13,208	202	10503,256	6884,283
45-48	552,01	989,187	1-59	0,64 %	165-166	0,01 %	13,208	202	10503,255	6884,281
165-166	552,01	973,975	1-59	0,59 %	56-57	0,01 %	13,208	202	10503,255	6884,281
56-57	552,01	981,926	1-59	0,14 %	25-28	0,01 %	13,208	202	10503,255	6884,281
25-28	552,01	973,142	1-59	0,10 %	70-72	0,01 %	13,208	202	10503,255	6884,281
PNL	552,01	910,024	59-				13,208	202	10503,253	6884,279
			60							

Fonte: Dados da pesquisa do autor

Para um caso crítico como o sistema de 202 nós apresentado, a estratégia de linearização da equação do cálculo da corrente do circuito que apresenta o maior erro porcentual proporciona após algumas iterações encontrar uma solução com valor máximo *erro*_{ij} em percentual (%), menor que 1%. Sendo assim, a restrição cônica está ativa na solução do problema de PCSO encontrada no final do processo de linearização e pode ser utilizada como solução do problema de PNL, ou seja, é possível encontrar o ponto de operação do problema de PNL calculando o ponto de operação do problema de PCSO através do processo de linearização.

É conveniente observar que a estratégia de linearização da equação do cálculo da corrente do circuito que apresenta o maior valor porcentual do indicador $erro_{ij}$ proporciona um decréscimo na variação do indicador $erro_{ij}$, mesmo quando a linearização é utilizada com $erro_{ij}$ menor que 1%, como mostra a Tabela 8.

3.8 Conclusões do Capítulo

Neste capítulo, através da resolução de um problema de PCSO, foi possível calcular o ponto de operação em regime permanente para um sistema de distribuição radial, apesar dos problemas de PNL e de PCSO não serem equivalentes.

As Proposições 3.1 e 3.2 mostraram que mediante algumas condições as soluções são idênticas, pois no ponto ótimo, a restrição cônica de desigualdade está ativa, ou seja, para um sistema radial nas condições da Proposição 3.1, tem-se a mesma solução para os problemas de PCSO e de PNL no cálculo do ponto de operação. Em seguida, nas condições da Proposição 3.2, é garantida a otimalidade da solução ativa para o problema de PNL.

Para os casos em que alguma das condições da Proposição 3.1 não é satisfeita para um sistema de distribuição radial, o processo de linearização da equação do cálculo da corrente, do circuito que apresenta o maior valor do indicador $erro_{ij}$ entre os valores referentes à corrente encontrada pelo modelo de PCSO se mostrou uma alternativa eficaz.

CAPÍTULO 4

4 EQUIVALÊNCIA DE SOLUÇÕES ENTRE PROBLEMAS DE PCSO E PROBLEMAS DE PNL EM SISTEMAS DE DISTRIBUIÇÃO RADIAIS

Neste capítulo, a proposta é estender o resultado das Proposições 3.1 e 3.2 para garantir a equivalência de soluções entre um problema de PCSO e um problema de PNL. As Proposições 3.1 e 3.2 mostraram que é possível calcular o ponto de operação em regime permanente de um sistema de distribuição modelado como um problema de PNL através de um modelo de PCSO. Agora, ao acrescentar novas variáveis contínuas ao problema, será provado uma nova Proposição que apresenta as condições que garantem a igualdade das soluções.

4.1 Análise de um problema de PNL utilizando uma formulação cônica de segunda ordem

Considere um problema de otimização em sistemas de distribuição radiais representado por um problema de PNL da forma (90)-(99).

$$\min v = \sum_{ij \in \Omega_l} R_{ij} I_{ij}^{qdr} + \boldsymbol{c}' \boldsymbol{w}$$
(90)

Sujeito a

$$P_{ki} - \sum_{ij \in \Omega_l} \left(P_{ij} + R_{ij} I_{ij}^{qdr} \right) + P_i^G + \boldsymbol{a}_i' \boldsymbol{w} = P_i^D \qquad \forall i \in \Omega_b \quad (91)$$

$$Q_{ki} - \sum_{ij \in \Omega_{I}} (Q_{ij} + X_{ij} I_{ij}^{qdr}) + Q_{i}^{G} + \boldsymbol{b}_{i}' \boldsymbol{w} = Q_{i}^{D}$$
 $\forall i \in \Omega_{b}$ (92)

$$V_{i}^{qdr} - 2(R_{ij}P_{ij} + X_{ij}Q_{ij}) - Z_{ij}^{2}I_{ij}^{qdr} - V_{j}^{qdr} + \mathbf{d}_{i}'\mathbf{w} = 0 \qquad \forall ij \in \Omega_{l} \quad (93)$$

$$V_i^{qdr} I_{ij}^{qdr} = P_{ij}^2 + Q_{ij}^2 \qquad \forall ij \in \Omega_l \quad (94)$$

$$\mathbf{E}\mathbf{w} = \mathbf{f} \tag{95}$$

$$Gw \ge h$$
 (96)

$$V_i^{qdr} \ge 0 \qquad \qquad \forall i \in \Omega_b \quad (97)$$

$$I_{ij}^{qdr} \ge 0 \qquad \forall ij \in \Omega_l \quad (98)$$

$$\mathbf{w} \in \mathbb{R}^n \tag{99}$$

Em que o vetor w representa as novas variáveis de decisão de operação e investimento do sistema de distribuição radial, onde os dados $\mathbf{a}'_i, \mathbf{b}'_i, \mathbf{c}', \mathbf{d}'_i, \mathbf{f}, \mathbf{g} \in \mathbb{R}^n$, são vetores e $\mathbf{E}, \mathbf{G} \in \mathbb{R}^{n \times n}$ são matrizes.

Então, ao substituir a restrição não linear (94) pela restrição cônica de segunda ordem, a qual é $V_j^{qdr} I_{ij}^{qdr} \ge P_{ij}^2 + Q_{ij}^2$ para todos os valores de ij no conjunto das linhas Ω_l , tem-se o problema de programação cônica de segunda ordem dado por (100)-(109).

$$\min v = \sum_{ij \in \Omega_I} R_{ij} I_{ij}^{qdr} + \boldsymbol{c}' \boldsymbol{w}$$
(100)

Sujeito a

$$P_{ki} - \sum_{ij \in \Omega_{I}} \left(P_{ij} + R_{ij} I_{ij}^{qdr} \right) + P_{i}^{G} + \boldsymbol{a}_{i}^{'} \boldsymbol{w} = P_{i}^{D}$$
 $\forall i \in \Omega_{b}$ (101)

$$Q_{ki} - \sum_{ij \in \Omega_l} (Q_{ij} + X_{ij} I_{ij}^{qdr}) + Q_i^G + \boldsymbol{b}_i' \boldsymbol{w} = Q_i^D$$
 $\forall i \in \Omega_b$ (102)

$$V_i^{qdr} - 2(R_{ij}P_{ij} + X_{ij}Q_{ij}) - Z_{ij}^2 I_{ij}^{qdr} - V_j^{qdr} + \mathbf{d}_i' \mathbf{w} = 0 \qquad \forall ij \in \Omega_l \quad (103)$$

$$V_j^{qdr} I_{ij}^{qdr} \ge P_{ij}^2 + Q_{ij}^2 \qquad \forall ij \in \Omega_l \quad (104)$$

$$\mathbf{E}\mathbf{w} = \mathbf{f} \tag{105}$$

$$Gw \ge h \tag{106}$$

$$V_i^{qdr} \ge 0 \qquad \forall i \in \Omega_b \quad (107)$$

$$I_{ij}^{qdr} \ge 0 \qquad \forall ij \in \Omega_l \quad (108)$$

$$\mathbf{w} \in \mathbb{R}^n \tag{109}$$

Proposição 4.1: Para um sistema de distribuição radial, considere o problema de PNL dado pelas equações (90)-(99) e de PCSO dado por (100)-(109). Se o problema de PCSO tem solução factível e as variáveis duais da restrição (104) são positivas ($\rho_{ij} > 0$, $\forall ij \in \Omega_l$), então a solução ótima do problema de PCSO é a solução ótima do problema de PNL.

Demonstração:

Para demonstrar a Proposição 4.1, basta observar que a região factível do problema de PCSO (100)-(109) é um conjunto aberto do \mathbb{R}^n e todas as restrições podem ser representadas

por funções diferenciáveis, em particular, a restrição (104) é representada por uma função da forma $g_{ij}(\mathbf{x}) := P_{ij}^2 + Q_{ij}^2 - V_j^{qdr} I_{ij}^{qdr}$, com $\mathbf{x} = (P_{ij}, Q_{ij}, V_j^{qdr}, I_{ij}^{qdr})$.

Neste caso existem escalares ρ_{ij} de maneira única, tal que (110) e (111) são satisfeitas.

$$\rho_{ij} \left(P_{ij}^2 + Q_{ij}^2 - V_j^{qdr} I_{ij}^{qdr} \right) = 0, \quad \forall ij \in \Omega_l$$

$$\rho_{ij} \geq 0, \quad \forall ij \in \Omega_l$$

$$(110)$$

Dessa forma, se $\rho_{ij} > 0 \ \forall ij \in \Omega_l$, então a restrição (104) está ativa ($V_j^{qdr} I_{ij}^{qdr} = P_{ij}^2 + Q_{ij}^2$, $\forall ij \in \Omega_l$). Em outras palavras, a solução do problema de PCSO é uma solução factível do problema de PNL, e pelo mesmo raciocínio desenvolvido na Proposição 3.2 esta é a solução ótima para o problema de PNL.

De fato a solução é ótima: Sendo x^* a solução do problema de PCSO que satisfaz as condições do Proposição 4.1 e v^* sua função objetivo, sabe-se que x^* é também uma solução do problema de PNL. Qualquer outra solução \bar{x} do problema de PNL, com função objetivo \bar{v} , é também uma solução factível para o problema PCSO, portanto, deve satisfazer a relação $\bar{v} \geq v^*$. Assim, não existe solução \bar{x} com uma função objetivo \bar{v} menor que v^* , então x^* é a solução ótima do PNL.

4.2 Formulação do problema de PNL em um sistema de distribuição radial com geração distribuída

O problema de PNL escolhido para avaliar a metodologia proposta foi o de operação ótima de sistemas de distribuição radiais considerando a existência de Geradores Distribuídos (GDs). Os GDs atuam no sistema como fontes de potência ativa e/ou reativa e em geral alteram as perdas de potência ativa do sistema.

Em 2001, Ackermann apresentou um artigo onde foi destacada a relevância dos GDs e devido às grandes variações nas definições usadas por pesquisadores em diferentes países, citou questões técnicas, econômicas e ambientais que devem ser consideradas para definir a geração distribuída mais precisamente. Definiu a GD como uma fonte de energia elétrica conectada diretamente à rede de distribuição e apresentou benefícios da geração distribuída, destacando a redução das perdas na rede (Ackermann, Andersson e Söder, 2001).

El-khattam e Salama (2004) apresentaram um trabalho onde classificaram os diferentes tipos de GDs e suas respectivas aplicações no sistema elétrico, destacando as

vantagens e desvantagens de cada tipo, bem como os beneficios da geração distribuída dos pontos de vista econômico e operacional.

Ainda em 2004, Chiradeja e Ramakumar propuseram um artigo que quantifica os benefícios técnicos e econômicos da geração distribuída, destacando a redução das perdas elétricas no sistema, melhoria do perfil de tensão, a redução de impacto ambiental e a viabilidade econômica de algumas tecnologias de geração distribuída, trazendo uma vasta bibliografia sobre o assunto. Destacaram também alguns conflitos que podem ser gerados com o uso da geração distribuída em sistemas já existentes e apresentaram um método para identificar a melhor localização para as unidades de GDs.

Quanto ao problema de alocação de GDs, vários autores apresentam trabalhos sobre o tema, todavia, existem poucos trabalhos de pesquisa que tratam o problema de planejamento da operação dos sistemas de distribuição de energia elétrica (POSDEE) considerando a existência de GDs, sendo eles: Padilha (2010), Gonçalves, Alves e Rider (2012), Araujo, Meira e Almeida (2013) e Gonçalves (2013), que propuseram modelos aproximados de PLIM para o problema de POSDEE radiais.

4.2.1 A modelagem de geradores distribuídos

Os geradores de forma geral atuam como fonte de potência no sistema elétrico e são compostos basicamente de duas partes fundamentais: o rotor e o estator.

O rotor em funcionamento, alimentado por uma corrente contínua (em geradores síncronos), produz:

- Um fluxo magnético constante em seus polos;
- Um campo magnético constante denominado "enrolamento de campo".

Por sua vez, o estator é o elemento onde estão situados os enrolamentos do corpo do gerador. O rotor em funcionamento produz a indução de uma tensão nos enrolamentos.

Um gerador pode operar de formas diferentes em relação às quantidades de potência ativa (P) e reativa (Q), a saber,

Gerador sub-excitado se P>0 e Q<0, ou se P<0 e Q<0.

Gerador sobre-excitado se P>0 e Q>0, ou se P<0 e Q>0

Geometricamente, em relação a P e Q pode-se representar as formas de operação de um gerador conforme a Figura 29.

P > 0P > 00 > 0O < 0sobre-excitado sub-excitado ⊳Q

Figura 29 - Representação das formas de operação de um gerador

Fonte: autor

P < 0P < 0Q < 0O > 0sobre-excitado sub-excitado

A forma de operação é que indica quando o gerador fornece ou consome potências ativa ou reativa. Um gerador sobre-excitado fornece potência reativa atuando como um capacitor, já um gerador sub-excitado consume potência reativa, simulando um indutor. Em relação à potência ativa, o gerador síncrono pode atuar como um conversor eletromecânico exercendo o papel de gerador quando P > 0, ou motor quando P < 0.

Um controle da potência mecânica fornecida por um gerador é que vai definir se este irá atuar como gerador, fornecendo potência ativa, ou como consumidor de potência ativa da rede. Em geral esse controle ocorre automaticamente através de um regulador de velocidade. Se um gerador opera isolado da rede, esse dispositivo controla a frequência de tensão gerada (Silveira, 2011).

Quanto à potência reativa, esse controle é administrado em relação à intensidade da corrente de campo, chamada de "corrente de excitação", através de um regulador de tensão. Uma importante propriedade de um gerador síncrono é sua resposta rápida em relação a algum transtorno ou perturbação na rede, e nestes casos o gerador representa a principal reserva de potência reativa para garantir o funcionamento do sistema elétrico.

Por outro lado, um gerador tem sua capacidade limitada por diversos fatores, e sua operação pode ser representada graficamente pela conhecida curva de capacidade, conforme a Figura 30.

0.8
0.8
0.6
0.4
0.2
0.2
0.2
0.4
0.6
0.8
1 1.2
Q
C2 C1

Fonte: Autor

Figura 30 - Curva de capacidade

onde

C1: Limite térmico do estator;

C2: Limite térmico do rotor;

C3: Mínima excitação;

C4: Limite prático de estabilidade;

R1: O limite de turbina;

A curva de capacidade representa uma relação entre as potências ativa e reativa do gerador, onde as curvas C1, C2, C3, C4 e R1 representam os fatores limitantes envolvidos na operação em regime permanente. Alguns autores como Kosow (1982), Guimarães e Rangel (2009), Morais (2009) e Silveira (2012), explicam a construção da curva de capacidade detalhadamente.

As equações que modelam os geradores distribuídos são (112)-(114).

$$(P_{i,d}^{gd})^2 + (Q_{i,d}^{gd})^2 \le (\bar{S}_i^{gd})^2$$
 (112)

$$-P_{i,d}^{gd}\tan\left(\cos^{-1}\left(\underline{pf_i}^{gd}\right)\right) \leq Q_{i,d}^{gd} \leq P_{i,d}^{gd}\tan\left(\cos^{-1}\left(\overline{pf_i}^{gd}\right)\right) \tag{113}$$

$$P_{i,d}^{dg} \ge 0, \tag{114}$$

para todo $i \in \Omega_{gd}$, e para um nível de demanda $d \in \Omega_d$ qualquer. A inequação (112) representa a capacidade de geração do GD no sistema, a expressão (113) é um limitante da geração de reativos do GD, de modo que o gerador opere com o fator de potência dentro da faixa de capacidade pré-estabelecida. A equação (114) significa que o GD deve sempre injetar potência ativa na barra i.

4.2.2 A formulação matemática do modelo de PNL para otimização de sistemas de distribuição com geração distribuída

Para testar a Proposição 4.1 foi considerado o problema de otimização em sistemas de distribuição radiais, considerando a existência de geradores distribuídos, que pode ser representado por um problema de PNL da forma (115)-(124):

$$\min v = \sum_{ij \in \Omega_l} R_{ij} I_{ij}^{qdr} \tag{115}$$

Sujeito a

$$P_{ki} - \sum_{ij \in \Omega_I} \left(P_{ij} + R_{ij} I_{ij}^{qdr} \right) + P_i^G + \boldsymbol{P}_i^{gd} = P_i^D \qquad \forall i \in \Omega_b \quad (116)$$

$$Q_{ki} - \sum_{ij \in \Omega_I} (Q_{ij} + X_{ij} I_{ij}^{qdr}) + Q_i^G + \mathbf{Q}_i^{gd} = Q_i^D \qquad \forall i \in \Omega_b \quad (117)$$

$$V_i^{qdr} - 2(R_{ij}P_{ij} + X_{ij}Q_{ij}) - Z_{ij}^2 I_{ij}^{qdr} - V_i^{qdr} = 0 \qquad \forall ij \in \Omega_l \quad (118)$$

$$V_j^{qdr} I_{ij}^{qdr} = P_{ij}^2 + Q_{ij}^2 \qquad \forall ij \in \Omega_l \quad (119)$$

$$(\boldsymbol{P}_{i}^{gd})^{2} + (\boldsymbol{Q}_{i}^{gd})^{2} \leq (\boldsymbol{S}_{i}^{gd})^{2}$$
 $\forall i \in \Omega_{gd}$ (120)

$$-P_{i}^{gd}tan\left(cos^{-1}\left(\underline{pf}_{i}\right)\right) \leq Q_{i}^{gd} \leq P_{i}^{gd}tan\left(cos^{-1}\left(\overline{pf}_{i}\right)\right) \qquad \forall i \in \Omega_{gd} \quad (121)$$

$$\boldsymbol{P}_{i}^{gd} \ge 0 \qquad \forall i \in \Omega_{gd} \quad (122)$$

$$V_i^{qdr} \ge 0 \qquad \forall i \in \Omega_b \quad (123)$$

$$I_{ii}^{qdr} \ge 0 \qquad \forall ij \in \Omega_l \quad (124)$$

onde V_i^{qdr} e I_{ij}^{qdr} são variáveis positivas que representam, respectivamente, o quadrado da magnitude de tensão no nó i e o quadrado da magnitude do fluxo de corrente no ramo ij. As variáveis P_{ij} , Q_{ij} representam respectivamente, o fluxo de potência ativa e reativa no ramo ij. Os parâmetros do problema são R_{ij} , X_{ij} , Z_{ij} , P_i^D e Q_i^D , que representam a resistência, a reatância, a impedância do circuito ij, a demanda de potência ativa e reativa no nó i. Os conjuntos Ω_b e Ω_l são os respectivos conjuntos de nós e ramos. As equações (115)-(124) são equações lineares, no entanto, (119) é uma equação não linear devido ao produto de V_j^{qdr} e I_{ij}^{qdr} e o quadrado dos fluxos de potências ativa e reativa. A função objetivo (115) representa as perdas totais de potência ativa do sistema. As equações de balanço de carga convencionais são a (116) e (117) e a equação (118) calcula a queda da magnitude de tensão entre dois nós

consecutivos. A equação (120) representa a capacidade de geração do gerador distribuído e a expressão (121) limita a geração de reativos do gerador de forma que opere com o fator de potência dentro da faixa preestabelecida. As equações (122), (123) e (124) estabelecem as condições de não negatividade.

4.3 Testes e resultados

Nesta seção são apresentados os resultados obtidos para avaliar a metodologia proposta, representada pela Proposição 4.1 e as equações (115)-(124), para a resolução do problema de otimização de sistemas de distribuição radiais com geração distribuída.

Para os sistemas que não satisfazem alguma das condições da Proposição 4.1 será aplicado o processo de linearização apresentado no Capítulo 3. Utilizar-se-á o indicador de precisão *erro*_{ij}, definido também no Capítulo 3. Neste contexto, a restrição cônica será considerada ativa na solução do problema de PCSO, se para esta solução a variável *erro*_{ij} for menor que 1% para todos os circuitos. Por outro lado, se o valor do indicador *erro*_{ij} for maior ou igual a 1% para algum dos circuitos do sistema, então a restrição cônica no problema de PCSO não será considerada ativa.

Os testes foram executados para os sistemas: 03, 33, 42, 70, 136 e 202 nós. Os dados elétricos dos sistemas usados estão no Anexo B.

As implementações foram feitas e testadas em linguagem AMPL (FOURER; GAY; KERNIGHAN, 2002) e foi utilizado o solver CPLEX (ILOG, 2008) para resolver os problemas de PCSO. Para os problemas de PNL foi utilizado o *solver* KNITRO (WALTZ; NOCEDAL, 2003).

4.3.1 Teste do sistema de 33 nós com geração distribuída

Os dados completos do sistema de distribuição de 33 nós estão no Anexo B.2.

Este sistema possui uma única subestação localizada no nó 1 e os valores de magnitude de tensão para o sistema são de 11 kV para a tensão mínima e de 12,66 kV para a tensão máxima. A tensão na subestação é de 12,66 kV. Nele foram considerados dois geradores distribuídos localizados nos nós 8 e 24, conforme apresentado no diagrama da Figura 31.

O limite máximo de potência aparente para todos os geradores é de $S_i^{gd} = 13750$ kVA. O limite inferior do fator de potência capacitivo é de $\underline{pf_i} = 0,92$ para todos os geradores e o limite inferior do fator de potência indutivo é $\overline{pf_i} = 1$ para todos os geradores.

Figura 31 - Diagrama do sistema de 33 nós com geradores distribuídos

Fonte: autor

O gráfico apresentado na Figura 32 mostra o perfil da magnitude de tensão nas barras encontrado pelos modelos de PCSO e de PNL para o sistema de 33 nós.

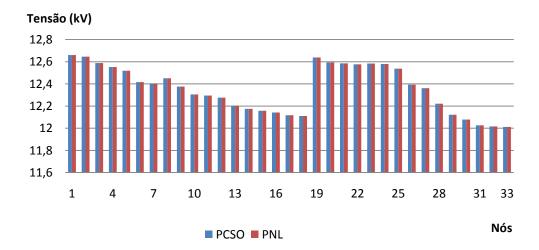


Figura 32 - Perfil da magnitude de tensão nas barras para o sistema de 33 nós

Fonte: autor

O gráfico apresentado na Figura 33 mostra os valores das magnitudes dos fluxos de corrente nos ramos, encontrados pelos modelos de PCSO e de PNL para o sistema de 33 nós.

Corrente (A) Ramos ■ PCSO ■ PNL

Figura 33 - Magnitude de corrente para o sistema de 33 nós

Fonte: autor

Na Tabela 9 são apresentados os principais resultados obtidos para o sistema teste de 33 nós com geradores distribuídos.

Tabela 9 - Resultados para o sistema teste de 33 nós com geradores distribuídos

Sistema de 33 nós	PCSO	PNL
Valor mínimo da variável dual associada à restrição cônica ρ_{ij}	$1x10^{-6}$	
(circuito)	(1-2)	
Perda de potência ativa no sistema (kW)	95,24	95,24
Máxima magnitude de corrente (A)	198,239	198,238
(circuito)	(1-2)	(1-2)
Máximo <i>erro</i> _{ij} encontrado pelo modelo de PCSO (%)	0	
(circuito)		
Erro médio entre a corrente calculada e a encontrada pelo	0	
modelo de PCSO (%)		
Mínima magnitude de tensão (kV)	12,012	12,.012
(nó)	(33)	(33)
Máximo fluxo de potência ativa (kW)	946,312	946,312
(circuito)	(6-26)	(6-26)
Máximo fluxo de potência reativa (kVAr)	2364,696	2364,696
(circuito)	(1-2)	(1-2)

Fonte: Dados da pesquisa do autor

Para o sistema de 33 nós, todas as variáveis duais relacionadas à restrição cônica são positivas e o menor valor das variáveis duais foi $\rho_{1,2}=1 \text{x} 10^{-6}$. Neste caso, de acordo com a Proposição 4.1, a restrição cônica está ativa na solução encontrada para o problema de PCSO e esta é a solução ótima para o problema de PNL correspondente. A potência ativa fornecida pelos geradores instalados nos nós 8 e 24 foi de 1874, 88 kW e 1099,85 kW respectivamente. Os geradores operaram com fator de potência unitário.

Observe que para este sistema o $erro_{ij}$ máximo foi de 0%.

4.3.2 Teste do sistema de 42 nós para um sistema de distribuição com geração distribuída

Os dados completos do sistema de distribuição de 42 nós estão no Anexo B.8. Este sistema possui uma única subestação localizada no nó 1. Os valores de magnitude de tensão para o sistema são de 12,834 kV para a tensão mínima e de 13,8 kV para a tensão máxima. A tensão na subestação é de 13,8 kV. Foram considerados dois geradores distribuídos nos nós 2 e 3 conforme apresentado no diagrama da Figura 34.

O limite máximo de potência aparente para todos os geradores é de $S_i^{gd} = 13750$ kVA. O limite inferior do fator de potência capacitivo é de $\underline{pf_i} = 0.9$ para todos os geradores e o limite inferior do fator de potência indutivo é $\overline{pf_i} = 1$ para todos os geradores.

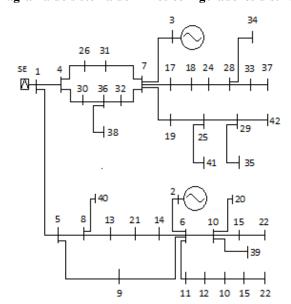


Figura 34 - Diagrama do sistema de 42 nós com geradores distribuídos

Fonte: autor

O gráfico apresentado na Figura 35 mostra o perfil da magnitude de tensão nas barras encontrado pelos modelos de PCSO e de PNL para o sistema de 42 nós.

Tensão (kV) 14 13,8 13,6 13,4 13,2 13 12,8 12,6 1 7 13 19 22 25 28 31 34 37 40 42 10 16 Nós ■ PCSO ■ PNL

Figura 35 - Perfil da magnitude de tensão nas barras para o sistema de 42 nós

Fonte: autor

O gráfico apresentado na Figura 36 mostra os valores das magnitudes dos fluxos de corrente nos ramos encontrados pelos modelos de PCSO e de PNL para o sistema de 42 nós.

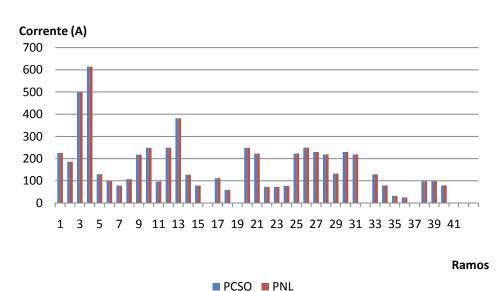


Figura 36 - Magnitude de corrente para o sistema de 42 nós

Fonte: autor

Na Tabela 10 são apresentados os principais resultados obtidos para o sistema teste de 42 nós com geradores distribuídos.

Tabela 10 - Resultados para o sistema teste de 42 nós com geradores distribuídos

Sistema de 42 nós	PCSO	PNL
Valor mínimo da variável dual associada à restrição cônica $ ho_{ij}$	$5x10^{-8}$	
(circuito)	(1-5)	
Perda de potência ativa no sistema(kW)	245,11	245,11
Máxima magnitude de corrente (A)	614,329	614,327
(circuito)	(7-3)	(7-3)
Máximo erro _{ij} encontrado pelo modelo de PCSO (%)	0,16	
(circuito)	(8-40)	
Erro médio entre a corrente calculada e a encontrada pelo	0,01	
modelo de PCSO (%)		
Mínima magnitude de tensão (kV) (nó)	13,095 (27)	13,095 (27)
Máximo fluxo de potência ativa (kW)	4859,243	4859,243
(circuito)	(7-19)	(7-19)
Máximo fluxo de potência reativa (kVAr)	3071,401	3071,402
(circuito)	(1-4)	(1-4)

Fonte: Dados da pesquisa do autor

Para o sistema de 42 nós, todas as variáveis duais relacionadas à restrição cônica são positivas e o menor valor das variáveis duais foi $\rho_{1,5} = 5 \text{x} 10^{-8}$. Neste caso, de acordo com a Proposição 4.1, a restrição cônica está ativa na solução encontrada para o problema de PCSO e esta é a solução ótima para o problema de PNL correspondente.

A potência ativa fornecida pelos geradores instalados nos nós 2 e 3 foi de 6810,15 kW e 8366,42 kW respectivamente. Os geradores operaram com fator de potência unitário.

Observe que para este sistema, o valor de $erro_{ij}$ máximo foi de 0,16% e o erro médio foi de 0,01%.

4.3.3 Teste do sistema de 70 nós para um sistema de distribuição com geração distribuída

Os dados completos do sistema de distribuição de 70 nós estão no Anexo B.3. Este sistema possui uma única subestação localizada no nó 1. Os valores de magnitude de tensão para o sistema são de 11 kV para a tensão mínima e de 12,66 kV para a tensão máxima. A tensão na subestação é de 12,66 kV. Foram considerados cinco geradores distribuídos localizados nos nós 5, 32, 39, 16 e 57 conforme a Figura 37. O limite máximo de potência aparente para todos os geradores é de $S_i^{gd} = 13750$ MVA. O limite inferior do fator de

potência capacitivo é de $\underline{pf_i} = 0.92$ para todos os geradores e o limite inferior do fator de potência indutivo é $\overline{pf_i} = 1$ para todos os geradores.

1 2 3 4 5 6 7 8 9 20 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 67 68 69 70 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 61 64 65 66

Figura 37 - Diagrama do sistema de 70 nós com geradores distribuídos

Fonte: autor

O gráfico apresentado na Figura 38 mostra o perfil da magnitude de tensão nas barras encontrado pelos modelos de PCSO e de PNL para o sistema de 70 nós.

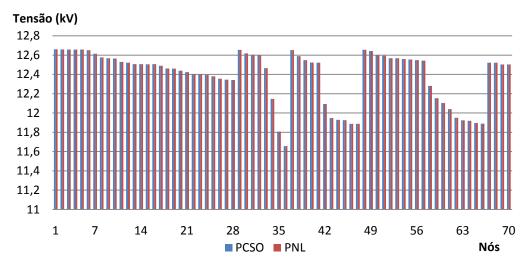


Figura 38 - Perfil da magnitude de tensão nas barras para o sistema de 70 nós

Fonte: autor

O gráfico apresentado na Figura 39 mostra os valores das magnitudes dos fluxos de corrente nos ramos, encontrados pelos modelos de PCSO e de PNL para o sistema de 70 nós.

Corrente (A) ■ PCSO ■ PNL Ramos

Figura 39 - Magnitude de corrente para o sistema de 70 nós

Fonte: autor

Na Tabela 11 são apresentados os principais resultados obtidos para o sistema teste de 70 nós com geradores distribuídos.

Tabela 11 - Resultados para o sistema teste de 70 nós com geradores distribuídos

Sistema de 70 nós	PCSO	PNL
Valor mínimo da variável dual associada à restrição cônica $ ho_{ij}$	$1x10^{-9}$	
(circuito)	(3-4)	
Perda de potência ativa no sistema (kW)	620,06	620,06
Máxima magnitude de corrente (A)	957,580	957,577
(circuito)	(1-2)	(2-3)
Máximo <i>erro</i> _{ij} encontrado pelo modelo de PCSO (%)	0,24	
(circuito)	(67-68)	
Erro médio entre a corrente calculada e a encontrada pelo	0,01	
modelo de PCSO (%)		
Mínima magnitude de tensão (kV)	11,657	11,657
(nó)	(36)	(36)
Máximo fluxo de potência ativa (kW)	4863,784	4863,784
(circuito)	(39-40)	(39-40)
Máximo fluxo de potência reativa (kVAr)	12101,880	12101,839
(circuito)	(1-2)	(1-2)

Fonte: Dados da pesquisa do autor.

Para o sistema de 70 nós, todas as variáveis duais relacionadas à restrição cônica são positivas e o menor valor das variáveis duais foi $\rho_{3,4}=1$ x 10^{-9} . Neste caso, de acordo com a Proposição 4.1, a restrição cônica está ativa na solução encontrada para o problema de PCSO e é a solução ótima para o problema de PNL correspondente.

Observe que para este sistema, o *erro*_{ii} máximo foi de 0,24%.

O gráfico da Figura 40 representa a potência ativa fornecida pelos geradores distribuídos instalados nos nós 5, 32, 39, 16 e 57 respectivamente. Todos os geradores operaram com fator de potência unitário.

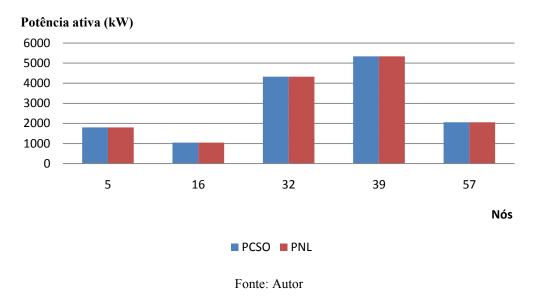


Figura 40 - Potência ativa fornecida pelos geradores distribuídos.

4.3.4 Teste do sistema de 136 nós para um sistema de distribuição com geração distribuída

Os dados completos do sistema de distribuição de 136 nós estão no Anexo B.4. Este sistema possui uma única subestação localizada no nó 1. Os valores de magnitude de tensão para o sistema são de 10 kV para a tensão mínima e de 13,8 kV para a tensão máxima. A tensão na subestação é de 13,8 kV. Foram considerados quatro geradores distribuídos localizados nos nós 8, 63, 35 e 116, conforme mostra a Figura 41.

O limite máximo de potência aparente dos geradores 8 e 35 é de $S_i^{gd}=10500$ kVA e o limite máximo de potência aparente dos geradores 63 e 116 é de $S_i^{gd}=15000$ kVA. O

limite inferior do fator de potência capacitivo é de $\underline{pf_i} = 1$ para todos os geradores e o limite inferior do fator de potência indutivo é $\overline{pf_i} = 0.92$ para todos os geradores.

2 3 4 5 6 7 9 11 12 14 16 17

18 19 20 21 23 25 26 27 28 29 32 36 37 38

48 48 49 52 53 57 58 59 60 61 62

55 0 51 54 55 56

88 9 90 91 92 93 94 95 96 97

88 99 90 91 92 93 94 95 96 97

88 99 91 120 121 111 112 114 115 116

Figura 41 - Diagrama do sistema de 136 nós com geradores distribuídos

Fonte: Autor

O gráfico apresentado na Figura 42 mostra o perfil da magnitude de tensão nas barras encontrado pelos modelos de PCSO e de PNL para o sistema de 136 nós.

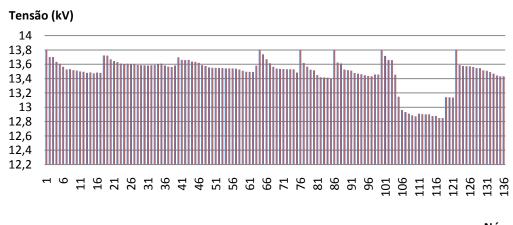


Figura 42 - Perfil da magnitude de tensão nas barras para o sistema de 136 nós

Nós

■ PCSO ■ PNL

Fonte: autor

O gráfico apresentado na Figura 43 mostra os valores das magnitudes dos fluxos de corrente nos ramos encontrados pelos modelos de PCSO e de PNL para o sistema de 136 nós.

Corrente (A) 135 ■ PCSO ■ PNL Ramos

Figura 43 - Magnitude dos fluxos de corrente para o sistema de 136 nós

Fonte: Autor

Na Tabela 12 são apresentados os principais resultados obtidos para o sistema.

Tabela 12 - Resultados para o sistema teste de 136 nós com geradores distribuídos

Sistema de 136 nós	PCSO	PNL
Valor mínimo da variável dual associada à restrição cônica ρ_{ij}	$1x10^{-8}$	
(circuito)	(18-19)	
Perda de potência ativa no sistema (kW)	274,63	274,63
Máxima magnitude de corrente (A)	247,427	247,426
(circuito)	(1-100)	(1-100)
Máximo erro _{ij} encontrado pelo modelo de PCSO (%)	0,40	
(circuito)	(61-62)	
Erro médio entre a corrente calculada e a encontrada pelo	0,01	
modelo de PCSO (%)		
Mínima magnitude de tensão (kV)	12,849	12,849
(nó)	(118)	(117)
Máximo fluxo de potência ativa (kW)	3065,931	3065,931
(circuito)	(1-100)	(1-100)
Máximo fluxo de potência reativa (kVAr)	1500,404	1500,402
(circuito)	(1-100)	(1-100)

Fonte: Dados da pesquisa do autor

Para o sistema de 136 nós, todas as variáveis duais relacionadas à restrição cônica são positivas e o menor valor das variáveis duais foi $\rho_{18,19}=1$ x 10^{-8} . Neste caso, de acordo com a Proposição 4.1, a restrição cônica está ativa na solução encontrada para o problema de PCSO e é a solução ótima para o problema de PNL correspondente. Observe que para este sistema, o $erro_{ij}$ máximo foi de 0,4% e o erro médio foi de 0,01%.

O gráfico apresentado na Figura 44 apresenta a potência ativa dos geradores instalados nos nós 8, 35, 63 e 116, encontrada através dos modelos de PCSO e de PNL para o sistema de 136 nós.

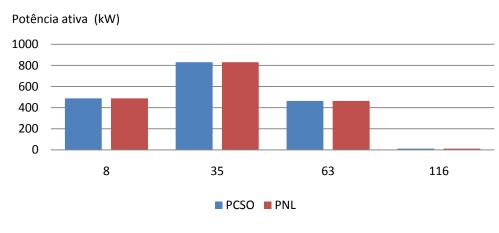


Figura 44 - Potência ativa dos geradores para o sistema de 136 nós

Fonte: Autor

O gráfico apresentado na Figura 45 apresenta a potência reativa dos geradores instalados nos nós 8, 35, 63 e 116, encontrada através dos modelos de PCSO e de PNL para o sistema de 136 nós.

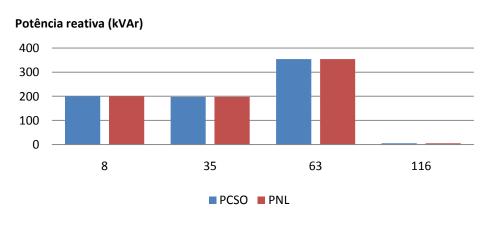


Figura 45 - Potência reativa dos geradores para o sistema de 136 nós

Fonte: Autor

4.3.5 Teste do sistema de 202 nós para um sistema de distribuição com geração distribuída

Os dados completos do sistema de distribuição de 202 nós estão no anexo B.5. Este sistema possui uma única subestação localizada no nó 1. Os valores de magnitude de tensão para o sistema são de 11 kV para a tensão mínima e de 13,8 kV para a tensão máxima. A tensão na subestação é de 13,8 kV. Foram considerados seis geradores distribuídos instalados nos nós 11, 28, 153, 166, 175 e 190.

O limite máximo de potência aparente do gerador distribuído é $S_i^{gd} = 13750$ kVA. O limite inferior do fator de potência capacitivo é de $\underline{pf_i} = 0.9$ para os geradores 28, 175 e 190 e de $\underline{pf_i} = 0.92$ para os geradores 11, 153 e 166. O limite inferior do fator de potência indutivo é $\overline{pf_i} = 1$ para todos os geradores. O diagrama unifilar para este sistema é apresentado na Figura 46.

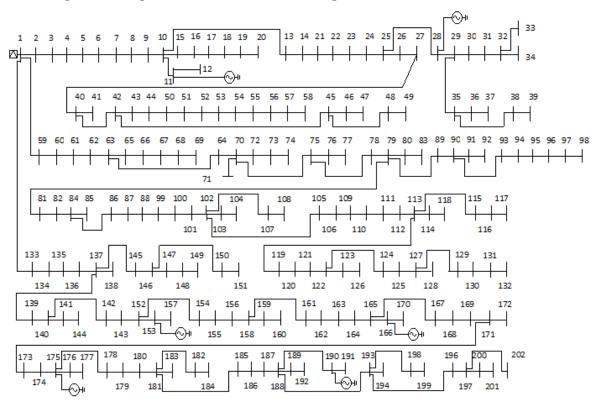


Figura 46 - Diagrama do sistema de 202 nós com geradores distribuídos

Fonte: autor

O gráfico apresentado na Figura 47 mostra o perfil da magnitude de tensão nas barras encontrado pelos modelos de PCSO e de PNL para o sistema de 202 nós.

Tensão (kV) 13,9 13,8 13,7 13,6 13,5 13,4 13,3 13,2 13,1 13 12,9 20 9 40 80 Nós ■ PCSO ■ PNL

Figura 47 - Perfil da magnitude de tensão nas barras para o sistema de 202 nós

Fonte: autor

O gráfico apresentado na Figura 48 mostra os valores das magnitudes dos fluxos de corrente nos ramos, encontrados pelos modelos de PCSO e de PNL para o sistema de 202 nós.

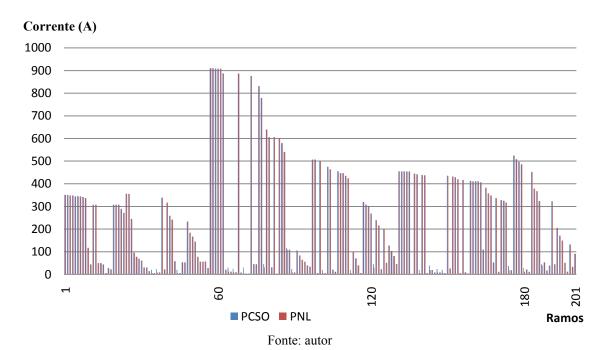


Figura 48 - Magnitude dos fluxos de corrente para o sistema de 202 nós

Para este sistema de 202 nós houve uma variação pontual para alguns valores de corrente de magnitude pequena. A Tabela 13 representa os principais resultados obtidos para este sistema com geradores distribuídos.

Tabela 13 - Resultados para o sistema teste de 202 nós com geradores distribuídos

Sistema de 202 nós	PCSO	PNL
Valor mínimo da variável dual associada à restrição cônica $ ho_{ij}$	0	
(circuito)	(146-150)	
Perda de potência ativa no sistema (kW)	324,01	324,00
Máxima magnitude de corrente (A)	910,373	910,025
(circuito)	(1-59)	(59-60)
Máximo erro _{ij} encontrado pelo modelo de PCSO (%)	6,20	
(circuito)	(70-72)	
Erro médio entre a corrente calculada e a encontrada pelo	0,17	
modelo de PCSO (%)		
Mínima magnitude de tensão (kV)	13,227	13,227
(nó)	(132)	(132)
Máximo fluxo de potência ativa (kW)	10503,254	10503,254
(circuito)	(1-59)	(1-59)
Máximo fluxo de potência reativa (kVAr)	6884,281	6884,280
(circuito)	(1-59)	(1-59)

Fonte: Dados da pesquisa do autor.

Para o sistema de 202 nós, uma das hipóteses da Proposição 4.1 não é satisfeita, pois pelo menos uma variável dual relacionada à restrição cônica é nula, a saber, $\rho_{146,150}=0$. Neste caso, a restrição cônica não está ativa na solução do problema de PCSO, portanto, não satisfaz o problema de PNL

Observe que para este sistema o valor de $erro_{ij}$ máximo foi de 6,20% e o erro médio, quando a soma dos valores de $erro_{ij}$ é dividido entre todas as linhas, foi de 0,17%.

O gráfico apresentado na Figura 49 apresenta as potências ativas dos geradores instalados nos nós 11, 28, 153, 166, 175 e 190, encontrada através dos modelos de PCSO e de PNL para o sistema de 202 nós. Os geradores operaram com fator de potência unitário.

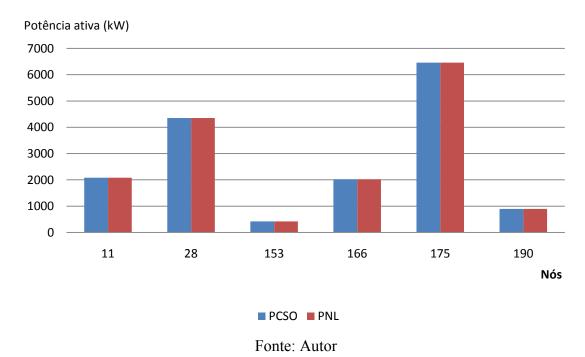


Figura 49 - Potência ativa dos geradores para o sistema de 202 nós

4.3.6 Teste do sistema de 202 nós com utilização da linearização

Para o sistema de 202 nós, será utilizado o método de linearização apresentado no Capítulo 3, que consiste em linearizar a restrição cônica correspondente ao ramo que apresenta o maior erro porcentual, para diminuir o erro de 6,20%. Foi considerado o número de discretizações S = 5 e T = 100.

Na Tabela 14 são apresentados os principais resultados obtidos para o sistema teste de 202 nós com geradores distribuídos e linearização.

Tabela 14 - Resultados para o sistema teste de 202 nós com linearização

Sistema de	Perda	Mag.	Erro	Erro	Mag.	Fluxo de	Fluxo de
202 nós	Ativa	Corrente	Máximo	Médio	Tensão	Potência	Potência
	(kW)	Máx(A)			Mín.(kV)	Ativa	Reativa
		()			,	Máxima (W)	Máx(VAr)
PCSO	324,01	910,373032	6,20 %	0,17 %	13,2266	10503,25448	6884,28095
inicial	,	(1-59)	(70-72)	,	(132)	(1-59)	(1-59)
Linha	(Re			earização		ie apresentou o r	<u> </u>
70-72	324,01	910,298326	2,10	0,14	13,226602	10503,25447	6884,280882
		(1-59)	(146-150)		(132)	(1-59)	(1-59)
146-150	324,01	910,334304	2,10	0,13	13,226602	10503,25456	6884,281014
		(1-59)	(140-141)		(132)	(1-59)	(1-59)
140-141	324,01	910,344718	2,09	0,12	13,226602	10503,25458	6884,281048
		(1-59)	(35-36)		(132)	(1-59)	(1-59)
35-36	324,01	910,336817	2,08	0,11	13,226602	10503,25456	6884,281019
		(1-59)	(45-46)		(132)	(1-59)	(1-59)
45-46	324,01	910,300468	2,03	0,10	13,226602	10503,25448	6884,280894
		(1-59)	(102-103)		(132)	(1-59)	(1-59)
102-103	324,01	910,303313	2,02	0,09	13,226602	10503,25448	6884,280902
		(1-59)	(113-114)		(132)	(1-59)	(1-59)
113-114	324,01	910,314759	1,55	0,08	13,226602	10503,25450	6884,280937
		(1-59)	(147-148)		(132)	(1-59)	(1-59)
147-148	324,01	910,488991	1,58	0,09	13,226602	10503,25494	6884,281481
		(1-59)	(67-68)		(132)	(1-59)	(1-59)
67-68	324,01	910,491091	1,58	0,08	13,226602	10503,25493	6884,281479
		(1-59)	(137-138)		(132)	(1-59)	(1-59)
137-138	324,01	910,493464	1,56	0,07	13,226602	10503,25494	6884,281487
		(1-59)	(35-38)		(132)	(1-59)	(1-59)
35-38	324,01	910,506376	1,53	0,06	13,226602	10503,25500	6884,281578
		(1-59)	(90-91)		(132)	(1-59)	(1-59)
90-91	324,01	910,511045	1,40	0,06	13,226602	10503,25501	6884,281593
		(1-59)	(181-182)		(132)	(1-59)	(1-59)
181-182	324,01	910,650872	1,33	0,05	13,226602	10503,25533	6884,282076
		(1-59)	(65-66)		(132)	(1-59)	(1-59)
65-66	324,01	910,720194	1,15	0,05	13,226602	10503,25568	6884,282581
		(1-59)	(175-176)		(132)	(1-59)	(1-59)
175-176	324,01	910,688314	1,12	0,04	13,226602	10503,25559	6884,282444
		(1-59)	(137-145)		(132)	(1-59)	(1-59)
137-145	324,01	910,532940	0,93	0,03	13,226602	10503,25504	6884,281649
		(1-59)	(79-80)		(132)	(1-59)	(1-59)
PNL	324.0	910.024719			13.226602	10503.25362	6884.279764
		(1-59)			(132)	(1-59)	(1-59)

Fonte: Dados da pesquisa do autor

Para o sistema de 202 nós, a estratégia de linearização da equação do cálculo da corrente, correspondente ao circuito que apresenta o maior erro porcentual proporciona após algumas iterações encontrar uma solução com valor máximo de $erro_{ij}$ porcentual menor que

1% como mostra a Tabela 14. Sendo assim, a restrição cônica está ativa na solução do problema de PCSO encontrada no final do processo de linearização, ou seja, esta solução satisfaz o problema de PNL.

O gráfico apresentado na Figura 50 apresenta as potências ativas dos geradores instalados nos nós 11, 28, 153, 166, 175 e 190, encontradas através dos modelos de PCSO e de PNL para o sistema de 202 nós, após a última linearização.

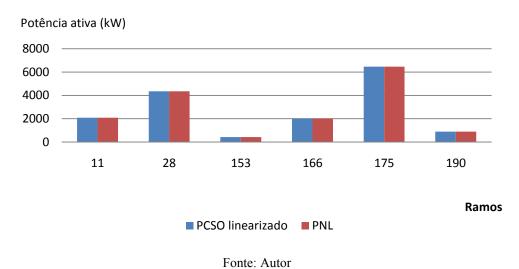
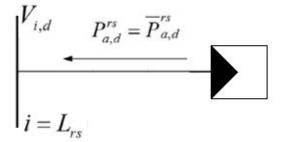


Figura 50 - Potência ativa dos geradores para o sistema de 202 nós linearizado

4.4 Formulação do modelo para o planejamento da operação de sistemas de distribuição de energia elétrica radiais com fontes renováveis e armazenamento de energia

Resolver o problema de planejamento da operação de sistemas de distribuição (POSD) de energia elétrica, significa otimizar o estado de operação do sistema em um período de tempo estabelecido, minimizando os custos ou as perdas de energia. Desse modo, entre as variáveis que contribuem na otimização e melhoria do funcionamento do sistema, é necessário determinar as injeções de potência dos geradores distribuídos (GDs), o número de bancos de capacitores (BCs) que devem operar no sistema, as posições dos taps nos reguladores de tensão (RT) e também o estado de operação dos bancos de armazenamento de energia, considerando os limites estabelecidos.


A seguir, são apresentadas as equações que definem a modelagem de cada um dos equipamentos que podem ser instalados em um sistema de distribuição.

4.4.1 Fontes de energia renovável

É de interesse neste trabalho de pesquisa explorar esta opção adicional para melhorar a operação de sistemas de distribuição de energia elétrica através da adição de dispositivos de armazenamento de energia no sistema.

Dentre as fontes de energias renováveis, serão tratados os geradores de fontes renováveis que podem ser eólicos ou painéis fotovoltaicos, denominados não despacháveis, e que geram apenas potência ativa. Assim serão representados no sistema como fontes de potência ativa fixa, podendo ocorrer variação de acordo com o nível de demanda (*d*). No caso desse tipo de gerador, é importante observar também que existe um limite máximo de capacidade de geração, que está vinculado às condições climáticas, como por exemplo, a incidência de raios solares nos painéis e a velocidade do vento nos geradores eólicos (ATWA et al., 2010). Um gerador de fonte de energia renovável no sistema pode ser representado conforme a Figura 51

Figura 51 - Diagrama simplificado de uma fonte de energia renovável

Fonte: Autor

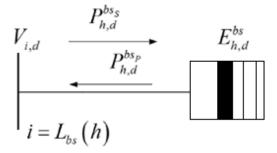
A equação que modela as fontes renováveis de energia é dada por (125).

$$P_{a,d}^{rs} = \bar{P}_{a,d}^{rs} , \forall \ a \in \Omega_{rs} , \forall \ d \in \Omega_d$$
 (125)

A equação (125) representa a necessidade de injeção de toda a potência ativa produzida pelos geradores de energia a partir de fontes renováveis em um nível de demanda *d*.

4.4.2 Dispositivos de armazenamento de energia

Geradores de fontes renováveis geram energia a partir de fontes de ciclos naturais, onde o tipo de fonte pode ser classificado como hídrica, eólica, térmica pelo vapor ou calor, como energia solar, energia das marés ou energia geotérmica que é decorrente do calor do centro da terra e vulcões. Existe também o biodiesel, que é produzido a partir de sementes e


gordura, a biomassa, pela fermentação e gaseificação de lixo ou material orgânico e também o etanol, como fontes de energia renovável. Em (ROSA, 2007) são apresentadas as várias vantagens, desde a implantação até as reduções de caráter ambiental, no uso de fontes renováveis. A energia produzida por essas fontes renováveis, principalmente as intermitentes, podem ser armazenadas através de dispositivos de armazenamento.

Ao fazer uso de algum tipo de energia renovável no sistema de distribuição, é vantajoso explorar a possibilidade de armazenamento de parte desta energia através de um dispositivo de armazenamento. Normalmente, toda a energia produzida por uma fonte renovável conectada a um sistema de distribuição é injetada no sistema, todavia, um dispositivo de armazenamento pode ser utilizado para armazenar a energia que estiver em excesso no sistema. Essa energia extra pode ser proveniente de uma geração pelas fontes renováveis, maior que a demanda solicitada no sistema em dado momento, ou também, nos casos onde é mais vantajosa a compra de energia direto da subestação.

A produção armazenada poderá ser utilizada convenientemente, de maneira a proporcionar um melhor custo-benefício para a empresa de distribuição, em geral, para suprir as necessidades em horários de maior demanda ou para os casos onde não ocorre a geração através das fontes renováveis interligadas a uma rede de distribuição.

A Figura 52 representa um dispositivo de armazenamento de energia.

Figura 52 - Diagrama simplificado de um dispositivo de armazenamento de energia

Para se modelar os dispositivos de armazenamento, é preciso considerar alguns limites operacionais definidos nas equações (126)-(135) apresentadas a seguir.

Fonte: Autor

$$e_{h,d}\underline{P}_{h}^{bs_{P}} \leq P_{h,d}^{bs_{P}} \leq \overline{P}_{h}^{bs_{P}} e_{h,d}, \qquad \forall h \in \Omega_{bs}, \forall d \in \Omega_{d}$$
 (126)

$$(1 - e_{h,d}) P_h^{bs_S} \le P_{h,d}^{bs_S} \le \bar{P}_h^{bs_S} (1 - e_{h,d}), \, \forall \, h \in \Omega_{hs}, \, \forall \, d \in \Omega_d$$
 (127)

$$(1 - e_{h,d}) \underline{P}_{h}^{bs_{S}} \leq P_{h,d}^{bs_{S}} \leq \overline{P}_{h}^{bs_{S}} (1 - e_{h,d}), \forall h \in \Omega_{bs}, \forall d \in \Omega_{d}$$

$$E_{h,1}^{bs} = E_{0_{h}}^{bs} + \eta_{h}^{bs} \Delta t P_{h,1}^{bs_{S}} - \frac{1}{\eta_{h}^{bs_{P}}} \Delta t P_{h,1}^{bs_{P}} - \beta_{h}^{bs} \Delta t E_{h,1}^{bs}, \quad \forall h \in \Omega_{bs}$$

$$(128)$$

$$E_{h,d}^{bs} = E_{h,d-1}^{bs} + \eta_h^{bs} \Delta t P_{h,d}^{bs_s} - \frac{1}{\eta_h^{bs_p}} \Delta t P_{h,d}^{bs_p} - \beta_h^{bs} \Delta t E_{h,d}^{bs},$$

$$\forall h \in \Omega_{bs}$$
, $\forall d \in \Omega_d$; $d > 1$ (129)

$$\underline{E}_{h}^{bs} \le E_{h.d}^{bs} \le \overline{E}_{h}^{bs} \qquad \forall h \in \Omega_{bs} \text{ , } \forall d \in \Omega_{d}$$
 (130)

$$e_{h,d} - e_{h,d-1} = e_{h,d}^+ - e_{h,d}^- \qquad \forall h \in \Omega_{bs}, \forall d \in \Omega_d$$
 (131)

$$0 \le e_{hd}^+ \le 1 \qquad \forall h \in \Omega_{hs}, \forall d \in \Omega_d$$
 (132)

$$0 \le e_{hd}^- \le 1 \qquad \forall h \in \Omega_{hs}, \forall d \in \Omega_d$$
 (133)

$$\sum_{d \in \Omega_d} e_{h,d}^+ + \sum_{d \in \Omega_d} e_{h,d}^- \le \bar{\Delta}_h^{bs}, \qquad \forall h \in \Omega_{bs}$$
 (134)

$$e_{h,d} \in \{0,1\} \quad \forall h \in \Omega_{hs}, \qquad \forall d \in \Omega_d$$
 (135)

onde a função $i = L_{bs}(h)$ associa a barra i ao DAE h. Os parâmetros definidos no modelo relacionados ao Dispositivo de Armazenamento de Energia (DAE) h são: $\underline{P}_h^{bs_p}$ o limite mínimo de injeção de potência do DAE h; $\overline{P}_h^{bs_p}$ o limite máximo de injeção de potência DAE h; $\underline{P}_h^{bs_s}$ o limite mínimo de extração de potência pelo DAE h; $\overline{P}_h^{bs_s}$ o limite máximo de extração de potência pelo DAE h; E_h^{bs} a capacidade mínima de armazenamento de energia no DAE h; E_h^{bs} a capacidade máxima de armazenamento de energia no DAE h; $E_h^{bs_p}$ a eficiência na injeção de potência do DAE h; $E_h^{bs_s}$ a eficiência na extração da potência pelo DAE h; $E_h^{bs_s}$ a taxa de auto-descarga do DAE h; $E_h^{bs_s}$ a eficiência na extração da potência pelo DAE $E_h^{bs_s}$ a taxa de auto-descarga do DAE $E_h^{bs_s}$ a intervalo de tempo de cada nível de demanda utilizado na análise; $E_h^{bs_s}$ o número máximo de modificações de estado de operação de extração ou injeção de potência, dos DAEs $E_h^{bs_s}$ no período de análise.

As variáveis contínuas são: $P_{h,d}^{bsp}$ a injeção de potência do DAE h, no nível de demanda d; $P_{h,d}^{bs}$ a extração de potência pelo DAE h, no nível de demanda d; $E_{h,d}^{bs}$ a energia armazenada no DAE h, no nível de demanda d; $e_{h,d}^{+}$ a variável auxiliar positiva que indica mudança no estado de operação entre níveis de demanda d consecutivos, para o DAE h; $e_{h,d}^{-}$ a variável auxiliar negativa que indica mudança no estado de operação entre níveis de demanda d consecutivos, para o DAE h. E a variável binária: $e_{h,d}$ que representa o estado de operação do DAE h, no nível de demanda d. No caso, quando $e_{h,d} = 0$, significa que o DAE está extraindo potência da rede; quando $e_{h,d} = 1$, o DAE está injetando potência na rede.

A desigualdade (126) define os limites de operação da injeção de potência dos dispositivos de armazenamento de energia. A desigualdade (127) define os limites de extração de potência pelos dispositivos de armazenamento de energia. A expressão (129) estabelece

uma dependência da energia armazenada (estado da carga) no DAE h, no nível de demanda d, em relação ao estado anterior e às potências extraídas do sistema e injetadas no sistema no intervalo de tempo Δt , multiplicadas pelo intervalo de tempo e pelas eficiências de extração e injeção e a taxa e de auto-descarga. De forma análoga, a expressão (128) é definida para o primeiro nível de demanda d=1, considerando o nível inicial de energia armazenada no DAE h. a equação (130) é um limitante da energia armazenada no dispositivo de armazenamento de energia h, no nível de demanda d.

As restrições de (131) a (135), juntamente com as inequações (126) e (127), trabalham como um limitante do número de mudanças de estados de operação dos dispositivos de armazenamento de energia no período de análise.

4.4.3 Um caso particular para o planejamento da operação de sistemas de distribuição de energia elétrica radiais com fontes renováveis e armazenamento de energia, modelado como um problema de PNL

A fim de testar a efetividade da Proposição 4.1 para encontrar a solução ótima de um problema de PNL por meio da resolução de um problema de PCSO, é apresentada uma formulação matemática para o problema de operação ótima de sistemas de distribuição de energia elétrica radiais com fontes renováveis e armazenamento de energia modelados como um problema de PNL. O modelo original para o problema, com a inclusão de banco de capacitores e reguladores de tensão, é um problema de PNLIM e será tratado no próximo capítulo.

Um caso particular do problema de planejamento da operação de sistemas de distribuição de energia elétrica radiais com fontes renováveis e armazenamento de energia pode ser modelado como um problema de PNL, como mostra (136)-(152).

$$\min v = \sum_{d \in \Omega_d} (c^{es} \Delta t) \sum_{i \in \Omega_{b_{sub}}} P_{i,d}^S + \sum_{d \in \Omega_d} (c^{gd} \Delta t) \sum_{i \in \Omega_{gd}} P_{i,d}^{gd}$$
s.a (136)

$$\sum_{(k,i)\in\Omega_{l}} P_{ki,d} - \sum_{(i,j)\in\Omega_{l}} (P_{ij,d} + R_{ij} I_{ij}^{qdr}) + P_{i,d}^{S} + \sum_{m\in\Omega_{gd}/i=L_{gd}(m)} P_{m,d}^{gd} + \sum_{a\in\Omega_{rs}/i=L_{rs}(a)} P_{a,d}^{rs} + \sum_{h\in\Omega_{bs}/i=L_{bs}(h)} (P_{h,d}^{bs_{p}} - P_{h,d}^{bs_{S}}) = P_{i,d}^{D},$$

$$\forall i \in \Omega_{b}, d \in \Omega_{d}$$

$$\sum_{(k,i)\in\Omega_{l}} Q_{ki,d} - \sum_{(i,j)\in\Omega_{l}} (Q_{ij,d} + X_{ij} I_{ij}^{qdr}) + Q_{i,d}^{S} + \sum_{m\in\Omega_{gd}/i=L_{gd}(m)} Q_{m,d}^{gd} +$$
(137)

$$\sum_{n \in \Omega_{bc} / i = L_{bc}(n)} Q_{n,d}^{bc} = Q_{i,d}^{D}, \quad \forall i \in \Omega_{b}, d \in \Omega_{d}$$

$$\tag{138}$$

$$V_{i,d}^{qdr} - V_{j,d}^{qdr} - 2(R_{ij}P_{ij,d} + X_{ij}Q_{ij,d}) - Z_{ij}^2 I_{ij,d}^2 = 0 \quad \forall ij \in \Omega_l, d \in \Omega_d$$
 (139)

$$V_{i,d}^{qdr} I_{ij,d}^{qdr} = P_{ij,d}^2 + Q_{ij,d}^2 , \qquad \forall ij \in \Omega_l, d \in \Omega_d$$
 (140)

$$(P_{i,d}^{dg})^2 + (Q_{i,d}^{dg})^2 \le (S_{i,d}^{dg})^2, \qquad \forall i \in \Omega_b, d \in \Omega_d$$
 (141)

$$P_{i,d}^{dg} \ge 0, \qquad \forall i \in \Omega_b, d \in \Omega_d \qquad (142)$$

$$-P_{i,d}^{dg}\tan\left(\cos^{-1}\left(\underline{pf_i}^{gd}\right)\right) \leq Q_{i,d}^{dg} \leq P_{i,d}^{dg}\tan\left(\cos^{-1}\left(\overline{pf_i}^{gd}\right)\right), \forall \ i \in \Omega_b, d \in \Omega_d \ (143)$$

$$P_{a,d}^{rs} = \bar{P}_{a,d}^{rs} \qquad \forall \ a \in \Omega_{rs} , \forall \ d \in \Omega_{d}$$
 (144)

$$\underline{P_h^{bs_p}} \le P_{h,d}^{bs_p} \le \bar{P}_h^{bs_p} \qquad \forall h \in \Omega_{bs} \text{ , } \forall d \in \Omega_d$$
 (145)

$$\underline{P}_{h}^{bs_{S}} \leq P_{h,d}^{bs_{S}} \leq \overline{P}_{h}^{bs_{S}} \qquad \forall h \in \Omega_{bs} \text{ , } \forall d \in \Omega_{d}$$
 (146)

$$E_{h,1}^{bs} = E_{0_h}^{bs} + \eta_h^{bs} \Delta t P_{h,1}^{bs} - \frac{1}{\eta_h^{bs}} \Delta t P_{h,1}^{bs} - \beta_h^{bs} \Delta t E_{h,1}^{bs} \qquad \forall h \in \Omega_{bs}$$
 (147)

$$E_{h,d}^{bs} = E_{h,d-1}^{bs} + \eta_h^{bs} \Delta t P_{h,d}^{bs} - \frac{1}{\eta_h^{bs}} \Delta t P_{h,d}^{bs} - \beta_h^{bs} \Delta t E_{h,d}^{bs}$$

$$\forall h \in \Omega_{hs}, \forall d \in \Omega_d; d > 1$$
 (148)

$$\underline{E}_{h}^{bs} \le E_{h,d}^{bs} \le \overline{E}_{h}^{bs} \qquad \forall h \in \Omega_{bs} \text{ , } \forall d \in \Omega_{d}$$
 (149)

$$(P_{i,d}^S)^2 + (Q_{i,d}^S)^2 \le (\bar{S}_i^S)^2, \ \forall \ i \in \Omega_{b_{sub}},$$
 $\forall \ d \in \Omega_d$ (150)

$$\underline{V} \le V_{i,d} \le \overline{V} \qquad \forall i \in \Omega_b , \qquad \forall d \in \Omega_d$$
 (151)

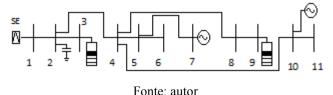
$$0 \le I_{ij,d} \le \bar{I}_{ij} \qquad \forall ij \in \Omega_l, \qquad \forall d \in \Omega_d$$
 (152)

Note que as restrições (145) e (146) por si só não garantem que dispositivos de armazenamento só injetem ou só extraiam potência, além disso, não é possível controlar o número de mudanças no estado da operação. A inclusão de uma variável binária para cada um dos DAE *h* resolve este problema e será tratada no Capítulo 5.

4.5 Testes e resultados

Nesta seção são apresentados os resultados obtidos para avaliar a metodologia proposta, a qual de acordo com a Proposição 4.1 e nas condições da mesma indica que é possível através da resolução de um problema de PCSO encontrar uma solução ótima do problema de PNL para o planejamento da operação de sistemas de distribuição de energia elétrica radiais com fontes renováveis e armazenamento de energia. Os testes foram

executados para o sistema de 11 nós, considerando 144 níveis de demanda em um período de 72 horas.


As implementações foram feitas e testadas em linguagem AMPL (FOURER; GAY; KERNIGHAN, 2002) e foi utilizado o *solver* CPLEX (ILOG, 2008) para resolver os problemas de PCSO. Para os problemas de PNL foi utilizado o *solver* KNITRO (WALTZ; NOCEDAL, 2003).

4.5.1 Teste do sistema de 11 nós

Os dados completos do sistema de distribuição de 11 nós podem ser encontrados em (LEVRON, 2013). Algumas informações estão no Anexo C.1.

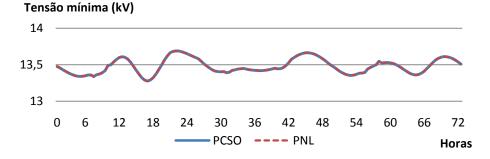
Este sistema possui uma única subestação localizada no nó 1. Os valores de magnitude de tensão para o sistema são de 12,834 kV para a tensão mínima e de 13,.8 kV para a tensão máxima. A tensão na subestação é de 13,8 kV. A Figura 53 representa o diagrama unifilar do sistema de 11 nós com dois geradores de fontes renováveis localizados nos nós 7 e 10, bem como dois dispositivos de armazenamento de energia nos nós 3 e 9 com $\eta_h^{bs_S} = \eta_h^{bs_P} = 0,95$, $\beta_h^{bs} = 0,021$ e uma capacidade máxima de armazenamento de energia, $\bar{E}_h^{bs} = 400$ kWh e $\bar{E}_h^{bs} = 0$, para os dois DAE. O limite do transformador da subestação é de $\bar{S}_i^S = 5$ MVA. O problema da operação ótima do sistema é modelado matematicamente por um problema de PNL. O caso geral com a inclusão dos bancos de capacitores e reguladores de tensão, modelado como um problema de PNLIM será tratado no Capítulo 5. Adotou-se um intervalo de discretização $\Delta t = 0,5h$, e um período de análise de 72h. Nesse sistema há um BC fixo na barra 2 com potência reativa de 300kVAr. Este BC pode ser adicionado mantendo o modelo como PNL.

Figura 53 - Diagrama unifilar do sistema de 11 nós

Os principais resultados obtidos para este sistema de 11 nós, estão apresentados na Tabela 15.

Tabela 15 - Resultados para o sistema teste de 11 nós

Sistema de 11 nós	PCSO	PNL
Valor mínimo da variável dual associada à restrição cônica $ ho_{ij}$	$7x10^{-2}$	
(circuito, demanda)	(2-4; 51)	
Máximo erro(ij) encontrado pelo modelo de PCSO através da		
variával (9/) (airquita)	0	
variável (%) (circuito)	(2-3)	
Custo total de compra de energia na SE (US\$)	4762,65	4762,65
Perdas de energia nas linhas em todos os níveis de demanda (kWh)	2047,68	2047,68
Perdas de energia nos dispositivos de armazenamento em todos os níveis de demanda (kWh)	385,68	385,68
Custo da energia fornecida pelo dispositivo de armazenamento	39,34	39,34
de energia (US\$)		


Fonte: Dados da pesquisa do autor

A Tabela 15 apresenta as principais informações com relação aos custos de energia para o sistema de 11 barras. O valor total de US\$ 4762,65 representa o custo total da soma das potências ativas demandadas com a soma das perdas de energia em todos os níveis de demanda menos os custos da energia fornecida pelos DAE e pelas fontes renováveis; que é exatamente o custo da energia fornecida pela subestação no período.

Para este sistema de 11 barras, todas as variáveis duais relacionadas à restrição cônica são positivas, sendo a menor delas $\rho_{2,4} = 7 \text{x} 10^{-2}$ encontrada no nível de demanda d=51. Neste caso, de acordo com a Proposição 4.1, a restrição cônica está ativa na solução encontrada para o problema de PCSO e é a solução ótima para o problema de PNL correspondente. Observe que para este sistema, o $erro_{ij}$ máximo foi nulo.

O gráfico da Figura 54 representa o valor de tensão mínima no sistema, em cada nível de demanda para o problema de PCSO e de PNL.

Figura 54 - Tensão mínima em todos os níveis de demanda

Fonte: Autor

O gráfico apresentado na Figuras 55 representa as perdas de potência ativa encontradas pelo modelo de PCSO.

Perda de potencia ativa (kW) 60.000 40.000 20.000 0 0 6 12 18 24 30 36 42 48 54 60 Horas Fonte: Autor

Figura 55 - Perdas de potência ativa em todos os níveis de demanda (PCSO)

O gráfico apresentado na Figura 56 representa a variação das perdas de potência reativa, em cada nível de demanda.

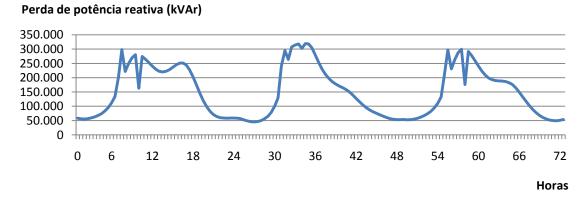


Figura 56 - Perdas de potência reativa em todos os níveis de demanda (PCSO)

Fonte: Autor

O gráfico da Figura 57 apresenta a quantidade de potência ativa injetada pelos geradores de fontes renováveis em cada nível de demanda.

Potência ativa (kW) 38 42 **Horas** Gerador 1 ——Gerador 2

Figura 57 - Potência injetada pelos geradores de fontes renováveis em cada nível de demanda

Fonte: Autor

O gráfico da Figura 58 destaca a quantidade de potência ativa injetada pelos DAE em cada nível de demanda. Os picos de injeção de potência ocorreram nos níveis de demanda correspondentes às 10, 34 e 58 horas.

Potência ativa (kW) **Horas** DAE 1 --- DAE 2

Figura 58 - Potência injetada pelos DAE

Fonte: Autor

4.6 Conclusões do capítulo

Neste capítulo foi apresentada uma aplicação da Proposição 4.1 para os sistemas testes de distribuição com geradores distribuídos e para o sistema de distribuição com geradores de fontes de energia renováveis, com dispositivos de armazenamento e um BC fixo. Ambos os problemas possuem uma modelagem matemática como um problema de PNL. Foi constatado que nas condições da Proposição 4.1, apesar dos problemas de PNL e de PCSO não serem equivalentes, a restrição cônica está ativa na solução do problema de PCSO, portanto, é a solução ótima para o problema de PNL. Para os casos onde alguma das hipóteses da Proposição 4.1 não é satisfeita, através do processo de linearização da equação do cálculo da corrente da linha que apresenta o maior erro porcentual, chega-se a uma solução ativa na restrição cônica.

CAPÍTULO 5

5 EQUIVALÊNCIA DE SOLUÇÃO ENTRE OS PROBLEMAS DE PCSOIM E DE PNLIM PARA SISTEMAS DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA RADIAIS

A partir do resultado apresentado na Proposição 4.1, que garante mediante algumas condições que a restrição cônica está ativa na solução de um problema de PCSO e, portanto, é a solução do problema de PNL, a pergunta que surge é: é possível estender este resultado para problemas de PNLIM? A resposta é sim, e a prova deste resultado é apresentada no Teorema (5.1) a seguir.

5.1 A Equivalência de solução entre um problema de PNLIM e um problema de PCSOIM

Considere um problema de otimização em sistemas de distribuição radiais representado por um problema de PNLIM da forma (153)-(163).

$$\min v = \sum_{ij \in \Omega_I} R_{ij} I_{ij}^{qdr} + \boldsymbol{c}' \boldsymbol{w}$$
 (153)

Sujeito a

$$P_{ki} - \sum_{ij \in \Omega_l} \left(P_{ij} + R_{ij} I_{ij}^{qdr} \right) + P_i^G + \boldsymbol{a}_i' \boldsymbol{w} = P_i^D$$
 $\forall i \in \Omega_b$ (154)

$$Q_{ki} - \sum_{ij \in \Omega_l} (Q_{ij} + X_{ij} I_{ij}^{qdr}) + Q_i^G + \boldsymbol{b}_i' \boldsymbol{w} = Q_i^D$$
 $\forall i \in \Omega_b$ (155)

$$V_i^{qdr} - 2(R_{ij}P_{ij} + X_{ij}Q_{ij}) - Z_{ij}^2 I_{ij}^{qdr} - V_j^{qdr} + \mathbf{d}_i' \mathbf{w} = 0 \qquad \forall ij \in \Omega_l \quad (156)$$

$$V_i^{qdr} I_{ij}^{qdr} = P_{ij}^2 + Q_{ij}^2 \qquad \forall ij \in \Omega_l \quad (157)$$

$$\mathbf{E}\mathbf{w} = \mathbf{f} \tag{158}$$

$$Gw \ge h \tag{159}$$

$$V_i^{qdr} \ge 0 \qquad \forall i \in \Omega_b \quad (160)$$

$$I_{ii}^{qdr} \ge 0 \qquad \forall ij \in \Omega_l \quad (161)$$

$$\mathbf{w} \in \mathbb{R}^n \tag{162}$$

$$\hat{I}w \subseteq \mathbb{N}^n \tag{163}$$

o vetor w representa as novas variáveis de decisão de operação e investimento do sistema de distribuição radial, $\hat{l}w$ representa um subconjunto de variáveis inteiras, onde os dados $a'_i, b'_i, c', d'_i, f, g \in \mathbb{R}^n$, são vetores, $E, G \in \mathbb{R}^{n \times n}$ são matrizes. O $\hat{l}w$ é um subconjunto das variáveis que compõem o vetor w e assumem valores inteiros.

Então, ao substituir a restrição não linear (157) pela restrição cônica de segunda ordem

$$V_j^{qdr} I_{ij}^{qdr} \ge P_{ij}^2 + Q_{ij}^2 \qquad \forall ij \in \Omega_l \quad (164)$$

Temos o problema de programação cônica de segunda ordem dado por (165)-(175).

$$\min v = \sum_{ij \in \Omega_I} R_{ij} I_{ij}^{qdr} + c' w$$
 (165)

Sujeito a

$$P_{ki} - \sum_{ij \in \Omega_l} \left(P_{ij} + R_{ij} I_{ij}^{qdr} \right) + P_i^G + \boldsymbol{a}_i' \boldsymbol{w} = P_i^D$$
 $\forall i \in \Omega_b$ (166)

$$Q_{ki} - \sum_{ij \in \Omega_l} (Q_{ij} + X_{ij} I_{ij}^{qdr}) + Q_i^G + \boldsymbol{b}_i' \boldsymbol{w} = Q_i^D$$
 $\forall i \in \Omega_b$ (167)

$$V_i^{qdr} - 2(R_{ij}P_{ij} + X_{ij}Q_{ij}) - Z_{ij}^2 I_{ij}^{qdr} - V_j^{qdr} + \mathbf{d}_i' \mathbf{w} = 0 \qquad \forall ij \in \Omega_l \quad (168)$$

$$V_j^{qdr} I_{ij}^{qdr} \ge P_{ij}^2 + Q_{ij}^2$$
 $\forall ij \in \Omega_l$ (169)

$$Ew = f \tag{170}$$

$$Gw \ge h \tag{171}$$

$$V_i^{qdr} \ge 0 \qquad \forall i \in \Omega_b \quad (172)$$

$$I_{ij}^{qdr} \ge 0 \qquad \forall ij \in \Omega_l \quad (173)$$

$$\mathbf{w} \in \mathbb{R}^n \tag{174}$$

$$\hat{I}w \in \mathbb{N}^n \tag{175}$$

Teorema 5.1: Para um sistema de distribuição radial, considere o problema de PNLIM dado pelas equações (153)-(163) e de PCSOIM dado por (165)-(175). Se o problema de PCSOIM tem solução factível e as variáveis duais da restrição (169) são positivas ($\rho_{ij} > 0$, $\forall ij \in \Omega_l$), então a solução ótima do problema de PCSOIM é a solução ótima do problema de PNLIM.

Demonstração:

Para provar este Teorema, é necessário mostrar que a restrição cônica (169) está ativa na solução do problema de PCSOIM e que esta é a melhor solução para o problema de PNLIM.

Ao utilizar um método de busca de solução para o problema de PCSOIM, todo o processo de busca é realizado com um problema relaxado de PCSO, acrescido de restrições, onde o espaço de busca é um conjunto aberto, e as restrições podem ser representadas por funções diferenciáveis, sendo assim, vale a proposição 4.1, para a solução final x^* do problema de PCSO que satisfaz as condições de integralidade do problema de PCSOIM original, ou seja, nas condições da proposição 4.1, a solução ótima x^* do problema de PCSOIM, portanto x^* é uma solução factível do problema de PNLIM.

Sendo x^* a solução do problema de PCSO que satisfaz as condições de integralidade do problema de PCSOIM original e v^* o valor da sua função objetivo, sabe-se pela proposição 4.1, que x^* é também uma solução do problema de PNLIM, então, qualquer outra solução \bar{x} do problema de PNLIM, com função objetivo \bar{v} , é também uma solução factível para o problema PCSOIM e, portanto, deve satisfazer a relação $\bar{v} \geq v^*$. Assim, não existe solução \bar{x} com uma função objetivo \bar{v} menor que v^* , então x^* é a solução ótima do PNLIM e o Teorema está demonstrado.

5.2 Formulação do modelo de PNLIM em sistemas de distribuição radiais: aplicação no problema de reconfiguração do sistema de distribuição de energia elétrica (RSDEE)

Resolver o problema RSDEE consiste em determinar uma topologia da rede de distribuição que seja radial e conexa, estabelecendo a abertura ou fechamento de chaves no sistema, de forma a minimizar as perdas, balanço de carga, melhora do perfil de tensão (Sarfi *et. al.*, 1994) e cumprindo as restrições operacionais estabelecidas (KALANTAR *et al.*, 2006).

O processo de resolução do problema RSDEE é complexo devido a existência de um grande número de opções de configuração a serem avaliadas, aliado às exigências de radialidade do sistema.

5.2.1 A modelagem matemática

Na modelagem do problema de RSDEE, ao realizar modificações na topologia do sistema através da abertura ou fechamento das chaves, é necessário identificar a interconexão em pontos estratégicos para garantir a conexidade e a radialidade do sistema com o objetivo de minimizar as perdas de potência ativa do sistema. Os sistemas de distribuição de energia elétrica possuem uma configuração malhada, conforme (PEREIRA, 2010), porém operam com topologia radial, com o objetivo de diminuir o número de dispositivos de segurança e facilitar a proteção do sistema.

O problema RSDEE é combinatorial e possui dimensão proporcional ao número de chaves de interconexões existentes no sistema, a saber, um sistema com n chaves possui 2^n configurações possíveis da topologia. Todavia, grande parte dessas topologias não traz contribuição e não podem ser utilizadas, pois não satisfazem as condições de radialidade ou conexidade, conforme (SCHMIDT et al., 2005).

Já foram utilizadas diversas metodologias para resolver o problema de RSDEE linearizado representado como um problema de PLIM. Entre estas o algoritmo *Branch and Bound*, aliado a uma heurística construtiva, como por exemplo os trabalhos de (MERLIN; BACK,1975) e (ABUR, 1996).

Nesta seção, o problema de RSDEE será resolvido utilizando o Teorema (5.1) para o modelo de PCSOIM.

5.2.2 O modelo de RSDEE

O modelo que representa o problema de RSDEE é um problema de PNLIM com formulação matemática dada pelas equações (176) - (187):

$$\min v = \sum_{(i,j)\in\Omega} R_{ij} I_{ij}^{qdr} \tag{176}$$

s.a

$$\sum_{ki \in \Omega} P_{ki} - \sum_{ij \in \Omega} (P_{ij} + R_{ij} I_{ij}^{qdr}) + P_i^G = P_i^D \qquad \forall i \in \Omega_b$$
 (177)

$$\sum_{ki \in \Omega} Q_{ki} - \sum_{ij \in \Omega} (Q_{ij} + X_{ij} I_{ij}^{qdr}) + Q_i^G = Q_i^D \qquad \forall i \in \Omega_b$$
 (176)

$$V_i^{qdr} - V_i^{qdr} = 2(R_{ij}P_{ij} + X_{ij}Q_{ij}) + Z_{ij}^2 I_{ij}^{qdr} + w_{ij} \quad \forall ij \in \Omega_l$$
 (179)

$$|w_{ij}| \le \overline{w}(1 - n_{ij}) \qquad \forall ij \in \Omega_l \tag{180}$$

$$V_i^{qdr} I_{ij}^{qdr} = P_{ij}^2 + Q_{ij}^2 \qquad \forall ij \in \Omega_l$$
 (181)

$$\underline{V}^2 \le V_i^{qdr} \le \bar{V}^2 \tag{182}$$

$$0 \le I_{ij}^{qdr} \le \bar{I}_{ij}^2 \qquad \forall ij \in \Omega_l$$
 (183)

$$\left| P_{ij} \right| \le \left(\bar{V} \bar{I}_{ij} \right) n_{ij} \qquad \forall ij \in \Omega_l \tag{184}$$

$$|Q_{ij}| \le (\bar{V}\bar{I}_{ij})n_{ij} \qquad \forall ij \in \Omega_l$$
 (185)

$$\sum_{ij \in \Omega} n_{ij} = |\Omega_b| - 1 \tag{186}$$

$$n_{ij} \in \{0,1\} \qquad \forall ij \in \Omega_l \tag{187}$$

A equação (176) representa a função objetivo que consiste em minimizar as perdas de potência ativa que é o somatório da corrente ao quadrado vezes a resistência em cada ramo. A restrição (177) representa o balanço de potência ativa, ou seja, o somatório dos fluxos de potência ativa que entram numa barra do sistema deve ser igual ao somatório dos fluxos de potência ativa que saem dessa barra, esta propriedade corresponde à primeira lei de Kirchhoff para a potência ativa em cada barra do sistema. A restrição (178) representa o balanço de potência reativa, esta propriedade corresponde à primeira lei de Kirchhoff para a potência reativa em cada barra do sistema. A equação (179) representa a queda de tensão nos ramos, calculada em função de seus parâmetros e dos fluxos de potência ativa, reativa e de corrente. A restrição (180) representa uma variável artificial nos ramos de chaveamento aberto. A restrição (181) representa o cálculo da magnitude do fluxo de corrente no ramo ij. As restrições (182) e (183) estabelecem os limites de operação da rede em função das magnitudes de tensão permitidas em cada nó e dos limites do fluxo de corrente em cada ramo, respectivamente. As restrições (184) e (185) definem os limites de potência ativa, reativa e fluxo de corrente permitidos através das chaves no caso de estarem fechadas ($n_{ij}=1$); se as chaves estão abertas $(n_{ij}=0)$ esses valores são nulos. A equação (186) representa, em

conjunto com (177) e (178), a restrição de radialidade. A equação (187) indica a variável binária de chaveamento.

Em seguida, ao substituir a restrição não linear (181) pela restrição cônica de segunda ordem dada por (188):

$$V_i^{qdr} I_{ii}^{qdr} \ge P_{ii}^2 + Q_{ii}^2 \qquad \forall ij \in \Omega_l$$
 (188)

temos o problema de programação cônico de segunda ordem dado por (189)-(200).

$$\min v = \sum_{(i,j)\in\Omega} R_{ij} I_{ij}^{qdr} \tag{189}$$

sa

$$\sum_{ki \in \Omega} P_{ki} - \sum_{ij \in \Omega} (P_{ij} + R_{ij} I_{ii}^{qdr}) + P_i^G = P_i^D \qquad \forall i \in \Omega_b$$
 (190)

$$\sum_{ki \in \Omega} Q_{ki} - \sum_{ij \in \Omega} (Q_{ij} + X_{ij} I_{ij}^{qdr}) + Q_i^G = Q_i^D \qquad \forall i \in \Omega_b$$
 (191)

$$V_i^{qdr} - V_i^{qdr} = 2(R_{ij}P_{ij} + X_{ij}Q_{ij}) + Z_{ij}^2 I_{ij}^{qdr} + w_{ij} \quad \forall ij \in \Omega_l$$
 (192)

$$|w_{ij}| \le \overline{w}(1 - n_{ij}) \qquad \forall ij \in \Omega_l \tag{193}$$

$$V_i^{qdr} I_{ii}^{qdr} \ge P_{ij}^2 + Q_{ij}^2 \qquad \forall ij \in \Omega_l$$
 (194)

$$\underline{V}^2 \le V_i^{qdr} \le \bar{V}^2 \qquad \forall j \in \Omega_b$$
 (195)

$$0 \le I_{ij}^{qdr} \le \bar{I}_{ij}^2 \qquad \forall ij \in \Omega_l$$
 (196)

$$\left| P_{ij} \right| \le \left(\overline{V} \bar{I}_{ii} \right) n_{ij} \qquad \forall ij \in \Omega_l \tag{197}$$

$$\left|Q_{ij}\right| \le \left(\bar{V}\bar{I}_{ij}\right)n_{ij} \qquad \forall ij \in \Omega_l \tag{198}$$

$$\sum_{ij \in \Omega} n_{ij} = |\Omega_b| - 1 \tag{199}$$

$$n_{ij} \in \{0,1\} \qquad \forall ij \in \Omega_l \tag{200}$$

5.3 Testes e resultados para o problema de RSDEE

Nesta seção são apresentados os resultados obtidos para avaliar a metodologia proposta para encontrar a solução de problemas de PNLIM de sistemas de distribuição radiais através da resolução de problemas de PCSOIM. Os testes foram executados para os sistemas de 33, 70, 136 e 202 nós. Os dados elétricos dos sistemas usados estão no Anexo B.

As implementações foram feitas e testadas em linguagem AMPL (FOURER; GAY; KERNIGHAN, 2002) e foi utilizado o *solver* CPLEX (ILOG, 2008) para resolver os

problemas de PCSOIM. Para alguns dos problemas de PNLIM, foi utilizado o *solver* KNITRO (WALTZ; NOCEDAL, 2003). Todavia, existe a necessidade de um algoritmo eficaz para a resolução de problemas de PNLIM, principalmente quando a região de busca é não convexa. Para os sistemas que não satisfazem alguma das condições do Teorema (5.1) será aplicado o processo de linearização apresentado no Capítulo 3. Utilizar-se-á o indicador de precisão *erro*_{ij}, definido também no Capítulo 3.

Neste contexto, a restrição cônica será considerada ativa na solução do problema de PCSO, se para esta solução o valor do indicador $erro_{ij}$ for menor que 1% para todos os circuitos. Por outro lado, se o valor do indicador $erro_{ij}$ for maior ou igual a 1% para algum dos circuitos do sistema, então a restrição cônica no problema de PCSOIM não será considerada ativa.

5.3.1 Teste do sistema de 33 nós para o problema de RSDEE

Os dados completos do sistema de distribuição de 33 nós estão no Anexo B.2. Este sistema possui uma única subestação localizada no nó 1. Os limites de magnitude de tensão para o sistema são de 11,394 kV para a tensão mínima e de 12,66 kV para a tensão máxima. A tensão na subestação é de 12,66 kV. Este sistema possui inicialmente cinco circuitos de interconexão abertos como ilustra o diagrama unifilar da Figura 59:

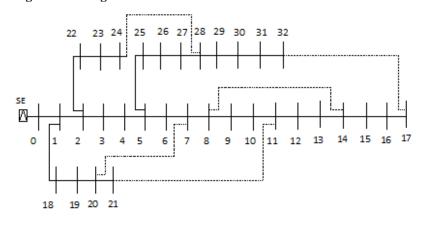


Figura 59 - Diagrama do sistema de 33 nós com interconexões

Fonte: Autor

Na Tabela 16 são apresentados os resultados para o sistema de 33 nós após a resolução do problema de PCSOIM.

Tabela 16 - Resultados para o sistema teste de 33 nós para o problema de RSDEE

Sistema de 33 nós	PCSOIM	PNLIM
Valor mínimo da variável dual associada à restrição cônica ρ_{ij}	$6x10^{-7}$	
(circuito)	(0-1)	
Perda de potência ativa no sistema (kW)	139,55	139,55
Máxima magnitude de corrente (A)	358,758	358,758
(circuito)	(0-1)	(0-1)
Máximo erro _{ij} encontrado pelo modelo de PCSO (%)	0	
(circuito)		
Erro médio entre a corrente calculada e a encontrada pelo	0	
modelo de PCSOIM através da variável erro(ij) (%)		
Mínima magnitude de tensão (kV)	11,873	11,873
(nó)	(31)	(31)
Máximo fluxo de potência ativa (kW)	3842,685	3842,685
(circuito)	(0-1)	(0-1)
Máximo fluxo de potência reativa (kVAr)	2396,256	2396,256
(circuito)	(0-1)	(0-1)

Fonte: Dados da pesquisa do autor.

Ao resolver o sistema de 33 nós através de um modelo de PCSOIM, a melhor configuração encontrada implica na abertura de chave nos ramos: 6-7, 8-9, 13-14, 24-28 e 31-32. Esta configuração é a solução ótima para o problema de reconfiguração, em conformidade com (MANTOVANI, CASARI e ROMERO, 2000) e (BORGES, FRANCO e RIDER, 2014).

Para o sistema de 33 nós, todas as variáveis duais relacionadas à restrição cônica são positivas. Neste caso, de acordo com o Teorema (5.1), a restrição cônica está ativa na solução encontrada para o problema de PCSOIM e é a solução ótima para o problema de PNLIM correspondente.

Observe que para este sistema, o valor de $erro_{ij}$ máximo foi de 0%.

O gráfico apresentado na Figura 60 mostra o perfil da magnitude de tensão nas barras encontrado pelo modelo de PCSOIM para o sistema de 33 nós.

Tensão kV 12,8 12,6 12,4 12,2 12 11,8 11,6 11,4 30 1 6 12 18 24 33 Nós PCSOIM

Figura 60 - Perfil da magnitude de tensão nas barras para o sistema de 33 nós

Fonte: Autor

O gráfico apresentado na Figura 61 mostra os valores das magnitudes de corrente nos ramos para o problema de reconfiguração com os dados do sistema de 33 nós.

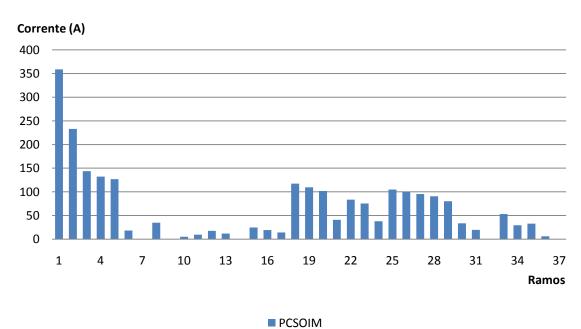


Figura 61 - Magnitude de corrente nos ramos para o sistema de 33 nós

Fonte: Autor

5.3.2 Teste do sistema de 70 nós para o problema de RSDEE

Este sistema possui uma única subestação localizada no nó 1, onde a tensão é de 12,66 kV. Os dados estão no Anexo B.3. Os valores de magnitude de tensão mínima e máxima são de 12,1536 kV e 12,66 kV respectivamente. Este sistema possui inicialmente cinco circuitos de interconexão abertos como ilustra o diagrama unifilar da Figura 62:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 37 38 39 40 41 42 43 44 45 46 47

Figura 62 - Diagrama do sistema de 70 nós com interconexões

Fonte: Autor

Na Tabela 17 estão os principais resultados para a reconfiguração do sistema.

Tabela 17 - Resultados para o sistema teste de 70 nós para o problema de RSDEE

Sistema de 70 nós	PCSOIM
Valor mínimo da variável dual associada à restrição cônica ρ_{ij}	$1x10^{-9}$
(circuito)	(3-4)
Perda de potência ativa no sistema (kW)	9,42
Máxima magnitude de corrente (A)	113,414
(circuito)	(1-2)
Máximo <i>erro</i> _{ij} encontrado pelo modelo de PCSO (%)	0,09
(circuito)	(67-68)
Erro médio encontrado pelo modelo de PCSO (%)	0
Mínima magnitude de tensão (kV)	12,437
(nó)	(62)
Máximo fluxo de potência ativa (kW)	1117,322
(circuito)	(1-2)
Máximo fluxo de potência reativa (kVAr)	901,698
(circuito)	(1-2)

Fonte: Dados da pesquisa do autor

Ao resolver o sistema de 70 nós, através de um modelo de PCSOIM, foi encontrada a configuração ótima para o problema: $n_{15,16}=n_{59,60}=n_{62,63}=n_{12,44}=n_{14,22}=0$, o que implica na abertura das chaves nos ramos: 15-16, 59-60, 62-63, 12-44 e 14-22.

Para o sistema de 70 nós, todas as variáveis duais relacionadas à restrição cônica são positivas. Neste caso, de acordo com o Teorema (5.1), a restrição cônica está ativa na solução encontrada para o problema de PCSOIM e é a solução ótima para o problema de PNLIM correspondente. Observe que para este sistema o valor de *erro*_{ij} máximo foi 0,09 %.

O gráfico apresentado na Figura 63 mostra o perfil da magnitude de tensão nas barras encontrado pelo modelo de PCSOIM para o sistema de 70 nós.

Tensão (kV) 12,7 12,6 12,5 12,4 12,3 1 7 14 21 28 35 42 49 56 63 70 Nós PCSOIM

Figura 63 - Perfil da magnitude de tensão para o sistema de 70 nós

Fonte: Autor

Os valores das magnitudes dos fluxos de corrente nos ramos encontrado pelo modelo de PCSOIM para o sistema de 70 nós está apresentada na Figura 64:

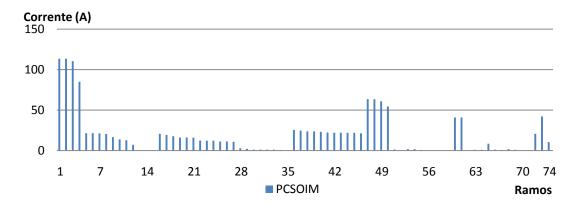


Figura 64 - Perfil da magnitude de corrente para o sistema de 70 nós

Fonte: Autor

5.3.3 Teste do sistema de 136 nós para o problema de RSDEE

Os dados completos do sistema de distribuição de 136 nós estão no Anexo B.4. Este sistema possui uma única subestação localizada no nó 1.

Os valores de magnitude de tensão para o sistema são de 10 kV para a tensão mínima e de 13,8 kV para a tensão máxima.

A tensão na subestação é de 13,8 kV. Este sistema possui inicialmente vinte e um circuitos de interconexão abertos como ilustra o diagrama unifilar da Figura 65.

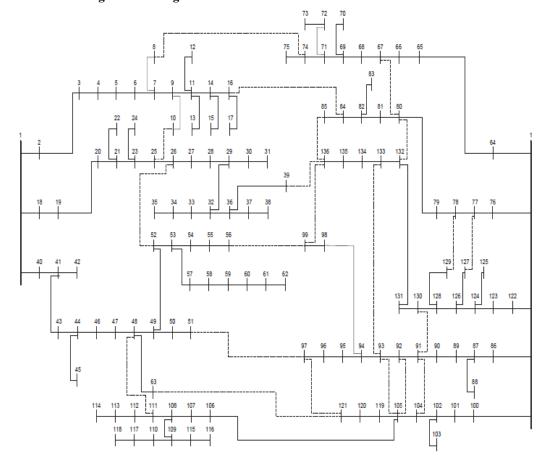


Figura 65 - Diagrama do sistema de 136 nós com interconexões

Fonte: Adaptado de Zvitcovich 2006

Na Tabela 18 são apresentados os principais resultados obtidos pelo modelo de PCSOIM para o sistema de 136 nós.

Tabela 18 - Resultados para o sistema teste de 136 nós para o problema de RSDEE

Sistema de 136 nós	PCSOIM
Valor mínimo da variável dual associada à restrição cônica $ ho_{ij}$	$1x10^{-8}$
(circuito)	(1-2)
Perda de potência ativa no sistema (kW)	280,194
Máxima magnitude de corrente (A)	145,27
(circuito)	(40-42)
Máximo erro _{ij} encontrado pelo modelo de PCSO (%)	0,38 %
(circuito)	(60-61)
Erro médio entre a corrente calculada e a encontrada pelo	0,008
modelo de PCSO (%)	
Mínima magnitude de tensão (kV)	13,23
(nó)	(105)
Máximo fluxo de potência ativa (kW)	3149,80
(circuito)	(0-39)
Máximo fluxo de potência reativa (kVAr)	1386,18
(circuito)	(0-39)

Fonte: Dados da pesquisa do autor

Ao resolver o sistema de 136 nós através de um modelo de PCSOIM, a melhor configuração encontrada indica a abertura de chave nas barras: 6-7, 31-35, 48-51, 89-90, 95-96, 105-106, 104-118, 125-126, 134-135, 9-24, 15-83, 50-96, 55-98, 66-79, 79-131, 84-135, 91-104, 90-129, 92-104, 92-132 e 128-77.

Para o sistema de 136 nós, todas as variáveis duais relacionadas à restrição cônica são positivas. Neste caso, de acordo com o Teorema (5.1), a restrição cônica está ativa na solução encontrada para o problema de PCSOIM e é a solução ótima para o problema de PNLIM correspondente.

Observe que para este sistema, o valor de *erro*_{ii} máximo foi de 0,38%.

O gráfico apresentado na Figura 66 mostra o perfil da magnitude de tensão nas barras encontrado pelo modelo de PCSOIM para o sistema de 136 nós.

Tensão (kV) 13,9 13,8 13,7 13,6 13,5 13,4 13,3 13,2 13,1 13 12,9 9 72 84 108 120 Nós

Figura 66 - Perfil da magnitude de tensão para o sistema de 136 nós

Fonte: Autor

Na Figura 67 são apresentados os valores das magnitudes do fluxo de corrente nos ramos, encontrado pelo modelo de PCSOIM para o sistema de 136 nós.

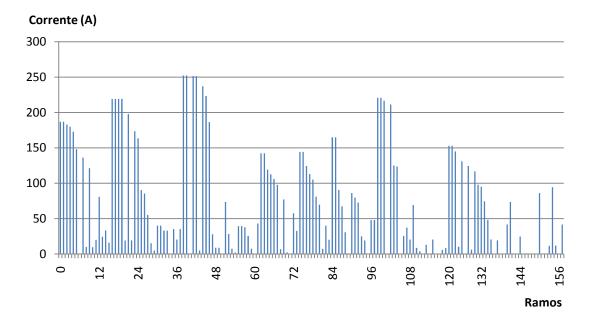


Figura 67 - Perfil da magnitude de corrente para o sistema de 136 nós

Fonte: autor

5.4 Formulação do problema de PNLIM para o problema de alocação de banco de capacitores

Em geral os bancos de capacitores são utilizados para corrigir o fator de potência em instalações de grandes consumidores, usualmente fora dos limites determinados pela legislação em vigência, e são utilizados nos sistemas de distribuição com o objetivo de reduzir as perdas e elevar a tensão do sistema.

Alguns tipos de equipamentos elétricos como os transformadores ou motores elétricos, necessitam certa quantidade de potência reativa para sua operação (MAMEDE, 2001). Dessa forma, algum tipo de fonte de potência reativa deve ser ligado ao sistema elétrico para suprir essa necessidade. Essas fontes podem ser geradores, motores síncronos ou capacitores.

Num sistema elétrico, tanto na transmissão como na distribuição, as linhas do sistema possuem componentes reativos devido aos campos elétricos e magnéticos produzidos pela circulação da corrente e das diferenças de potencial entre linhas e o solo. Essa energia pode ser indutiva ou capacitiva. A energia reativa indutiva, responsável pela formação do campo magnético, é gerada por aparelhos consumidores que em geral possuem bobina, como transformadores e motores de indução, já a energia reativa capacitiva é gerada por capacitores ou por motores síncronos sobre-excitados conhecidos como compensadores.

Assim, para inibir o transporte de energia reativa de terminais distantes da carga consumidora, é preciso instalar nas proximidades da carga algum tipo de fonte de energia reativa com a finalidade de reduzir as perdas na transmissão e melhorar o fator de utilização no rendimento do sistema elétrico (MAMEDE, 2001).

Nesta seção, o Teorema (5.1) será testado para o problema de alocação ótima de bancos de capacitores em sistemas de distribuição de energia elétrica radiais modelado como um problema de PCSOIM. O interesse principal na utilização dos capacitores é regular a tensão e os fluxos de potência reativa nos pontos onde eles são alocados.

Os bancos de capacitores (BCs), que são alocados nos sistemas de distribuição de energia elétrica (SDEE) radiais, atuam como fontes de potência reativa. Estes BCs podem ser fixos ou chaveados e têm a finalidade de regular a tensão e o fluxo de potência reativa no ponto onde são instalados, isso possibilita uma redução de perdas de potência entre o ponto de instalação do BC e a subestação.

Dentre os trabalhos mais recentes sobre o assunto, Gonçalves (2013) resolveu o problema de alocação ótima de BC para sistemas de distribuição radiais através da linearização do modelo de PNLIM, obtendo um modelo de PLIM aproximado onde, além da

alocação ótima de BC, foram considerados também os reguladores de tensão e foram testados os sistemas de 54 e de 201 nós. Ribeiro (2013) fez uma análise comparativa para o problema de alocação ótima de BCs em sistemas de distribuição radiais, utilizando os modelos de PLIM linearizado e de PCSOIM, mostrando através de testes, uma equivalência das soluções para os sistemas testes de 70, 136, 202 e de 400 nós.

5.4.1 Banco de Capacitores

Uma grande vantagem da instalação de banco de capacitores nos sistemas de distribuição é a possibilidade de alívio do carregamento do sistema, pois neste caso, a potência reativa passa a ser fornecida pelo BC e deixa de circular a partir da subestação.

Assim, os BCs que são alocados no sistema de distribuição, atuam como fontes de potência reativa e tem a finalidade de regular a tensão e o fluxo de potência reativa no ponto onde são instalados, isso proporciona uma redução de perdas de potência entre o ponto de instalação do BC e a subestação. Em um problema de alocação ótima de bancos de capacitores em um SDEE, os BCs produzem uma melhoria no perfil de tensão, dentro dos limites permitidos em todos os pontos de consumo.

Existem dois tipos de bancos de capacitores, os fixos e os chaveados. Os fixos são constituídos por módulos de capacitores que permanecem conectados em todos os níveis de demanda; já os chaveados, também formados por módulos de capacitores, podem ser parcial ou totalmente chaveados em cada nível de demanda.

Na modelagem do problema de alocação ótima de bancos de capacitores em SDEE, os BCs a serem instalados no sistema podem ser fixos ou chaveados e ao serem alocados produzem uma melhoria no perfil de tensão, dentro dos limites permitidos em todos os pontos de consumo conforme (SEGURA, 2006). Isso proporciona uma redução de perdas de potência entre o ponto de instalação dos capacitores e a subestação.

O modelo neste caso é um problema de PNLIM, todavia, devido à dificuldade de convergência deste modelo, diversos autores (RIBEIRO, 2013), (GONÇALVES, 2013), consideram o modelo linearizado de PLIM ou o modelo de PCSOIM.

Neste trabalho, será considerada apenas a instalação de capacitores fixos. A Figura 68 representa uma barra de um sistema de distribuição com um banco de capacitores, representando as opções de se acoplar ao sistema capacitores fixos ou chaveados.

 $V_{i,d}$ Q^{bc} Q^{cp} Q^{cp}

Figura 68 - Alocação de bancos de capacitores fixos e chaveados

Fonte: Autor

Cada BC é formado por \overline{na}_n^{bc} submódulos com a mesma capacidade de geração de potência reativa, que podem ser fixos ou chaveados, sendo que os chaveados podem ser ligados ou desligados em qualquer nível de demanda d.

A seguir, são apresentadas as equações (201)-(205) que modelam a operação de BCs no sistema.

$$Q_{n,d}^{bc} = na_{n,d}^{bc} Q_n^{esp}, \forall n \in \Omega_{bc}, \forall d \in \Omega_d$$
(201)

$$na_{n,1}^{bc} = 1$$
 $\forall n \in \Omega_{bc} ; q_n^{sw} = 0, \forall d \in \Omega_d$ (202)

$$|na_{n,d}^{bc} - na_{n,d-1}^{bc}| \le \bar{\Delta}_n^{bc} q_n^{sw} \qquad \forall n \in \Omega_{bc}, \forall d \in \Omega_d; d > 1.$$
 (203)

$$0 \le na_{n,d}^{bc} \le \overline{na}_n^{bc} \qquad \forall n \in \Omega_{bc} \text{ , } \forall d \in \Omega_d$$
 (204)

$$na_{n,d}^{bc} \in \mathbb{N}$$
 $\forall n \in \Omega_{bc}, \forall d \in \Omega_{d}$ (205)

A restrição (201) garante a igualdade entre a potência reativa injetada pelo banco de capacitores n em um nível de demanda d e o valor de cada submódulo do BC n, multiplicado pelo número de submódulos em atividade. A igualdade (202) indica que o BC n fixo deve ser ligado no primeiro nível de demanda. A expressão (203) impõe que o número de chaveamentos entre dois níveis consecutivos de cada BC, a partir do primeiro nível de demanda, deve ser limitado a um número máximo $\bar{\Delta}_n^{bc}$; neste caso, para um BC fixo n, q_n^{sw} assume valor nulo, para garantir que não haja mudança de estado. A desigualdade (204) limita a variável inteira (205), e não negativa $na_{n,d}^{bc}$, a um valor máximo de submódulos $\bar{n}a_n^{bc}$ de cada BC.

5.4.2 O Modelo de Alocação Ótima de Bancos de Capacitores em SDEE

O modelo que representa o problema de alocação ótima de bancos de capacitores em SDEE é um problema de PNLIM com formulação matemática dada pelas equações (206) — (218):

$$\min v = k_c \sum_{i \in \Omega_b} \left(c^{fx} q_i + c^{un} n_i^{cp} \right) + t_l c^{ls} \sum_{ij \in \Omega} R_{ij} I_{ij}^{qdr}$$

$$\text{s.a}$$

$$\sum_{ki \in \Omega_l} P_{ki} - \sum_{ij \in \Omega_l} (P_{ij} + R_{ij} I_{ij}^{qdr}) + P_i^G = P_i^D, \qquad \forall i \in \Omega_b$$

$$\sum_{ki \in \Omega_l} Q_{ki} - \sum_{ij \in \Omega_l} (Q_{ij} + X_{ij} I_{ij}^{qdr}) + Q_i^G + Q^{cp} n_i = Q_i^D, \qquad \forall i \in \Omega_b$$

$$V_i^{qdr} - V_j^{qdr} = 2 \left(R_{ij} P_{ij} + X_{ij} Q_{ij} \right) + Z_{ij}^2 I_{ij}^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} I_{ij}^{qdr} = P_{ij}^2 + Q_{ij}^2, \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} I_{ij}^{qdr} \leq \bar{V}^2 \qquad \forall j \in \Omega_b$$

$$0 \leq I_{ij}^{qdr} \leq \bar{I}_{ij}^2 \qquad \forall ij \in \Omega_l$$

$$0 \leq n_i^{cp} \leq \bar{n}_b^{cp} q_i \qquad \forall i \in \Omega_b$$

$$V_i \in \Omega_b \qquad (213)$$

$$v_i \in \Omega_b \qquad (214)$$

$$v_i \in \Omega_b \qquad (215)$$

$$v_i \in \Omega_b q_i \leq \bar{n}_c^{cp} \qquad \forall i \in \Omega_b \qquad (215)$$

$$v_i \in \Omega_b q_i \leq \bar{n}_c^{cp} \qquad \forall i \in \Omega_b \qquad (216)$$

A equação (206) representa a função objetivo que consiste em minimizar as perdas anuais de potência ativa, que é o somatório da corrente ao quadrado vezes a resistência, e o custo anual total de compra, instalação e manutenção dos BCs.

 $\forall i \in \Omega_b$

(217)

(218)

 n_i inteiro

 $q_i \in \{0,1\}$

As restrições (207) e (208) representam os balanços de potência ativa e reativa, ou seja, o somatório dos fluxos de potência que entram numa barra do sistema deve ser igual ao somatório dos fluxos de potência que saem dessa barra. A equação (209) representa a restrição dos cálculos das quedas de tensão nas linhas. Em seguida, ao substituir a restrição não linear (210) pela restrição cônica de segunda ordem (219)

$$V_i^{qdr} I_{ii}^{qdr} \ge P_{ii}^2 + Q_{ii}^2, \qquad \forall ij \in \Omega_l$$
 (219)

(232)

tem-se um problema de programação cônica de segunda ordem inteira mista dado por (220)-(232).

$$\min v = k_c \sum_{i \in \Omega_b} \left(c^{fx} q_i + c^{un} n_i^{cp} \right) + t_l c^{ls} \sum_{ij \in \Omega_l} R_{ij} I_{ij}^{qdr}$$

$$\text{s.a}$$

$$\sum_{ki \in \Omega_l} P_{ki} - \sum_{ij \in \Omega_l} (P_{ij} + R_{ij} I_{ij}^{qdr}) + P_i^G = P_i^D, \qquad \forall i \in \Omega_b$$

$$\sum_{ki \in \Omega_l} Q_{ki} - \sum_{ij \in \Omega_l} (Q_{ij} + X_{ij} I_{ij}^{qdr}) + Q_i^G + Q^{cp} n_i = Q_i^D, \quad \forall i \in \Omega_b$$

$$V_i^{qdr} - V_j^{qdr} = 2 \left(R_{ij} P_{ij} + X_{ij} Q_{ij} \right) + Z_{ij}^2 I_{ij}^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} I_{ij}^{qdr} \ge P_{ij}^2 + Q_{ij}^2, \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} I_{ij}^{qdr} \ge V_j^2 + Q_{ij}^2, \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^2 \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^{qdr} \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^{qdr} \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^{qdr} \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^{qdr} \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^{qdr} \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^{qdr} \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^{qdr} \qquad \forall ij \in \Omega_l$$

$$V_j^{qdr} \le V_j^{qdr} \le V_j^{qdr} \qquad \forall ij \in \Omega_l$$

5.5 Testes e resultados para o problema de alocação ótima de bancos de capacitores em SDEE radiais

 $q_i \in \{0,1\}$

Nesta seção são apresentados os resultados obtidos para avaliar a metodologia proposta na resolução do modelo de PNLIM de alocação ótima de bancos de capacitores em sistemas de distribuição radiais através da solução de um problema de PCSOIM. Os testes foram executados para os sistemas de 70, 136 e 202 nós. Os dados elétricos dos sistemas usados estão no Anexo B.

As implementações foram feitas e testadas em linguagem AMPL (FOURER; GAY; KERNIGHAN, 2002) e foi utilizado o solver CPLEX (ILOG, 2008) para resolver os problemas de PCSOIM. Para os problemas de PNLIM, quando possível, foi utilizado o solver KNITRO (WALTZ; NOCEDAL, 2003). Em geral, o KNITRO não encontra soluções ótimas locais de boa qualidade e apresenta problemas de convergência, quando a região de busca não é convexa, conforme apresentado em (DELGADO, 2013) e (DELGADO, 2014).

Para os sistemas que não satisfazem alguma das condições do Teorema (5.1) será aplicado o processo de linearização apresentado no Capítulo 3. Utilizar-se-á o indicador de precisão $erro_{ij}$, definido também no Capítulo 3. Neste contexto, a restrição cônica será considerada ativa na solução do problema de PCSO, se para esta solução o valor do indicador $erro_{ij}$, for menor que 1% para todos os circuitos.

5.5.1 Teste do sistema de 70 nós para o problema de alocação de banco de capacitores

Os dados completos do sistema de distribuição de 70 nós estão no anexo B3. Este sistema possui uma única subestação localizada no nó 1. Os valores de magnitude de tensão para o sistema são de 11,77 kV para a tensão mínima e de 12,66 kV para a tensão máxima. A Tabela 20 apresenta os principais resultados para este sistema de 70 nós.

Tabela 19 - Resultados para o sistema teste de 70 nós

Sistema de 70 nós	PCSOIM
Valor mínimo da variável dual associada à restrição cônica $ ho_{ij}$	$4x10^{-8}$
(circuito)	(3-4)
Perda de potencia ativa no sistema (kW)	585,71
Custo das Perdas de Energia (US\$)	35142,78
Custo de investimento total de capacitores (US\$)	11200,00
Máxima magnitude de corrente (A)	1245,23
(circuito)	(1-2)
Máximo <i>erro</i> _{ij} encontrado pelo modelo de PCSO (%)	0,87
(circuito)	(67-68)
Erro médio entre a corrente calculada e a encontrada pelo	0,02
modelo de PCSO (%)	
Mínima magnitude de tensão (kV) (nó)	11,78 (66)
Máximo fluxo de potência ativa (kW)	15228,92
(circuito)	(1-2)
Máximo fluxo de potência reativa (kVAr)	4069,22
(circuito)	(1-2)

Fonte: Dados da pesquisa do autor

Para o sistema de 70 nós, todas as variáveis duais relacionadas à restrição cônica são positivas. Neste caso, de acordo com o Teorema (5.1), a restrição cônica está ativa na solução

encontrada para o problema de PCSOIM e é a solução ótima para o problema de PNLIM correspondente. Observe que para este sistema, o valor de *erro*_{ii} máximo foi de 0,87 %.

Foram instalados quatro bancos de capacitores fixos, um no nó 35 com 3 módulos, um no nó 46 com 2 módulos, um no nó 54 com 2 módulos e um no nó 62 com 1 módulo.

A potência reativa injetada foi de 3000, 2000, 2000 e 1000 kVAr, respectivamente, nos nós 35, 46, 54 e 62.

O gráfico apresentado na Figura 69 mostra o perfil da magnitude de tensão nas barras encontrado pelo modelo de PCSOIM para o sistema de 70 nós.

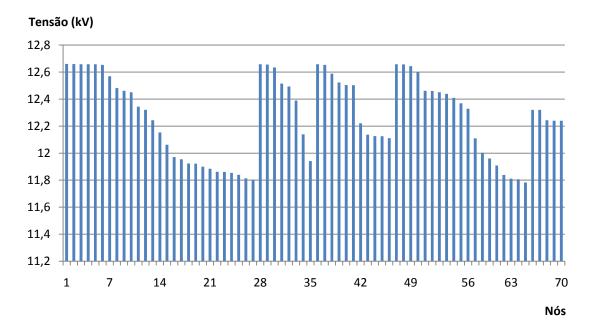


Figura 69 - Perfil da magnitude de tensão para o sistema de 70 nós (PCSOIM)

Fonte: Autor

Os valores das magnitudes dos fluxos de corrente nos ramos, encontrado pelo modelo de PCSOIM para o sistema de 70 nós está apresentada na Figura 70.

Corrente (A) **Ramos**

Figura 70 - Variação da magnitude de corrente (PCSOIM)

Fonte: Autor

O gráfico apresentado na Figura 71 mostra a variação potência reativa nos ramos para o sistema de 70 nós (PCSOIM).

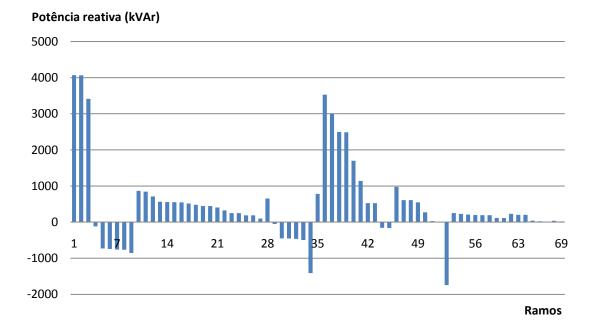


Figura 71 - Variação da potência reativa (PCSOIM)

Fonte: Autor

5.5.2 Teste do sistema de 136 nós para o problema de alocação de banco de capacitores

Os dados completos do sistema de distribuição de 136 nós estão no anexo B.4. Este sistema possui uma única subestação localizada no nó 1. Os valores de magnitude de tensão para o sistema são de 12,83 kV para a tensão mínima e de 13,8 kV para a tensão máxima. A Tabela 20 apresenta os principais resultados para este sistema de 136 nós.

Tabela 20 - Resultados para o sistema teste de 136 nós

Sistema de 136 nós	PCSOIM
Valor mínimo da variável dual associada à restrição cônica $ ho_{ij}$	$4x10^{-6}$
(circuito)	(18-19)
Perda de potência ativa no sistema (kW)	300,51
Custo das Perdas de Energia (US\$)	121887,62
Custo de investimento total de capacitores	3700,00
Máxima magnitude de corrente (A)	225,45
(circuito)	(1-100)
Máximo <i>erro</i> _{ij} encontrado pelo modelo de PCSO (%)	0,47
(circuito)	(61-62)
Erro médio entre a corrente calculada e a encontrada pelo	0,01
modelo de PCSO (%)	
Mínima magnitude de tensão (kV)	13,176
(nó)	(118)
Máximo fluxo de potência ativa (kW)	3059,22
(circuito)	(1-100)
Máximo fluxo de potência reativa (kVAr)	1239,61
(circuito)	(1-86)

Fonte: Dados da pesquisa do autor

Para o sistema de 136 nós, todas as variáveis duais relacionadas à restrição cônica são positivas. Neste caso, de acordo com o Teorema (5.1), a restrição cônica está ativa na solução encontrada para o problema de PCSOIM e é a solução ótima para o problema de PNLIM correspondente.

Observe que para este sistema o valor de $erro_{ij}$ máximo foi de 0,47 % e o erro médio foi de 0,01%. Foi instalado um banco de capacitor fixo no nó 107 com 3 módulos e com uma potência reativa injetada 900 kVAr.

O gráfico apresentado na Figura 72 mostra o perfil da magnitude de tensão nas barras encontrado pelo modelo de PCSOIM para o sistema de 136 nós.

Tensão (kV) 13,9 13,8 13,7 13,6 13,5 13,4 13,3 13,2 13,1 13 12,9 12,8 48 72 24 36 9 84 96 108 120 136 Nós

Figura 72 - Perfil da magnitude de tensão para o sistema de 136 nós (PCSOIM)

Fonte: Autor

A variação dos valores das magnitudes dos fluxos de corrente nos ramos, encontrado pelo modelo de PCSOIM para o sistema de 136 nós está apresentada na Figura 73.

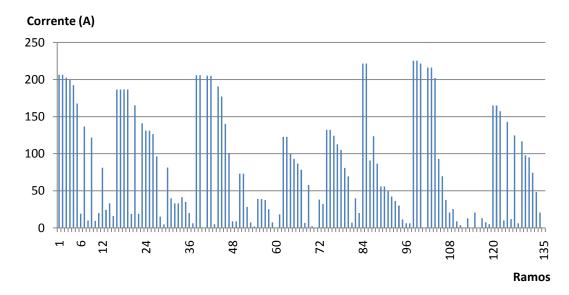


Figura 73 - Perfil da magnitude de corrente (PCSOIM)

Fonte: Autor

O gráfico apresentado na Figura 74 mostra a variação potência reativa nos ramos para o sistema de 136 nós (PCSOIM).

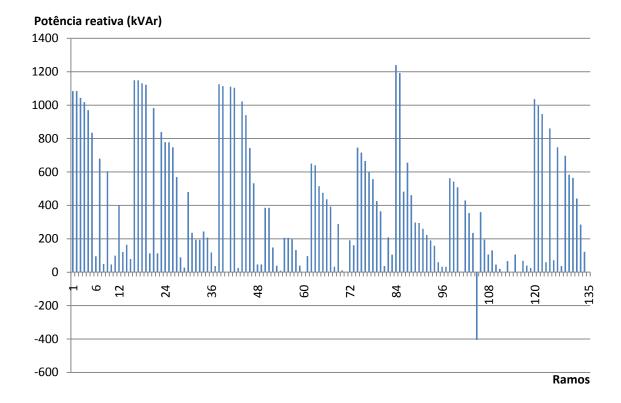


Figura 74 - Variação da potência reativa (PCSOIM)

Fonte: Autor

5.5.3 Teste do sistema de 202 nós para o problema de alocação de banco de capacitores

Os dados completos do sistema de distribuição de 202 nós estão no anexo B.5. Este sistema possui uma única subestação localizada no nó 1.

Os valores de magnitude de tensão para o sistema são de 11 kV para a tensão mínima e de 13,8 kV para a tensão máxima.

A Tabela 21 apresenta os principais resultados para este sistema de 202 nós.

Tabela 21 - Resultados para o sistema teste de 202 nós

Sistema de 202 nós	PCSOIM
Valor mínimo da variável dual associada à restrição cônica ρ_{ij}	0
(circuito)	(180-181)
Perda de potência ativa no sistema (kW)	425,63
Custo das Perdas de Energia (US\$)	198171,23
Custo de investimento total de capacitores (US\$)	32000,00
Máxima magnitude de corrente (A)	1134,94
(circuito)	(1-59)
Maximo erroij encontrado pelo modelo de PCSO (%)	3,09
(circuito)	(137-138)
Erro médio entre a corrente calculada e a encontrada pelo	0,07
modelo de PCSO (%)	
Mínima magnitude de tensão (kV)	13,433
(nó)	(202)
Máximo fluxo de potência ativa (kW)	10452,72
(circuito)	(1-59)
Máximo fluxo de potência reativa (kVAr)	3158,56
(circuito)	(1-59)

Fonte: Dados da pesquisa do autor

Para o sistema de 202 barras, o valor máximo do indicador de precisão $erro_{ij}$ foi de 3,09 %, ou seja, um valor maior 1%, isso implica que pelo menos uma das variáveis duais relacionadas à restrição cônica é nula, e confirma o valor $\rho_{180-181} = 0$ encontrado. Neste caso a restrição cônica não está ativa na solução do problema de PCSOIM, portanto não satisfaz o problema de PNLIM. Para este sistema, será necessário a aplicação do processo de linearização da equação do cálculo da corrente para as linhas que apresentarem o maior erro em cada passo, até que se alcance um indicador de precisão $erro_{ij}$ menor que 1%.

Nesta solução encontrada pelo problema de PCSOIM, foi indicada a instalação de 5 bancos de capacitores fixo nos nós 53, 113, 127, 187 e 200, todos com 6 módulos e com uma potência reativa injetada de 1800 kVAr em cada barra.

O gráfico apresentado na Figura 75 mostra o perfil da magnitude de tensão nas barras encontrado pelo modelo de PCSOIM para o sistema de 202 nós.

Figura 75 - Perfil da magnitude de tensão para o sistema de 202 nós (PCSOIM)

Fonte: Autor

A variação dos valores das magnitudes dos fluxos de corrente nos ramos, encontrado pelo modelo de PCSOIM para o sistema de 202 nós está apresentada na Figura 76.

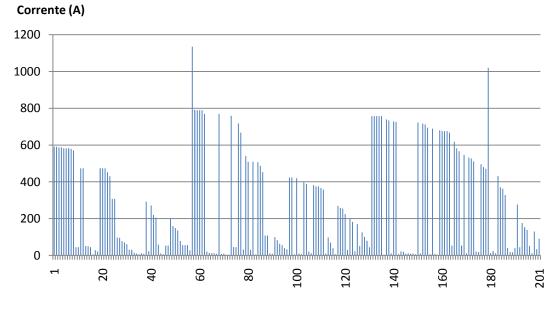


Figura 76 - Perfil da magnitude de corrente (PCSOIM)

Fonte: Autor

O gráfico apresentado na Figura 77 mostra a variação da potência reativa nos ramos para o sistema de 202 nós (PCSOIM).

Potência reativa (kVAr) 3500 3000 2500 2000 1500 1000 500 0 20 9 9 40 9 -500 -1000 -1500 Ramos

Figura 77 - Variação da potência reativa (PCSOIM)

5.5.4 Teste do sistema de 202 nós para o problema de alocação de banco de capacitores com utilização da linearização

Para o sistema de 202 nós, será utilizado o método de linearização apresentado no Capítulo 3, que consiste em linearizar a restrição cônica correspondente ao ramo 137-138 que apresenta o maior erro porcentual, para diminuir o valor de $erro_{ij} = 3,09\%$. Foi considerado o número de discretizações S = 5 e T = 100.

Na Tabela 22 são apresentados os principais resultados obtidos para o sistema teste de 202 nós com geradores distribuídos e linearização.

Sistema de Perda Mag. Fluxo Fluxo de Mag. $erro_{ii}$ Erro 202 nós Ativa Potência Corrente Médio Tensão Potência Máximo (kW) Máx(A) (%) Mín.(kV) Ativa Reativa (%) (linha) Máxima (kW) Máx(kVAr) (linha) PCSO 425.63 1134,94 3,09 0,07 13,427 10452,72 3158,56 inicial (1-59)(202)(1-59)(137-138)(1-59)Linha (Resultado do PCSO após a linearização do circuito que apresentou o maior erro) linearizada 137-138 425.62 856,67 0,65 0,017 13,428 10452,72 3158,56 (202)(1-59)(1-59)(1-59)

Tabela 22 - Resultados para o sistema teste de 202 nós com linearização

Fonte: Dados da pesquisa do autor

Para o sistema de 202 nós apresentado, a estratégia de linearização da equação do cálculo da corrente do circuito que apresenta o maior erro porcentual permitiu encontrar uma solução com valor máximo *erro*_{ij} em percentual, menor que 1% como mostrado na Tabela 22. Sendo assim, as restrições cônicas estão ativas na solução do problema de PCSOIM encontrada no processo de linearização, ou seja, esta solução satisfaz o problema de PNLIM.

Nesta solução encontrada pelo problema de PCSOIM, foi indicada a instalação de 5 bancos de capacitores fixos nos nós 53, 113, 127, 188 e 200, todos com 6 módulos e com uma potência reativa injetada de 1800 kVAr em cada barra.

O gráfico apresentado na Figura 78 mostra o perfil da magnitude de tensão nas barras encontrado pelo modelo de PCSOIM para o sistema de 202 nós, após a linearização da equação do cálculo da corrente do ramo 137-138.

Tensão (kV) 13,9 13,8 13,7 13,6 13,5 13,4 13,3 13,2 100 20 4 9 120 140 80 180

Figura 78 - Perfil da magnitude de tensão para o sistema de 202 nós (PCSOIM)

Fonte: Autor

O gráfico apresentado na Figura 79 apresenta os valores das magnitudes dos fluxos de corrente nos ramos, encontrado pelo modelo de PCSOIM para o sistema de 202 nós, após a linearização da equação do cálculo da corrente do ramo 137-138.

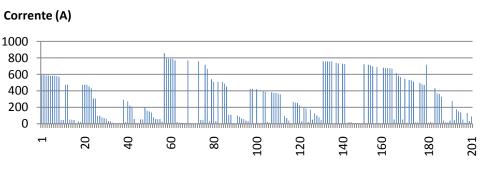


Figura 79 - Perfil da magnitude de corrente (PCSOIM)

Ramos

O gráfico apresentado na Figura 80 mostra a variação potência reativa nos ramos para o sistema de 202 nós, encontrado pelo modelo de PCSOIM, após a linearização da equação do cálculo da corrente do ramo 137-138.

Potência reativa (kVAr)

3500
3000
2500
2000
1500
1000
500
0
-500
-1000
-1500
Ramos

Figura 80 - Variação da potência reativa (PCSOIM)

Fonte: Autor

5.6 Planejamento da operação de sistemas de distribuição de energia elétrica radiais com fontes renováveis e armazenamento de energia

Nesta seção o objetivo é resolver o problema de planejamento da operação de sistemas de distribuição (POSD) de energia elétrica, modelado como um problema de PNLIM. Trata-se de otimizar os custos ou as perdas de energia de um sistema de distribuição equipado com geradores distribuídos (GDs), bancos de capacitores (BCs), reguladores de tensão (RTs), fontes de energias renováveis e dispositivos de armazenamento de energia.

Todos estes equipamentos visam uma melhora no funcionamento do sistema. Serão utilizadas as equações apresentadas nas seções anteriores.

5.6.1 Reguladores de Tensão

A instalação de reguladores de tensão (RTs) tem como principal objetivo corrigir os níveis de tensão no sistema.

Os RTs têm um intervalo percentual de variação de tensão e uma chave para o ajuste do tap em determinado número de passos. Uma representação de um regulador de tensão é dada na Figura 81.

Figura 81 - Esquema de um regulador de tensão

Fonte: Adaptado de Alves (2012

Na figura 81, $V_{i,d}$ é a tensão no nó i e $V_{j,d}$ é a tensão regulada. O tap $t_{ij,d}$ do RT, varia na faixa de regulação $[1 - R_{ij}^{\%}, 1 + R_{ij}^{\%}]$ em intervalos discretos, onde o tamanho de cada passo é $\frac{R_{ij}^{\%}}{\overline{nt}_{ii}}$. $R_{ij}^{\%}$ é a porcentagem de regulação do RT conectado entre os nós ij.

As equações que modelam os reguladores de tensão são dadas por (233)-(237).

$$V_{j,d} = t_{ij,d} V_{i,d} \qquad \forall ij \in \Omega_{rt}, \forall d \in \Omega_d$$
 (233)

$$t_{ij,d} = 1 + R_{ij}^{\%} \frac{nt_{ij,d}}{\overline{nt}_{ij}} \qquad \forall ij \in \Omega_{rt}, \forall d \in \Omega_{d} \qquad (234)$$

$$|nt_{ij,d} - nt_{ij,d-1}| \leq \overline{\Delta}_{ij}^{rt} \qquad \forall ij \in \Omega_{rt}, \forall d \in \Omega_{d}; d > 1 \qquad (235)$$

$$-\overline{nt}_{ij} \leq nt_{ij,d} \leq \overline{nt}_{ij} \qquad \forall ij \in \Omega_{rt}, \forall d \in \Omega_{d} \qquad (236)$$

$$|nt_{ij,d} - nt_{ij,d-1}| \le \bar{\Delta}_{ij}^{rt}$$
 $\forall ij \in \Omega_{rt}, \forall d \in \Omega_d; d > 1$ (235)

$$-\overline{nt}_{ij} \le nt_{ij,d} \le \overline{nt}_{ij} \qquad \forall ij \in \Omega_{rt}, \forall d \in \Omega_d$$
 (236)

$$nt_{ij,d} \in \mathbb{N}$$
 $\forall ij \in \Omega_{rt}, \quad \forall d \in \Omega_d$ (237)

A equação (233) indica que a tensão regulada no nó j do RT deve ser igual a tensão no nó i multiplicada pelo tap $t_{ij,d}^{rt}$, em cada nível de demanda d. A igualdade (234) serve para calcular o valor do tap. Já a restrição (235) serve para limitar o número máximo de variações de taps entre níveis de demanda consecutivos. Por último, a equação (236) limita a variação do número inteiro (237) de taps na faixa \overline{nt}_{ij}^{rt} em cada nível de demanda.

Observe que a equação (233) deve ser elevada ao quadrado para se obter a variável $V_{i,d}^{qdr}$, que aparece no modelo de POSD.

$$V_{i,d}^{qdr} = t_{ij,d}^2 V_{i,d}^{qdr} \qquad \forall ij \in \Omega_{rt}, \forall d \in \Omega_d$$
 (238)

Pode-se definir a variável $t_{ij,d}^{qdr} = t_{ij,d}^2$. A partir dessa mudança, é preciso elevar a equação (234) ao quadrado onde obtemos (239).

$$t_{ij,d}^{qdr} = 1 + 2R_{ij}^{\%} \frac{nt_{ij,d}}{nt_{ij}} + (R_{ij}^{\%})^2 \left(\frac{nt_{ij,d}}{nt_{ij}}\right)^2 \qquad \forall ij \in \Omega_{rt}, \forall d \in \Omega_d$$
 (239)

A variável inteira $nt_{ij,d}$ pode ser transformada em um conjunto de variáveis binárias $bt_{ij,d,k}$.

$$nt_{ij,d} = \sum_{k=0}^{2\overline{nt}_{ij}} \left[\left(k - \overline{nt}_{ij} \right) bt_{ij,d,k} \right], \qquad \forall ij \in \Omega_{rt}, \forall d \in \Omega_{d}$$

$$\sum_{k=0}^{2\overline{nt}_{ij}} bt_{ij,d,k} = 1, \qquad \forall ij \in \Omega_{rt}, \forall d \in \Omega_{d}$$

$$bt_{ij,d,k} \text{ binário} \qquad \forall ij \in \Omega_{rt}, \forall d \in \Omega_{d}; \forall k = 0, \dots, 2\overline{nt}_{ij}$$

$$(240)$$

Neste caso, a tensão regulada $V_{j,d}^{qdr}$ pode ser calculada pela expressão:

$$V_{j,d}^{qdr} = \sum_{k=0}^{2\overline{nt}_{ij}} \left[\left(1 + R_{ij}^{\%} \frac{(k - \overline{nt}_{ij})}{\overline{nt}_{ij}} \right)^2 V_{i,d}^{qdr} b t_{ij,d,k} \right] \quad \forall ij \in \Omega_{rt}, \forall d \in \Omega_d$$
 (241)

Ainda temos a expressão não linear $V_{i,j,d,k}^c = V_{i,d}^{qdr} bt_{ij,d,k}$, que pode ser linearizada através da formulação disjuntiva

$$(\underline{V}^{2})bt_{ij,d,k} \leq V_{i,j,d,k}^{c} \leq (\overline{V}^{2})bt_{ij,d,k} \quad \forall ij \in \Omega_{rt}, \forall d \in \Omega_{d}; \forall k = 0, \dots, 2\overline{nt}_{ij}$$
 (242)
$$(\underline{V}^{2})(1 - bt_{ij,d,k}) \leq V_{i,d}^{qdr} - V_{i,j,d,k}^{c} \leq (\overline{V}^{2})(1 - bt_{ij,d,k})$$

$$\forall ij \in \Omega_{rt}, \forall d \in \Omega_{d}; \forall k = 0, \dots, 2\overline{nt}_{ij}$$
 (243)

Após esse processo, as equações que modelam os reguladores de tensão são dadas por (244)-(249).

$$V_{j,d}^{qdr} = \sum_{k=0}^{2\overline{nt}_{ij}} \left[\left(1 + R_{ij}^{\%} \frac{(k - \overline{nt}_{ij})}{\overline{nt}_{ij}} \right)^2 V_{i,j,d,k}^c \right] \qquad \forall ij \in \Omega_{rt}, \forall d \in \Omega_d$$
 (244)

$$\sum_{k=0}^{2\overline{nt}_{ij}} bt_{ij,d,k} = 1 \qquad \forall ij \in \Omega_{rt}, \forall d \in \Omega_d$$
 (245)

$$(\underline{V}^2)bt_{ij,d,k} \le V_{i,j,d,k}^c \le (\overline{V}^2)bt_{ij,d,k} \qquad \forall d \in \Omega_d; \forall k = 0, ..., 2\overline{nt}_{ij} \qquad (246)$$

$$(\underline{V}^{2})(1 - bt_{ij,d,k}) \leq V_{i,d}^{qdr} - V_{i,j,d,k}^{c} \leq (\overline{V}^{2})(1 - bt_{ij,d,k})$$

$$\forall d \in \Omega_{d}; \forall k = 0, ..., 2\overline{nt}_{ii}$$
 (247)

$$\left| \sum_{k=0}^{2\overline{nt}_{ij}} \left[\left(k - \overline{nt}_{ij} \right) b t_{ij,d,k} \right] - \sum_{k=0}^{2\overline{nt}_{ij}} \left[\left(k - \overline{nt}_{ij} \right) b t_{ij,d-1,k} \right] \right| \leq \overline{\Delta}_{ij}^{rt}$$

$$\forall ij \in \Omega_{rt}$$
, $\forall d \in \Omega_d$; $d > 1$ (248)

$$bt_{ij,d,k}$$
 binário $\forall ij \in \Omega_{rt}$, $\forall d \in \Omega_d$; $\forall k = 0, ..., 2\overline{nt}_{ij}$ (249)

5.6.2 Formulação matemática do problema de otimização da operação de sistemas de distribuição de energia elétrica radiais com fontes renováveis e armazenamento de energia

Esta formulação matemática do problema de POSD com fontes renováveis e armazenamento de energia é modelada como um problema de PNLIM. Este modelo original consiste em um problema de difícil resolução, neste caso, a solução deste problema será encontrada pela resolução de um problema de PCSOIM, em conformidade com o Teorema (5.1). O modelo é dado pelas equações (250)-(282).

$$\min v = \sum_{d \in \Omega_d} (c^{es} \Delta t) \sum_{i \in \Omega_{b_{cub}}} P_{i,d}^S + \sum_{d \in \Omega_d} (c^{gd} \Delta t) \sum_{i \in \Omega_{gd}} P_{i,d}^{gd}$$
 (250)

s.a

$$\sum_{(k,i)\in\Omega_{l}} P_{ki,d} - \sum_{(i,j)\in\Omega_{l}} (P_{ij,d} + R_{ij} I_{ij}^{qdr}) + \sum_{(k,i)\in\Omega_{rt}} P_{ki,d}^{rt} - \sum_{(k,i)\in\Omega_{rt}} P_{ij,d}^{rt} + P_{i,d}^{S} + \sum_{m\in\Omega_{gd}/i=L_{gd}(m)} P_{m,d}^{gd} + \sum_{a\in\Omega_{rs}/i=L_{rs}(a)} P_{a,d}^{rs} + \sum_{h\in\Omega_{bs}/i=L_{bs}(h)} (P_{h,d}^{bs_{p}} - P_{h,d}^{bs_{S}}) = P_{i,d}^{D}$$

$$\forall i \in \Omega_{h}$$
 (251)

$$\sum_{(k,i)\in\Omega_{l}}Q_{ki,d} - \sum_{(i,j)\in\Omega_{l}}(Q_{ij,d} + X_{ij}I_{ij}^{qdr}) + \sum_{(k,i)\in\Omega_{rt}}Q_{ki,d}^{rt} - \sum_{(k,i)\in\Omega_{rt}}Q_{ij,d}^{rt} + Q_{i,d}^{s} +$$

$$\sum_{m \in \Omega_{gd} / i = L_{gd}(m)} Q_{m,d}^{gd} + \sum_{n \in \Omega_{bc} / i = L_{bc}(n)} Q_{n,d}^{bc} = Q_{i,d}^{D}, \qquad \forall i \in \Omega_{b}$$
 (252)

$$V_{i,d}^{qdr} - V_{i,d}^{qdr} - 2(R_{ij}P_{ij,d} + X_{ij}Q_{ij,d}) - Z_{ij}^{2}I_{ij,d}^{qdr} = 0 \qquad \forall ij \in \Omega_{l}$$
 (253)

$$V_{i,d}^{qdr} I_{ii,d}^{qdr} = P_{ii,d}^2 + Q_{ij,d}^2, \forall ij \in \Omega_l (254)$$

$$(P_{i,d}^{dg})^2 + (Q_{i,d}^{dg})^2 \le (S_{i,d}^{dg})^2, \qquad \forall i \in \Omega_{gd}$$
 (255)

$$P_{i,d}^{dg} \ge 0, \qquad \forall i \in \Omega_{gd} \qquad (256)$$

$$-P_{i,d}^{dg}\tan\left(\cos^{-1}\left(\underline{f}\underline{p}_{i}^{gd}\right)\right) \leq Q_{i,d}^{dg} \leq P_{i,d}^{dg}\tan\left(\cos^{-1}\left(\overline{f}\overline{p}_{i}^{gd}\right)\right), \qquad \forall \ i \in \Omega_{gd}$$
 (257)

$$Q_{n,d}^{bc} = n \ a_{n,d}^{bc} Q_n^{esp} \qquad \forall \ n \in \Omega_{bc} \ , \forall \ d \in \Omega_d$$
 (258)

$$na_{n,1}^{bc} = 1$$
 $\forall n \in \Omega_{bc}; q_n^{sw} = 0, \forall d \in \Omega_d$ (259)

$$|na_{n,d}^{bc} - na_{n,d-1}^{bc}| \le \bar{\Delta}_n^{bc} q_n^{sw} \qquad \forall n \in \Omega_{bc}, \forall d \in \Omega_d; d > 1$$
 (260)

$$0 \le na_{n,d}^{bc} \le \overline{na}_n^{bc} \qquad \forall n \in \Omega_{bc} , \forall d \in \Omega_d$$
 (261)

$$V_{j,d}^{qdr} = \sum_{k=0}^{2\overline{nt}_{ij}} \left[\left(1 + R_{ij}^{\%} \frac{(k - \overline{nt}_{ij})}{\overline{nt}_{ij}} \right)^2 V_{i,j,d,k}^c \right] \qquad \forall ij \in \Omega_{rt}, \forall d \in \Omega_d$$
 (262)

$$\sum_{k=0}^{2\overline{nt}_{ij}} bt_{ij,d,k} = 1 \qquad \forall ij \in \Omega_{rt} , \forall d \in \Omega_d$$
 (263)

$$(\underline{V}^2)bt_{ij,d,k} \leq V_{i,j,d,k}^c \leq (\overline{V}^2)bt_{ij,d,k} \quad \forall \ ij \in \Omega_{rt} \ , \forall \ d \in \Omega_d \ ; \ \forall \ k = 0, \dots, 2\overline{nt}_{ij} \quad (264)$$

$$(\underline{V}^2)(1-bt_{ij,d,k}) \leq V_{i,d}^{adr} - V_{i,d}^c, d_i \leq (\overline{V}^2)(1-bt_{ij,d,k})$$

$$\forall ij \in \Omega_{rt}, \forall d \in \Omega_d; \forall k = 0, ..., 2\overline{nt}_{ij}$$
 (265)
$$\left| \sum_{k=0}^{2\overline{nt}_{ij}} \left[(k-\overline{nt}_{ij})bt_{ij,d,k} \right] - \sum_{k=0}^{2\overline{nt}_{ij}} \left[(k-\overline{nt}_{ij})bt_{ij,d-1,k} \right] \right| \leq \underline{A}_{ij}^{rt}$$

$$\forall ij \in \Omega_{rt}, \forall d \in \Omega_d; d > 1$$
 (266)
$$bt_{ij,d,k} \text{ binário} \qquad \forall ij \in \Omega_{rt}, \forall d \in \Omega_d; \forall k = 0, ..., 2\overline{nt}_{ij}$$
 (267)
$$P_{a,d}^{rs} = \overline{P}_{a,d}^{rs} \qquad \forall a \in \Omega_{rs}, \forall d \in \Omega_d$$
 (268)
$$e_{h,d} P_k^{bsp} \leq P_{h,d}^{bsp} \leq \overline{P}_h^{bsp} e_{h,d} \qquad \forall h \in \Omega_{bs}, \forall d \in \Omega_d$$
 (269)
$$(1-e_{h,d}) P_k^{bss} \leq P_{h,d}^{bss} \leq \overline{P}_h^{bss} (1-e_{h,d}) \qquad \forall h \in \Omega_{bs}, \forall d \in \Omega_d$$
 (270)
$$E_{h,1}^{bs} = E_{h,1}^{bs} + \eta_h^{bss} \Delta t P_{h,1}^{bss} - \frac{1}{\eta_h^{bsp}} \Delta t P_{h,1}^{bsp} - \beta_h^{bs} \Delta t E_{h,1}^{bs} \qquad \forall h \in \Omega_{bs}$$
 (271)
$$E_{h,d}^{bs} = E_{h,d-1}^{bs} + \eta_h^{bss} \Delta t P_{h,d}^{bss} - \frac{1}{\eta_h^{bsp}} \Delta t P_{h,d}^{bss} - \beta_h^{bs} \Delta t E_{h,d}^{bs},$$

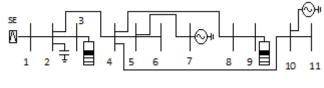
$$\forall h \in \Omega_{bs}, \forall d \in \Omega_d$$
 (273)
$$e_{h,d} = E_{h,d}^{bs} - 1 \qquad \forall h \in \Omega_{bs}, \forall d \in \Omega_d$$
 (274)
$$0 \leq e_{h,d}^{+} \leq 1 \qquad \forall h \in \Omega_{bs}, \forall d \in \Omega_d$$
 (275)
$$0 \leq e_{h,d}^{-} \leq 1 \qquad \forall h \in \Omega_{bs}, \forall d \in \Omega_d$$
 (276)
$$\sum_{de\Omega_d} e_{h,d}^{+} + \sum_{de\Omega_d} e_{h,d}^{-} \leq \overline{A}_h^{bs}, \qquad \forall h \in \Omega_{bs}$$
 (277)
$$(P_{i,d}^{S})^2 + (Q_{i,d}^{i,d})^2 \leq (\overline{S}_i^{S})^2, \forall i \in \Omega_{bsub}, \qquad \forall d \in \Omega_d$$
 (278)
$$v^2 \leq V_{i,d}^{adr} \leq \overline{V}^2 \qquad \forall i \in \Omega_b, \forall d \in \Omega_d$$
 (280)
$$e_{h,d} \in \{0,1\}, \forall h \in \Omega_{hs}, \qquad \forall d \in \Omega_d$$
 (281)

5.7 Testes e resultados para o sistema de distribuição de energia elétrica radial com fontes renováveis e armazenamento de energia

Nesta seção são apresentados os resultados obtidos para avaliar a metodologia proposta que de acordo com o Teorema (5.1), através da resolução de um problema de PCSOIM, encontra-se a solução ótima do problema de PNLIM para o problema de planejamento da operação de sistemas de distribuição de energia elétrica radiais com fontes

renováveis e armazenamento de energia. Os testes foram executados para o sistema de 11 barras, considerando 144 níveis de demanda e o de 42 barras considerando 48 níveis de demanda. Os principais dados elétricos dos sistemas usados estão no Anexo C. Os dados elétricos completos do sistema de 11 barras podem ser encontrados em (LEVRON, 2013) e os dados do sistema de 42 barras em (GONÇALVES, 2013).

As implementações foram feitas e testadas em linguagem AMPL (FOURER; GAY; KERNIGHAN, 2002) e foi utilizado o solver CPLEX (ILOG, 2008) para resolver os problemas de PCSOIM. Para os problemas de PNLIM, foi utilizado o solver KNITRO (WALTZ; NOCEDAL, 2003).


Para os sistemas que não satisfazem alguma das condições do Teorema (5.1) será aplicado o processo de linearização apresentado no Capítulo 3. Utilizar-se-á o indicador de precisão $erro_{ij}$, definido também no Capítulo 3. Neste contexto, a restrição cônica será considerada ativa na solução do problema de PCSO, se para esta solução o valor do indicador $erro_{ij}$, for menor que 1% para todos os circuitos. Por outro lado, se o valor do indicador $erro_{ij}$ for maior ou igual a 1% para algum dos circuitos do sistema, então a restrição cônica no problema de PCSOIM não será considerada ativa.

5.7.1 Teste com o sistema de 11 nós

Os parâmetros do sistema de distribuição de 11 nós estão no Anexo C1. Os dados completos do sistema de distribuição de 11 nós podem ser encontrados em (LEVRON, 2013).

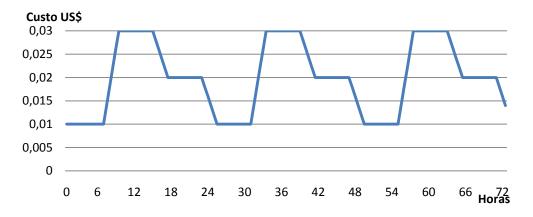
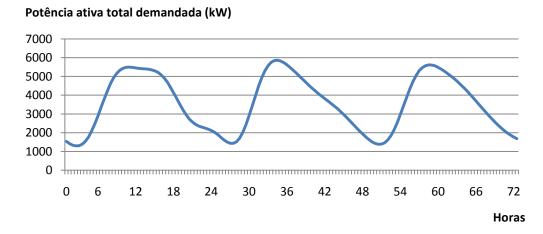

Este sistema possui uma única subestação localizada no nó 1. Os valores de magnitude de tensão para o sistema são de 13.11 kV para a tensão mínima e de 13,8 kV para a tensão máxima. A Figura 82 representa o diagrama unifilar do sistema de 11 nós com dois geradores de fontes renováveis nos nós 7 e 10, bem como dois dispositivos de armazenamento de energia nos nós 3 e 9 com $\eta_h^{bs_S} = \eta_h^{bs_P} = 0,95$, $\beta_h^{bs} = 0,021$ e uma capacidade máxima de armazenamento de energia, $\bar{E}_h^{bs} = 400 \ kWh$ e $\underline{E}_h^{bs} = 0$, para os dois bancos. O limite do transformador da subestação é de $\bar{S}_i^S = 5 \ MVA$. Este sistema é modelado matematicamente como um problema de PNLIM. Adotou-se um intervalo de discretização $\Delta t = 0,5h$, e um período de análise de 72h, assim, tem-se 144 níveis de demanda para análise.

Figura 82 - Diagrama unifilar do sistema de 11 nós

O gráfico apresentado na Figura 83 mostra a variação do preço de compra da energia da empresa de distribuição nos diferentes níveis de demanda, para o sistema de 11 nós antes de otimizar a rede.


Figura 83 - Preço de compra da energia da subestação (SE)

Fonte: Autor

O gráfico apresentado na Figura 84 apresenta a potência ativa total demandada, nos diferentes níveis de demanda para o sistema de 11 nós antes de otimizar a rede.

Figura 84 - Potência ativa total demandada para o sistema de 11 nós

O gráfico apresentado na Figura 85 apresenta a potência reativa total demandada, nos diferentes níveis de demanda para o sistema de 11 nós antes de otimizar a rede.

Figura 85 - Potência reativa total demandada para o sistema de 11 nós

Potência reativa total demandada (kVAr) -**Horas**

Fonte: Autor

Na Tabela 23 são apresentados os resultados obtidos para o sistema teste de 11 nós.

Tabela 23 - Resultados para o sistema teste de 11 nós

Sistema de 11 nós	PCSOIM
Valor Mínimo da variável dual associada à restrição cônica. (circuito);	0,072
demanda	(2,4); 51
Máximo erro _{ij} encontrado pelo modelo de PCSO (%)	0
(circuito)	
Erro médio entre a corrente calculada e a encontrada pelo modelo de	0
PCSO (%)	
Custo total de compra de energia na SE (US\$)	4762,65
Perdas de energia nas linhas em todos os níveis de demanda (kWh)	2047,68
Perdas de energia nos dispositivos de armazenamento em todos os níveis de demanda (kWh)	385,68
Custo da energia fornecida pelo banco de baterias (US\$)	39,34

Fonte: Dados da pesquisa do autor

Com relação aos custos de energia para o sistema de 11 nós. O valor total de US\$ 4762,65 representa a soma do custo da potência ativa demandada com a soma dos custos das perdas de energia em todos os níveis de demanda, menos os custos da energia fornecida pelos dispositivos de armazenamento e pelas fontes renováveis, vezes o custo da geração.

Para este sistema de 11 nós, todas as variáveis duais relacionadas à restrição cônica são positivas, sendo a menor delas no valor $\rho_{2,4} = 0,72$, encontrada no nível de demanda 51. Neste caso, de acordo com o Teorema (5.1), a restrição cônica está ativa na solução encontrada para o problema de PCSOIM e é a solução ótima para o problema de PNLIM correspondente.

Observe que para este sistema, o valor de *erro*_{ii} máximo foi de 0%.

O gráfico da Figura 86 representa o valor da magnitude de tensão mínima no sistema, em todos os níveis de demanda da solução ao modelo de PCSOIM.

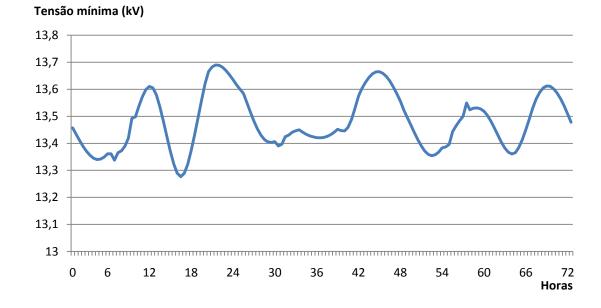


Figura 86 - Tensão mínima no sistema em todos os níveis de demanda

Fonte: Autor

A variação das perdas de potência ativa no sistema de 11 nós, para cada nível de demanda, encontrada pelo modelo de PCSOIM está representada na Figura 87.

Potência ativa (kW) **Horas**

Figura 87 - Perda de potência ativa no sistema em todos os níveis de demanda

A relação entre a potência ativa fornecida pela subestação e a potência ativa demandada para o sistema de 11 nós, para cada nível de demanda, é apresentada na Figura 88.

Figura 88 - Potência ativa na SE e potência ativa demandada em todos os níveis de demanda

A variação da potência ativa injetada pelos dois geradores de fontes renováveis, encontrada pelo modelo de PCSOIM para o sistema de 11 nós, em cada nível de demanda, encontrada é apresentada na Figura 89.

Potência injetada pelos geradores de fontes renováveis (kW) **Horas** Gerador 1 Gerador 2

Figura 89 - Potência ativa injetada pelos dois geradores de fontes renováveis (PCSOIM)

Fonte: Autor

A soma da potência ativa total injetada com a potência ativa total extraída pelos dois dispositivos de armazenamento, encontrada pelo modelo de PCSOIM para o sistema de 11 nós, em cada nível de demanda, é apresentada na Figura 90.

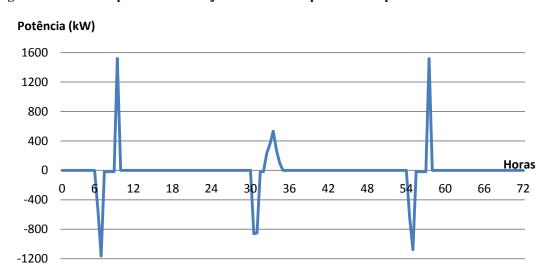


Figura 90 - Soma da potência ativa injetada e extraída pelos dois dispositivos de armazenamento

O estado de carga de energia armazenada nos DAE para o sistema de 11 nós, em cada nível de demanda, é apresentada na Figura 91.

Energia (kWh) Horas

Figura 91 - Estado de carga dos DAE (kWh)

Fonte: autor

O gráfico da Figura 92 representa a variação das perdas de potência reativa no sistema para cada nível de demanda, encontrada pelo modelo de PCSOIM.

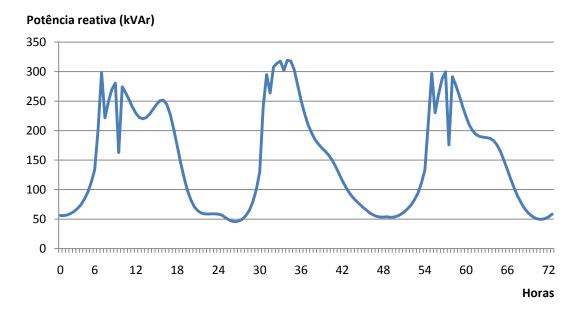


Figura 92 - Perdas de potência reativa em todos os níveis de demanda

A relação entre a potência reativa fornecida pela subestação e a potência reativa demandada para o sistema de 11 nós, para cada nível de demanda, é apresentada na Figura 93.

Potência ativa (kW) Horas -20 Potência reativa na SE Potência reativa demandada

Figura 93 - Potência reativa na SE e potência reativa demandada em todos os níveis de demanda

Fonte: Autor.

5.7.2 Teste do sistema de 42 nós

Os parâmetros do sistema de distribuição de 42 nós estão no Anexo C.2. Os dados completos do sistema de distribuição de 42 nós podem ser encontrados em (LEVRON, 2013).

Este sistema possui uma única subestação localizada no nó 1. Os valores de magnitude de tensão para o sistema são de 12,834 kV para a tensão mínima e de 13,8 kV para a tensão máxima.

A Figura 94 apresenta o diagrama unifilar do sistema de 42 nós, com dois geradores distribuídos nos nós 2 e 3, cinco geradores de fontes renováveis injetando potência ativa, sendo três solares nos nós 6, 10 e 14 e dois eólicos nos nós 35 e 37. Oito dispositivos de armazenamento de energia nos nós 2, 3, 14, 22, 27, 32, 35 e 37 bem como dois dispositivos de armazenamento nos nós 3 e 9, cinco banco de capacitores chaveados nos nós 38, 39, 40, 41 e 42 e quatro reguladores de tensão nos nós 4, 5, 12 e 18. Adotou-se um intervalo de discretização $\Delta t = 0.5h$, e um período de análise de 24,5h, assim, tem-se 49 níveis de demanda para análise. O limite máximo de potência aparente para todos os geradores distribuídos é de $S_i^{gd} = 1000$ kVA. O limite inferior do fator de potência capacitivo é de

 $\underline{pf_i} = 0.95$ para todos os geradores e o limite inferior do fator de potência indutivo é $\overline{pf_i} = 0.95$ para todos os geradores.

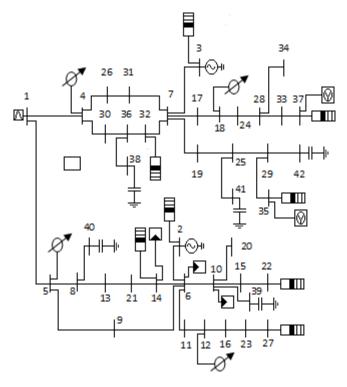


Figura 94 - Diagrama unifilar do sistema de 42 nós

Fonte: autor

O gráfico apresentado na Figura 95 mostra a variação do preço de compra da energia da empresa de distribuição nos níveis de demanda, para o sistema de 42 nós.

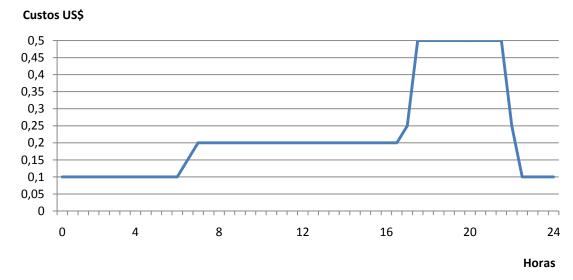


Figura 95 - Preço de compra da energia da subestação (SE)

O gráfico apresentado na Figura 96 apresenta a potência ativa total demandada, nos diferentes níveis de demanda para o sistema de 42 nós.

Soma das demandas ativas (kW) **Horas**

Figura 96 - Potência ativa total demandada para o sistema de 42 nós.

Fonte: Autor

O gráfico apresentado na Figura 97 apresenta a potência reativa total demandada, nos diferentes níveis de demanda para o sistema de 42 nós.

Soma das demandas reativas (kVAr) **Horas**

Figura 97 - Potência reativa total demandada para o sistema de 42 nós

Tabela 24 - Resultados para o sistema teste de 42 nós

Sistema de 42 nós	PCSOIM
Valor Mínimo da variável dual associada à restrição	2,2
cônica. (circuito); demanda	(7-3); 12
Máximo erroij encontrado pelo modelo de PCSO (%)	0
(circuito)	
Erro médio entre a corrente calculada e a encontrada	0
pelo modelo de PCSO (%)	
Custo total de compra de energia na SE (US\$)	88072,31
Custo da potência ativa demandada (US\$)	783,776
Custo das perdas de energia em todos os níveis de demanda (US\$)	35760,8
Custo da energia fornecida pelos dispositivos de	363,407
armazenamento de energia. (US\$)	
Custo da energia fornecida pela fonte renovável (US\$)	3242,31

Fonte: Dados da pesquisa do autor

Na Tabela 24 são apresentados os principais resultados com relação aos custos de energia para o sistema de 42 nós. O valor total de US\$ 88072,31 representa os custos da potência ativa demandada com a soma das perdas de energia em todos os níveis de demanda, menos os custos da energia fornecida pelo banco de baterias e pelas fontes renováveis, multiplicados pelos custos de geração.

Para o sistema de 42 nós, todas as variáveis duais relacionadas à restrição cônica são positivas. Neste caso, de acordo com o Teorema (5.1), a restrição cônica está ativa na solução encontrada para o problema de PCSOIM e é a solução ótima para o problema de PNLIM correspondente. Observe que para este sistema o valor de *erro*_{ii} máximo foi de 0%.

O gráfico da Figura 98 representa o valor da magnitude de tensão mínima no sistema encontrado pelo modelo de PCSOIM, em todos os níveis de demanda.

Tensão mínima (kV) 13,6 13,4 13,2 13 12,8 12,6 12,4 0 4 8 12 20 24 16 **Horas**

Figura 98 - Tensão mínima no sistema em todos os níveis de demanda

A variação das perdas de potência ativa no sistema de 42 nós, para cada nível de demanda, encontrada pelo modelo de PCSOIM está representada na Figura 99.

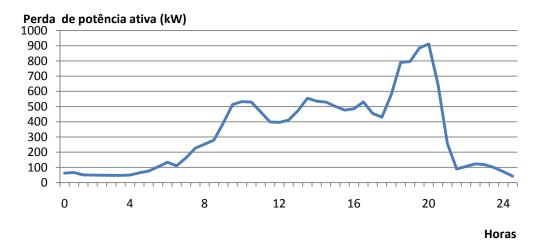


Figura 99 - Perdas de potência ativa no sistema em todos os níveis de demanda

Fonte: Autor

A relação entre a potência ativa fornecida pela subestação e a potência ativa demandada para o sistema de 42 nós, para cada nível de demanda, é apresentada na Figura 100.

Potência ativa (kW) 30000 25000 20000 15000 10000 5000 0 0 4 8 16 20 12 24 Horas

Figura 100 - Potência ativa na SE e potência ativa demandada em todos os níveis de demanda

Potência ativa demandada

Potência ativa na SE

A variação da potência ativa injetada pelos dois geradores distribuídos, encontrada pelo modelo de PCSOIM para o sistema de 42 nós, em cada nível de demanda, encontrada é apresentada na Figura 101.

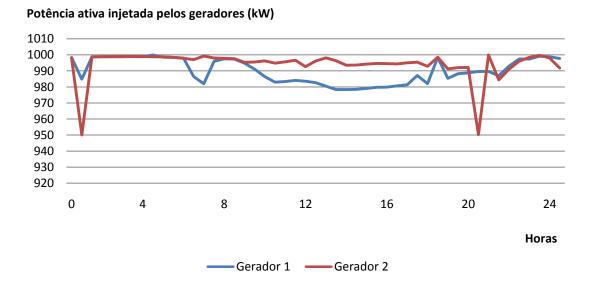


Figura 101 - Potência ativa injetada pelos dois geradores distribuídos (PCSOIM)

Fonte: autor

A variação da potência ativa injetada pelos dispositivos de armazenamento, encontrada pelo modelo de PCSOIM para o sistema de 42 nós, em cada nível de demanda, encontrada é apresentada na Figura 102.

Potência ativa injetada (kW) Horas Dispositivo 1 —— Dispositivo 2 —— Dispositivo 3 —— Dispositivo 4 - Dispositivo 5 ---- Dispositivo 6 - - Dispositivo 7 ····· Dispositivo 8

Figura 102 - Potência ativa injetada pelos dispositivos de armazenamento

A variação da potência ativa extraída pelos dispositivos de armazenamento, encontrada pelo modelo de PCSOIM para o sistema de 42 nós, em cada nível de demanda, encontrada é apresentada na Figura 103.

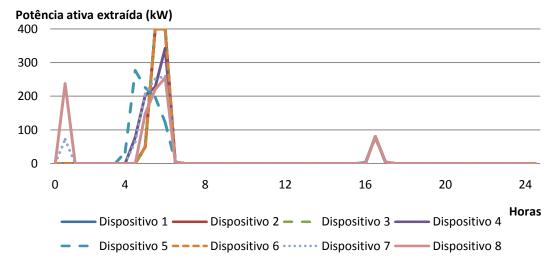
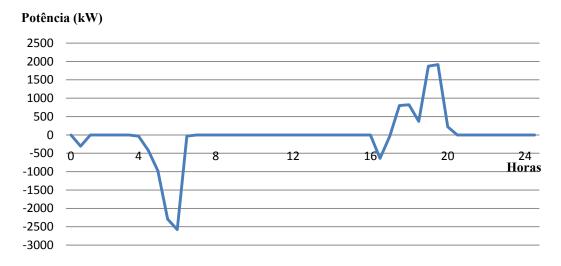



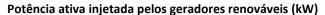
Figura 103 - Potência ativa extraída pelos dispositivos de armazenamento

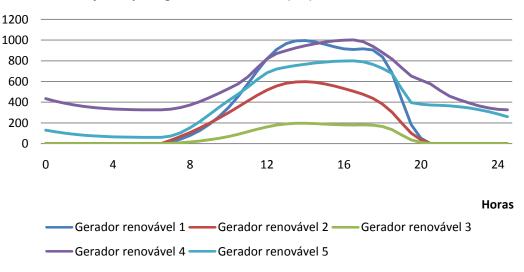
Fonte: autor

A soma da potência ativa total injetada com a potência ativa total extraída pelos dispositivos de armazenamento, encontrada pelo modelo de PCSOIM para o sistema de 42 nós, em cada nível de demanda, é apresentada na Figura 104.

Figura 104 - Soma da potência ativa injetada e extraída pelos dispositivos de armazenamento

O estado de carga de energia armazenada nos DAE para o sistema de 11 nós, em cada nível de demanda, é apresentada na Figura 91.

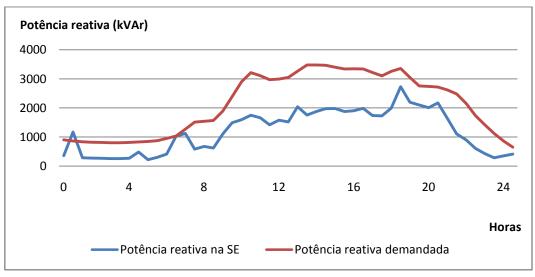

Figura 105 - Estado de carga dos DAE



Fonte: autor

A variação da potência ativa injetada pelos geradores de fontes renováveis, encontrada pelo modelo de PCSOIM para o sistema de 42 nós é apresentada na Figura 106.

Figura 106 - Potência ativa injetada pelos geradores renováveis (PCSOIM)



Fonte: Autor.

A relação entre a potência reativa fornecida pela subestação e a potência reativa demandada para o sistema de 42 nós, para cada nível de demanda, é apresentada na Figura 104.

Figura 107 - Potência reativa na SE e potência reativa demandada em todos os níveis de demanda

5.8 Conclusões do capítulo

Neste capítulo foi apresentada uma aplicação do Teorema 5.1 para o problema de POSD, considerando sistemas testes de distribuição. Este problema é modelado como um problema de PNLIM que é um caso geral em relação aos problemas tratados nos capítulos 3 e 4 e são considerados problemas de difícil resolução, devido à condição complicante de integralidade. Para alguns desses problemas, a solução do PNLIM ainda não pode ser encontrada por meio de uma metodologia clássica devido à falta de um solver robusto que resolva os problemas com região de busca não convexa. Na realidade, os solvers comerciais que se propõem a resolver problemas de PNLIM, apresentam problemas de convergência e não alcançam soluções locais de boa qualidade conforme apresentado em (DELGADO, 2013) e (DELGADO, 2014). Sendo assim, é importante principalmente para este tipo de problema, deixar de resolver um PNLIM para resolver um PCSOIM, por se tratar de problemas diferentes com metodologia de resolução e grau de complexidades também diferentes.

Novamente como extensão dos capítulos anteriores, foi constatado que nas condições do Teorema 5.1, apesar dos problemas de PNLIM e de PCSOIM não serem equivalentes, a restrição cônica está ativa na solução do problema de PCSOIM e é, portanto a solução ótima para o problema de PNLIM. Para os casos onde alguma das hipóteses do Teorema 5.1 não é satisfeita, através do processo de linearização da equação do cálculo da corrente na linha que apresenta o maior erro porcentual, chega-se a uma solução ativa na restrição cônica.

CAPÍTULO 6

6 CONSIDERAÇÕES FINAIS

6.1 Conclusão

Neste trabalho, através da programação cônica foi desenvolvida uma estratégia de resolução para problemas de otimização em sistemas de distribuição de energia elétrica modelados originalmente como problemas de PNLIM.

Inicialmente foi provado que, apesar de os problemas de PNL e de PCSO não serem equivalentes, mediante algumas condições, através da resolução de um problema de PCSO, é possível calcular o ponto de operação em regime permanente para um sistema de distribuição radial, modelado como um problema de PNL, pois a restrição cônica no problema de PCSO está ativa no ponto de operação. Uma grande contribuição foi a extensão deste resultado provado através do Teorema (5.1) no capitulo 5, que mediante algumas condições a solução encontrada pelo modelo de PCSOIM é a solução ótima para o problema de PNLIM.

Este resultado contribui com um avanço considerável na pesquisa em sistemas elétricos radiais, pois permite contornar as dificuldades já conhecidas, principalmente dos modelos de PNLIM que além da não linearidade e da não convexidade, ainda possuem o fator complicante de integralidade de algumas variáveis. Dependendo da dimensão do sistema, um problema de PNLIM é de difícil resolução, e ainda que seja possível de ser resolvido com os métodos atuais, não há garantia de ótimo global.

Sendo assim, a estratégia de estabelecer uma equivalência de soluções entre o problema de PNLIM e a solução do problema de PCSOIM para sistemas elétricos radiais foi eficiente como mostram os resultados. Ou seja, é possível contornar as dificuldades agregadas ao problema de PNLIM para sistemas de distribuição radiais, resolvendo um problema de PCSOIM, que possui formulação convexa e que permite encontrar a solução ótima de um problema usando um *solver* comercial.

A metodologia proposta foi avaliada em vários sistemas testes para problemas de sistemas de distribuição, que envolveu o cálculo do ponto de operação em regime permanente, a reconfiguração de sistemas de distribuição, a análise de sistemas de distribuição com geração distribuída, operação ótima e alocação ótima de banco de capacitores e reguladores de tensão e a operação ótima de dispositivos de armazenamento de energia em sistemas com

fontes renováveis. Os sistemas testados, foram os de 03, 11, 33, 42, 70, 136, 202 e de 400 nós. Os modelos foram implementados em linguagem AMPL e foram utilizados os *solvers* CPLEX e KNITRO para a resolução.

Durante os testes foram observadas algumas dificuldades para alguns sistemas testes, pois nestes casos, nem todas as hipóteses requeridas pelas proposições e pelo Teorema 5.1 para que a restrição cônica estivesse ativa foram cumpridas. Para estes sistemas, a estratégia de linearização da equação do cálculo da corrente do ramo onde ocorreu o maior erro calculado pelo indicador de precisão *erro*_{ij} em porcentual (%), se mostrou eficiente e permitiu encontrar uma solução do problema de PCSO com restrição cônica ativa, inclusive ao considerar também a inclusão de variáveis inteiras.

Assim, a estratégia traçada nesta tese permitiu a substituição de alguns problemas de PNLIM, por problemas de PCSOIM que possuem formulação convexa, com solução ótima e *solver* comercial robusto.

6.2 Trabalhos Futuros

No decorrer da pesquisa, surgiram alguns temas que podem ser assuntos de trabalhos futuros:

- Aplicar o Teorema proposto em outros problemas de otimização em sistemas de distribuição de energia elétrica radiais, como por exemplo, planejamento da expansão de sistemas de distribuição de energia elétrica e a restauração de sistemas de energia elétrica.
- Estender a metodologia proposta para resolver problemas de otimização em sistemas de transmissão de energia elétrica malhados.

REFERÊNCIAS

- ABUR, A. Determining the optimal radial network topology within the line flow constrains. In: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS -ISCAS '96, Atlanta. **Proceedings of the...** New York: IEEE, 1996. p. 673-676.
- ALIZADEH, F.; GOLDFARB, D., **Second-order cone programming**. Rutcor: Rutgers University, 2001. (Technical Report, n. 51-2001)
- ALVES, R.P. Alocação ótima de reguladores de tensão em sistemas de distribuição de energia elétrica radiais usando uma formulação linear inteira mista. 2012. 96 f. Dissertação (Mestrado em Automação), Faculdade de Engenharia, Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, 2012.
- ATWA, Y. M.; EL-SAADANY, E. F.; SALAMA, M. M. A.; SEETHAPATHY, R. Optimal renewable resources mix for distribution system energy loss minimization. **Power Systems, IEEE Transactions on,** Piscataway, v. 25, n. 1, 360-370, 2010.
- BAHIENSE, L.; OLIVEIRA, G. C.; PEREIRA, M.; GRANVILLE, S. A mixed integer disjunctive model for transmission network expansion. **IEEE Transactions on Power Systems,** New York, v. 16, n. 3, p. 560–565, 2001.
- BAZARAA, M. S.; JARVIS, J. J.; SHERALI, H. D. **Nonlinear programming**: theory and algorithms. 3. ed. New York: John Wiley & Sons, 2006. 853 p.
- BAZARAA, M. S.; JARVIS, J. J.; SHERALI, H. D. Linear programming and network flows. New York: John Wiley & Sons, 2011. 748 p.
- BONMIN Users' Manual. **COIN-OR Project**. 2007. Disponível em: https://projects.coin-or.org/Bonmin>. Acesso em: 14 abr. 2015.
- BORGES, M. C. O., FRANCO, J. F. e RIDER, M. J. Optimal reconfiguration of electrical distribution systems using mathematical programming. **Journal of Control, Automation and Electrical Systems**, Heidelberg, v. 25, n. 1, p. 103-111, 2014.
- BOYD, S.; VANDENBERGHE, L. Convex optimization. Cambridge: Cambridge University Press. 2004. 716 p.
- BYRD, R. H.; NOCEDAL, J.; WALTZ, R. A. **KNITRO:** An integrated package for nonlinear optimization, large-scale nonlinear optimization. New York: Springer Verlag, 2006. p. 35-59, 2006.
- CASTILLO, E.; CONEJO, A. J.; PEDREGAL, P.; GARCÍA, R.; ALGUACIL, N. **Building and solving mathematical programming models in engineering and science**. New York: Wiley & Sons, 2001.568 p.
- CONOPT Reference Manual. **ARKI Consulting & Development A/S**. 2013.Disponívelem: www.conopt.com/>. Acesso em: 12 abr. 2015.

- DANTZIG, G.B. Linear programming and extensions. Priceton: Princeton University Press, Princeton, 1963. 632 p.
- DELGADO, M. A. J.; POURAKBARI-KASMAEI, M.; RIDER, M. J. **A modified branch and bound algorithm (B&BML) to solve the transmission expansion planning problem**, EEEIC, Polônia. 2013. Disponível em: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6737914>. Acesso em: 14 abr. 2015.
- DELGADO, M. A. J.; RIDER, M. J. Um algoritmo branch and bound para resolver problemas de programação não-linear inteiro misto aplicado à otimização de sistemas elétricos de potência.In: SIMPÓSIO BRASILEIRO DE SISTEMAS ELÉTRICOS, 5, 2014, Foz do Iguaçú. Anais...Foz do Iguaçu: SBSE, 2014. Disponível em: < http://www.sbse.org.br/anais/PDF/SBSE2014-0127.pdf>. Acesso em: 14 abr. 2015.
- ESCOBAR, A.; GALLEGO, R. A.; ROMERO, R. Multi-stage and coordinated planning of the expansion of transmission systems. **IEEE Transactions on Power Systems**, New York, v. 19, n. 2, p. 735–744, 2004.
- FOURER, R.; GAY, D. M.; KERNIGHAN B. W.AMPL: a modeling language for mathematical programming. Pacific Grove: Duxbury Press, 2002. 517 p.
- GANGULY, S.; SAHOO, N. C.; DAS, D. Recent advances on power distribution system planning: a state-of-the-art survey. **Energy Systems**, Heidelberg, v. 4, n. 2, p. 165-193, 2013.
- GARVER, L.L. Transmission network estimation using linear programming. **IEEE Transactions on Power Apparatus and Systems**, Piscataway, v. PAS-89, n. 7, p. 1688–1697, 1970.
- GLINEUR. F. Conic optimization: an elegant framework for convex optimization. **Belgian Journal of Operations Research, Statistics and Computer Science**, Brussels, v. 41, n.1/2, p. 5–28, 2001.
- GLOVER, F.; LAGUNA, M. **Tabusearch.** Boston: Kluwer Academic Publishers, 1996. 382 p.
- GOLDBERG, D.E. Genetics algorithms in search, optimization and machine learning. Reading: Addison Wesley, 1989. 432 p.
- GONÇALVES, R. R. Modelos de programação linear inteira mista para resolver problemas de otimização de sistemas de distribuição de energia elétrica radiais.2013. 209 f. Tese (Doutorado em Engenharia Elétrica) Faculdade de Engenharia, Universidade Estadual Paulista, Ilha Solteira, 2013.
- GUIMARÃES, C. H. C.; RANGEL, R. D. Despacho de unidades geradoras considerando os seus limites de capacidade. In: SIMPÓSIO DE ESPECIALISTAS EM PLANEJAMENTO DA OPERAÇÃO E EXPANSÃO ELÉTRICA, 11, 2009, Belém. **Anais...** Belém: [s.n.], 2009. Disponível em: < http://www.anatem.cepel.br/artigos/REF 14.pdf>. Acesso em: 14 abr. 2015.
- GUROBI optimizer reference manual.**Gurobi optimization:** Version 5.6. 2013. Disponível em: <www.gurobi.com/>. Acesso em: 14 abr. 2014.

- ILOG.CPLEX **Optimization subroutine library guide and reference.** Version 12.1.0. Incline Village, NV, CPLEX Division, ILOG, Inc., 2009. Disponível em: http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html. Acesso em: 14 abr. 2015.
- JÜNGER, M.; LIEBLING, T. H. M.; NADDEF, D.; NEMHAUSER, G.L.; PULLEYBLANK, W.R.; REINELT, G.; RINALDI, G.; WOLSEY, L.A.**50 years of integer programming 1958-2008**. New York: Springer, 2010.
- KALANTAR, M.; DASHTI, R.; DASHTI, R. Combination of network reconfiguration and capacitor placement for loss reduction in distribution system with based genetic algorithm. In: PROCEEDINGS OF THE INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE, (UPEC '06), 41, 2006, Newcastle Upon Tyne. **Proceedings of the...**Newcastle Upon Tyne: [s.n.], 2006. V. 1, p. 308-312.
- KARMARKAR, N. A new polynomial-time algorithm for linear programming. In: **Proceedings of the...**SIXTEENTH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING (pp. 302-311). ACM. 1984.
- KHACHIYAN, L.G. **A Polynomial algorithm in linear programming** (in Russian), Doklady Akademii Nauk SSSR 244 (1979), 1093–1097 [English traslation: Soviet Mathematics Doklady 20, 191–194].
- KIM, S.; KOJIMA, M. Second order cone programming relaxation of nonconvex quadratic optimization problems. 2000. (Technical report, Tokyo Institute of Technology) Dísponível em:http://math.ewha.ac.kr/~skim/Research/socp.pdf>. Acesso em: 06 ago.2014.
- KOSOW, I. L. Máquinas elétricas e transformadores. 4. ed. São Paulo: Globo, 1982. V. 1
- KUMAR, K.; RAMANA, N. V.; KAMAKSHAIAH, S.; NISHANTH, P. M. State of the art for network reconfiguration methodologies of distribution system. **Journal of Theoretical and Applied Information Technology**, New Mal, v. 57, n. 1, p. 25–40, 2013.
- LAND, A. H.; Doig, A. G. An Automatic Method of Solving Discrete Programming Problems. Econometrica, Chichester, v. 28, n. 3, p. 497–520, 1960.
- LAPSEE LABORATÓRIO DE PESQUISAS DE SISTEMAS DE ENERGIA ELÉTRICA. FEIS/UNESP. **Dados dos sistemas testes**. Disponível em:http://www.feis.unesp.br/#!/departamentos/engenharia-eletrica/pesquisas-e-projetos/lapsee/downloads/materiais-de-cursos1193/. Acesso em: 14 abr. 2015.
- LATORRE, G.; CRUZ, R.; AREIZA, J.; VILLEGAS, A. Classification of publications and models on transmission expansion planning. **IEEE Transactions on Power Systems**, New York, v. 18, n. 2, p. 938–946, 2003.
- LAVORATO, M.; FRANCO, J. F.; RIDER, M. J.; ROMERO, R. Imposing radiality constraints in distribution system optimization problems. **IEEE Transactions on Power Systems**, v. 27, n. 1, p. 172–180, 2012.

LEE, C.; NG, S.; ZHONG, J.; WU, F. Transmission expansion planning from past to future. In: IEEE PES POWER SYSTEMS CONFERENCE AND EXPOSITION (PSCE), 2006, Atlanta. **Proceedings of the...** Atlanta: IEEE, 2006. p. 257–265.

LEVRON, Y.; GUERRERO, J. M.; BECK, Y. Optimal power flow in microgrids with energy storage. **Power Systems, IEEE Transactions on,** Piscataway, 28, n. 3, p. 3226-3234, 2013.

LI, A.; TUNÇEL, L. Some applications of symmetric cone programming in financial mathematics. **Transactions on Operational Research**, Chichester, v. 17, p. 1-19, 2006.

LOBO, M. S.; VANDENBERGHE, L.; BOYD, S. **SOCP:** Software for Second-Order Cone Programming. Stanford: Electrical Engineering Department, Stanford University, 1997.

LOBO, M.; VANDENBERGHE, L.; BOYD, S.; LEBRET, H. Applications of second-order cone programming. **Linear Algebra and its Applications**, Philadelphia, v. 284, p. 193-228, 1998.

LOQO User's Manual.Princeton: Princeton University, 2006. Version 4.05. 2006. Disponível em: www.princeton.edu/~rvdb/loqo/LOQO.html. Acesso em: 12 jan. 2013.

MAMEDE, F. J. **Instalações elétricas industriais.**6. ed. Rio de Janeiro: Livros Técnicos e Científicos, 2001.

MANTOVANI, J. R.; CASARI, F.; ROMERO, R. A. Reconfiguração de sistemas de distribuição radiais utilizando o critério de queda de tensão. Revista Controle e Automação, Sociedade Brasileira de Automática, Campinas, v. 11, n. 03, p. 150-159, 2000.

MERLIN, A.; BACK, H. Search for a minimal-loss operating spanning tree configuration in an urban power distribution system. In: POWER SYSTEM COMPUTATION CONFERENCE, 5., 1975, Cambridge. **Proceedings of the...** Zurich: PSCC, 1975. p. 1-18.

MICHALEWICZ, Z. Genetic algorithms + data structures = evolution programs: artificial intelligence. Berlin: Springer, 1996.

MITCHELL, M. **Introduction to genetics algorithms.** Cambridge: Editorial Cambridge MIT Press, 1996.

MONTICELLI, A. J. **Fluxo de carga em redes de energia elétrica.**São Paulo: Edgard Blücher, 1983. 164 p.

MORAIS, A. P.; CARDOSO JÚNIOR, G.; MARIOTTO, L. Avaliação do desempenho dos métodos de proteção contra a perda de excitação em geradores síncronos.**SBA**: Revista Controle e Automação, Natal, v. 20, n. 4, p. 526-545, 2009.

MOSEK optimization tools manual. **MOSEK ApS**. Version 6.0, 2013. Disponível em: www.mosek.com/>. Acesso em: 12 jan. 2014.

NEMIROVSKI, A. Interior point polynomial time methods in convex programming.In: GEORGIA INSTITUTE OF TECHNOLOGY. School of Industrial and Systems ENGINEERING. Interior point polynomial time methods in convex programming. 2004.

- Geogia: Institute of Technology, 2004. 213 p. Lectures notes. Disponível em: http://www2.isye.gatech.edu/~nemirovs/Lect IPM.pdf>. Acesso em: 27 jun. 2014.
- NEMIROVSKI, A. Advances in convex optimization: conic programming. In: INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM), 2006, Madrid. **Procedings of the...** Madrid: [s.n.], 2006. Disponível em: http://www2.isye.gatech.edu/~nemirovs/ICMNemirovski.pdf>. Acesso em: 14 abr. 2015.
- NESTEROV, Y.; NEMIROVSKII, A.; YE, Y. Interior-point polynomial algorithms in convex programming. Philadelphia: Society for Industrial and Applied Mathematics, 1994.
- PEARL, J. **Heuristics:** intelligent search strategies for computer problem solving. New York: Addison-Wesley, 1984. (Series in artificial intelligence).
- PEDREGAL, P. **Introduction to optimization.** New York: Springer-Verlag, 2004. 246 p. (Texts in Applied Mathematics)
- PEREIRA, F. S. Reconfiguração ótima de sistemas de distribuição de energia elétrica baseado no comportamento de colônias de formigas, 2010. 104 f. Tese (Doutorado em Engenharia Elétrica) Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2010.
- PRUESSNER, A.; BUSSIECK M. R.; DIRKSE, S. P.; MEERAUS, A. Conic programming in GAMS. In: INFORMS ANNUAL MEETING,2003, Atlanta. **Proceedings of the...** Atlanta: [s.n.], 2003. p. 19-22.
- RIBEIRO, E.T.A. Modelos de programação inteira mista para a alocação ótima de bancos de capacitores em sistemas de distribuição de energia elétrica radiais.2013. 102 f. Dissertação (Mestrado em Engenharia Elétrica) Faculdade de Engenharia, Universidade Estadual Paulista, Ilha Solteira, 2013.
- RIDER, M.J.; GARCIA A. V.; ROMERO, R. Power system transmission network expansion planning using AC model. **IET Generation, Transmission Distribution**, Stevenage, v. 1, n. 5, p. 731–742, 2007.
- ROCKAFELLAR, R.T. **Convex analysis.**2. ed. Princeton: Princeton University Press, 1972. 451 p.
- ROMERO, R.; MONTICELLI, A. Hierarchical decomposition approach for transmission network expansion planning. **IEEE Transactions on Power Systems**, Piscataway, v. 9, n. 1, p. 373–380, 1994.
- ROSA, V. H. S.**Energia elétrica renovável em pequenas comunidades no Brasil: em busca de um modelo sustentável,** 2007. 440 f. Tese (Doutorado) Centro de Desenvolvimento Sustentável, Universidade de Brasília, Brasília, DF, 2007.
- SARFI, R. J.; SALAMA, M. M. A.; CHIKHANI, A. Y. A survey of the state of the art in distribution system reconfiguration for system loss reduction. **Electric Power Systems Research**, Lausanne, v. 31, n. 1, p. 61-70, 1994.

- SCHMIDT, H. P.; IDA, N.; KAGAN, N.; GUARALDO, J. C. Fast reconfiguration of distribution systems considering loss minimization. **IEEE Transactions on Power Systems**, Piscataway, v. 20, n. 3, p. 1311-1319, 2005.
- SILVA, I. J.; RIDER, M. J.; GARCIA, A.V.; MURARI, C.A. Transmission network expansion planning with security constraints. **IEE Proceedings of Generation, Transmission and Distribution**, Piscataway, v. 152, n. 6, p. 828–836, 2005.
- SILVEIRA E.P, Otimização da Operação em Sistemas Distribuídos Utilizando Compensadores Estáticos de Reativo e Estimadores Robustos. Tese (Doutorado em Engenharia Elétrica) -Faculdade de Engenharia Elétrica, Itajubá, 2011
- SILVEIRA, K. C. P.Regiões de segurança estática considerando as curvas de capacidade de geradores síncronos.2012. Dissertação (Mestrado) Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2012.
- TUNÇEL, L. Convex optimization: Barrier functions and interior-point methods. Princeton: Institute of Technology, 1998.
- VANDERBEI, R.J.; YURTTAN, H. Using LOQO to solve second –order cone programming problems: statistics and operations research. Princeton: Princeton University, 1998. Disponível em: http://orfe.princeton.edu/~rvdb/ps/socp.pdf>. Acesso em: 15 abr. 2015.
- WÄCHTER, A.; BIEGLER, A. L.T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. 2005. Disponível em: http://cepac.cheme.cmu.edu/pasilectures/biegler/ipopt.pdf>. Acesso em: 15 abr. 2015.
- WALTZ, R. A.; NOCEDAL, J. KNITRO **User's manual:**Version 7.0. Optimization Evanston: Technology Center, Northwestern University, 2003. (Technical Report OTC 2003/05).
- WOOD, A. J.; WOLLENBERG, B.F. **Power generation, operation, and control.** New York: John Wiley & Sons, 1984. 444 p.
- XIAO, L. Convex optimization and applications, mathematics of information seminar. California Institute of Technology, 2004.Disponível em: http://users.cms.caltech.edu/~schulman/Courses/0405cs286/cvxopt_CMI04.pdf. Acesso em: 15 abr. 2015.
- XPRESS-Optimizer reference manual, FICO Xpress optimization suite, release 20.00, June, 2009. Disponível em:
- http://www.fico.com/en/products/fico-xpress-optimization-suite/. Acesso em: 12 jan. 2014.
- ZVIETCOVICH, W.G. Reconfiguração de sistemas de distribuição de energia elétrica utilizando a metaheurística busca em vizinhança variável.2006. 93 f. Dissertação (Mestrado) Faculdade de Engenharia, Universidade Estadual Paulista, Ilha Solteira, 2006.

ANEXO A - TRABALHOS PUBLICADOS PELO AUTOR

DELGADO, M. A. J.; POURAKBARI-KASMAEI, M.; RIDER, M. J., A modified Branch and Bound algorithm (B&BML) to solve the transmission expansion planning problem, EEEIC, Polônia.2013

DELGADO, M. A. J.; RIDER, M. J Um algoritmo Branch and Bound para resolver problemas de programação não-linear inteiro misto aplicado à otimização de sistemas elétricos de potência. In: SBSE, Foz do Iguaçu.2014

Em andamento:

DELGADO, M. A. J.; POURAKBARI-KASMAEI, M.; RIDER, M. J., A new strategy division of the Branch and Bound algorithm to solve nonlinear programming mixed integer optimization applied to electric power systems.

ANEXO B - DADOS DOS SISTEMAS TESTE PARA O PROBLEMA DE DISTRIBUIÇÃO

B. 1 - DADOS DO SISTEMA DE 3 NÓS.

Tabela B.1: Sistema de 3 nós - dados das barras

Barras	Demanda Ativa (kW)	Demanda Reativa (kVAr)
1	0	0
2	3500	-2500
3	-3000	-2200

Fonte: Dados da pesquisa do autor

Tabela B.2: Sistema de 3 nós - dados dos ramos

Ramo	de	Para	Resistência(Ω)	Reatância(Ω)	Imax(A)
	1	2	10,0	5	999
	2	3	0,20	1	999

Fonte: Dados da pesquisa do autor

B. 2 - . DADOS DO SISTEMA DE 33 NÓS.

Tabela B.3: Sistema de 33 nós - dados das barras

Barras	Demanda Ativa (kW)	Demanda Reativa (kVAr)	
1	0	0	
2	100	60	
3	90	40	
4	120	80	
5	60	30	
6	60	20	
7	200	100	
8	200	100	
9	60	20	
10	60	20	
11	45	30	
12	60	35	
13	60	35	
14	120	80	
15	60	10	
16	60	20	
17	60	20	
18	90	40	
19	90	40	
20	90	40	
21	90	40	
22	90	40	
23	90	50	

24	420	200	
25	420	200	
26	60	25	
27	60	25	
28	60	20	
29	120	70	
30	200	600	
31	150	70	
32	210	100	
33	60	40	

Fonte: Dados da pesquisa do autor

Tabela B.4: Sistema de 33 nós - dados dos ramos

Ramo	de	para	Resistência(Ω)	Reatância(Ω)	Imax(A)
	1	2	0,0922	0,047	9999
	2	3	0,493	0,2511	9999
	3	4	0,366	0,1864	9999
	4	5	0,3811	0,1941	9999
	5	6	0,819	0,707	9999
	6	7	0,1872	0,6188	9999
	7	8	0,7114	0,2351	9999
	8	9	1,03	0,74	9999
	9	10	1,044	0,74	9999
	10	11	0,1966	0,065	9999
	11	12	0,3744	0,1238	9999
	12	13	1,468	1,155	9999
	13	14	0,5416	0,7129	9999
	14	15	0,591	0,526	9999
	15	16	0,7463	0,545	9999
	16	17	1,289	1,721	9999
	17	18	0,732	0,574	9999
	2	19	0,164	0,1565	9999
	19	20	1,5042	1,3554	9999
	20	21	0,4095	0,4784	9999
	21	22	0,7089	0,9373	9999
	3	23	0,4512	0,3083	9999
	23	24	0,898	0,7091	9999
	24	25	0,896	0,7011	9999
	6	26	0,203	0,1034	9999
	26	27	0,2842	0,1447	9999
	27	28	1,059	0,9337	9999
	28	29	0,8042	0,7006	9999
	29	30	0,5075	0,2585	9999
	30	31	0,9744	0,963	9999
	31	32	0,3105	0,3619	9999
	32	33	0,341	0,5302	9999
			problema de reconfigu		
	8	21	2	2	200
	9	15	2	2	200
	12	22	2	2	200
	18	33	0,5	0,5	200
	25	29	0,5	0,5	200

Fonte: Dados da pesquisa do autor

B. 3 - DADOS DO SISTEMA DE 70 NÓS

Tabela B.5: Sistema de 70 nós - dados das barras

Barras	Demanda ativa (kW)	Demanda reativa (kVAr)	
1	0,00	0,00	
2	0,00	0,00	
3	0,00	0,00	
4	0,00	0,00	
5	0,00	0,00	
6	0,00	0,00	
7	2,63	2,16	
8	40,37	2,16	
9	74,66	53,43	
10	30,00	21,62	
11	28,00	20,00	
12	145,50	103,83	
13	145,50	103,83	
14	8,13	5,46	
15	8,13	4,56	
16	0,00	0,00	
17	45,53	30,59	
18	49,50	35,33	
19	49,50	35,33	
20	0,00	0,00	
21	50,95	40,64	
22	113,95	81,30	
23	95,29	73,55	
24	0,00	0,00	
25	88,17	60,01	
26	0,00	0,00	
27	164,00	89,99	
28	184,00	99,99	
29	860,01	685,55	
30	460,10	385,55	
31	0,00	0,00	
32	0,00	0,00	
33	0,00	0,00	
34	1887,40	897,80	
35	890,50	800,67	
36	915,76	783,87	
37	660,01	485,55	
38	626,01	485,55	
39	0,00	0,00	
40	824,00	787,12	
41	524,00	487,12	
42	717,60	597,50	
43	0,00	0,00	
44	860,00	680,28	
45	0,00	0,00	
46	892,28	863,61	
47			
48	899,20 0.00	976,36	
	0,00	0,00	
49	79,05	56,40	
50	84,68	274,48	
51	384,69	274,48	
52	40,54	28,33	
53	3,61	2,68	
54	4,35	3,49	
55	26,36	18,97	

56	24,00	17,12	
57	0,00	0,00	
58	0,00	0,00	
59	0,00	0,00	
60	2,00	72,08	
61	0,00	0,00	
62	1244,00	887,73	
63	32,00	22,84	
64	0,00	0,00	
65	227,01	161,62	
66	59,01	41,74	
67	18,00	12,85	
68	18,00	12,85	
69	28,00	19,98	
70	28,00	19,98	

Tabela B.6: Sistema de 70 nós - dados dos ramos

Ramo	de	para	Resistência(Ω)	Reatância(Ω)	Imax(A)
1	1	2	0,0005	0,0012	1872
2	2	3	0,0005	0,0012	1872
3	3	4	0,0001	0,0001	1257
4	4	5	0,0015	0,0036	462
5	5	6	0,0251	0,0294	386
6	6	7	0,3660	0,1864	386
7	7	8	0,3811	0,1941	386
8	8	9	0,0922	0,0470	383
9	9	10	0,0493	0,0251	368
10	10	11	0,8190	0,2707	154
11	11	12	0,1872	0,0619	151
12	12	13	0,7114	0,2351	129
13	13	14	1,0300	0,3400	104
14	14	15	1,0440	0,3450	103
15	15	16	1,0580	0,3496	102
16	16	17	0,1966	0,0650	102
17	17	18	0,3744	0,1238	97
18	18	19	0,0047	0,0016	90
19	19	20	0,3276	0,1083	84
20	20	21	0,2106	0,0696	84
21	21	22	0,3416	0,1129	78
22	22	23	0,0140	0,0046	63
23	23	24	0,1591	0,0526	51
24	24	25	0,3463	0,1145	51
25	25	26	0,7488	0,2475	40
26	26	27	0,3089	0,1021	40
27	27	28	0,1732	0,0572	21
28	3	29	0,0044	0,0108	617
29	29	30	0,0640	0,1565	513
30	30	31	0,3978	0,1315	456
31	31	32	0,0702	0,0232	456
32	32	33	0,3510	0,1160	456
33	33	34	0,8390	0,2816	456
34	34	35	1,7080	0,5646	250
35	35	36	1,4740	0,4873	126
36	4	37	0,0044	0,0108	796
37	37	38	0,0640	0,1565	718
38	38	39	0,1053	0,1230	643
39	39	40	0,0304	0,0355	643
40	40	41	0,0018	0,0021	533

41	41	42	0,7283	0,8509	464
42	42	43	0,3100	0,3623	371
43	43	44	0,0410	0,0478	371
44	44	45	0,0092	0,0116	261
45	45	46	0,1089	0,1373	261
46	46	47	0,0009	0,0012	134
47	5	48	0,0034	0,0084	77
48	48	49	0,0851	0,2083	77
49	49	50	0,2898	0,7091	68
50	50	51	0,0822	0,2011	45
51	9	52	0,0928	0,0473	15
52	52	53	0,3319	0,1114	10
53	10	54	0,1740	0,0886	210
54	54	55	0,2030	0,1034	210
55	55	56	0,2842	0,1447	207
56	56	57	0,2813	0,1433	204
57	57	58	1,5900	0,5337	204
58	58	59	0,7837	0,2630	204
59	59	60	0,3042	0,1006	204
60	60	61	0,3861	0,1172	199
61	61	62	0,5075	0,2555	199
62	62	63	0,9740	0,0496	40
63	63	64	0,1450	0,0738	36
64	64	65	0,7105	0,3619	36
65	65	66	1,0410	0,5302	17
66	12	67	0,2012	0,0611	14
67	67	68	0,0047	0,0014	12
68	13	69	0,7394	0,2444	16
69	69	70	0,0047	0,0016	13
	Linh	a extras para o j	problema de reco	nfiguração (RSDEE)	
	12	44	0,5	0,5	200
	14	22	0,5	0,5	200
	16	47	1,0	1,0	200
	51	60	2,0	2,0	200
	28	66	1,0	1,0	200
Б / Б	1 1	. 1			

B. 4 - DADOS DO SISTEMA DE 136 NÓS

Tabela B.7: Sistema de 136 nós - dados das barras

Barras	Demanda ativa (kW)	Demanda reativa (kVAr)
1	0,000	0,000
2	0,000	0,000
3	47,780	19,009
4	42,551	16,929
5	87,022	34,622
6	311,310	123,860
7	148,870	59,228
8	238,670	94,956
9	62,299	24,786
10	124,590	49,571
11	140,160	55,768
12	116,810	46,474
13	249,200	99,145
14	291,450	115,590
15	303,720	120,840

16	215,390	85,695
17	198,590	79,007
18	0,000	0,000
19	0,000	0,000
20	0,000	0,000
21	30,127	14,729
22	230,970	112,920
23	60,256	29,459
24	230,970	112,920
25	120,510	58,915
26	0,000	0,000
27	56,981	27,857
28	364,670	178,280
29	0,000	0,000
30	124,650	60,939
31	56,981	27,857
32	0,000	0,000
33	85,473	41,787
34	0,000	0,000
35	396,740	193,960
36	0,000	0,000
37	181,150	88,563
38	242,170	118,390
39	75,316	36,821
40	0,000	0,000
41	1,254	0,531
42	6,274	2,660
43	0,000	0,000
44	117,880	49,971
45	62,668	25,566
46	172,290	73,034
47	458,560	194,390
48	262,960	111,470
49	235,760	99,942
50	0,000	0,000
51	109,220	46,298
52		
53	0,000 72,809	0,000
54	· ·	30,865
55	258,470	109,570
	69,169	29,322
56	21,843	9,260
57	0,000	0,000
58	20,527	8,702
59	150,550	63,819
60	220,690	93,552
61	92,384	39,163
62	0,000	0,000
63	226,690	96,098
64	0,000	0,000
65	294,020	116,970
66	83,015	33,028
67	83,015	33,028
68	103,770	41,285
69	176,410	70,184
70	83,015	33,028
71	217,920	86,698
72	23,294	9,267
-		

73	5,075	2,019
74	72,638	28,899
75 76	405,990	161,520
76	0,000	0,000
77	100,180	42,468
78	142,520	60,417
79	96,042	40,713
80	300,450	127,37
81 82	141,240	59,873
83	279,850 87,312	118,630 37,013
84	243,850	103,370
85	247,750	105,030
86	0,000	0,000
87	89,878	38,101
88	1137,300	482,110
89	458,340	194,300
90	385,200	163,290
91	0,000	0,000
92	79,608	33,747
93	87,312	37,013
94	0,000	0,000
95	74,001	31,370
96	232,050	98,369
97	141,820	60,119
98	0,000	0,000
99	76,449	32,408
100	0,000	0,000
101	51,322	21,756
102	59,874	25,381
103	9,065	3,843
104	2,092	0,887
105	16,735	7,094
106	1506,500	638,630
107	313,020	132,690
108	79,831	33,842
109	51,322	21,756
110	0,000	
		0,000
111	202,440	85,815
112	60,823	25,874
113	45,618	19,338
114	0,000	0,000
115	157,070	66,584
116	0,000	0,000
117	250,150	106,040
118	0,000	0,000
119	68,809	28,593
120	32,072	13,596
121	61,084	25,894
122	0,000	0,000
123	94,622	46,260
124	49,858	24,375
125	123,160	60,214
	,	,

126	78,350	38,304	
127	145,480	71,121	
128	21,369	10,447	
129	74,789	36,564	
130	227,930	111,430	
131	35,614	17,411	
132	249,290	121,880	
133	316,720	154,840	
134	333,820	163,200	
135	249,290	121,880	
136	0,000	0,000	

Tabela B.8: Sistema de 136 barras - dados dos ramos

Ramo	de	para	Resistência(Ω)	Reatância(Ω)	Imax(A)
1	1	2	0,33205	0,76653	207
2	2	3	0,00188	0,00433	207
3	3	4	0,22340	0,51535	204
4	4	5	0,09943	0,22953	200
5	5	6	0,15571	0,35945	193
6	6	7	0,16321	0,37677	169
7	7	8	0,11444	0,26417	20
8	7	9	0,05675	0,05666	138
9	9	10	0,52124	0,27418	11
10	9	11	0,10877	0,10860	123
11	11	12	0,39803	0,20937	10
12	11	13	0,91744	0,31469	21
13	11	14	0,11823	0,11805	82
14	14	15	0,50228	0,26421	25
15	14	16	0,05675	0,05666	34
16	16	17	0,29379	0,15454	17
17	1	18	0,33205	0,76653	188
18	18	19	0,00188	0,00433	188
19	19	20	0,22324	0,51535	188
20	20	21	0,10881	0,25118	188
21	21	22	0,71078	0,37388	20
22	21	23	0,18197	0,42008	166
23	23	24	0,30326	0,15952	20
24	23	25	0,02439	0,05630	142
25	25	26	0,04502	0,10394	132
26	26	27	0,01876	0,04331	132
27	27	28	0,11823	0,11230	127
28	28	29	0,02365	0,02361	97
29	29	30	0,18954	0,09970	16
30	30	31	0,39803	0,20937	6
31	29	32	0,05675	0,05666	82
32	32	33	0,09477	0,04985	41
33	33	34	0,41699	0,21934	34
34	34	35	0,11372	0,05982	34
35	32	36	0,07566	0,07555	42
36	36	37	0,36960	0,19442	36
37	37	38	0,26536	0,13958	21
38	36	39	0,05675	0,05660	7
39	1	40	0,33205	0,76653	207

40							
42	40	40	41	0,11819	0,27283	207	
43 43 44 0,06941 0,16024 206 44 44 45 0,81502 0,42872 6 45 44 46 0,06378 0,14724 192 46 46 47 0,13132 0,30315 178 47 47 48 0,06191 0,14291 141 48 48 49 0,11444 0,26417 102 49 49 50 0,28374 0,28321 10 50 50 51 0,28374 0,28321 10 51 49 52 0,04502 0,10394 74 52 52 53 0,02626 0,06063 74 52 52 53 0,02626 0,06029 8 53 53 54 0,60003 0,13882 29 54 54 55 0,30002 0,66929 8 55 55 56 0,02064 <td< td=""><td></td><td></td><td></td><td>2,96288</td><td>1,01628</td><td></td><td></td></td<>				2,96288	1,01628		
44							
45				0,06941	0,16024		
46				0,81502			
47	45	44	46	0,06378	0,14724	192	
48	46	46	47	0,13132	0,30315	178	
49 49 50 0,28374 0,28331 10 50 50 51 0,28374 0,28321 10 51 49 52 0,04502 0,10394 74 52 52 53 0,02626 0,06063 74 53 53 54 0,06003 0,13858 29 54 54 55 0,30002 0,06929 8 55 55 56 0,02064 0,04764 3 56 53 57 0,10881 0,25118 40 57 57 58 0,25558 0,134609 0,21934 38 59 59 60 0,50228 0,26421 26 60 60 60 61 0,33170 0,17448 8 61 61 62 0,20849 0,10967 1 62 48 63 0,13882 0,32047 19 63 1 64 <td>47</td> <td>47</td> <td>48</td> <td>0,06191</td> <td>0,14291</td> <td>141</td> <td></td>	47	47	48	0,06191	0,14291	141	
50 50 51 0,28374 0,28321 10 51 49 52 0,04502 0,10394 74 52 52 53 0,02626 0,06063 74 53 53 54 0,06003 0,13858 29 54 54 55 0,03002 0,06929 8 55 55 56 0,02064 0,04764 3 56 53 57 0,10881 0,25118 40 57 57 58 0,25588 0,13460 40 58 58 59 0,41699 0,21934 38 59 59 60 0,50228 0,26421 26 60 60 61 0,33170 0,17448 8 61 61 62 0,28849 0,10967 1 62 48 63 0,13882 0,32047 19 63 1 64 0,00750 0,0173	48		49	0,11444	0,26417	102	
51 49 52 0,04502 0,10394 74 52 52 53 0,02626 0,06063 74 53 53 54 0,06003 0,13858 29 54 54 55 0,03002 0,06929 8 55 55 56 0,02064 0,04764 3 56 53 57 0,10881 0,25118 40 57 57 58 0,25588 0,13460 40 58 58 59 0,41699 0,21934 38 59 59 60 0,50228 0,26421 26 60 60 61 0,33170 0,17448 8 61 61 62 0,20849 0,10967 1 62 48 63 0,13882 0,32047 19 63 1 64 0,00750 0,01732 124 65 65 66 0,38270 0,883	49	49	50	0,28374	0,28331	10	
52 52 53 0,02626 0,06063 74 53 53 54 0,06003 0,13858 29 54 54 55 0,03002 0,06929 8 55 55 56 0,02064 0,04764 3 56 53 57 0,10881 0,25118 40 57 57 58 0,25558 0,13460 40 58 58 59 0,41699 0,21934 38 59 59 60 0,50228 0,26421 26 60 60 61 0,33170 0,17448 8 61 61 62 0,20849 0,10967 1 62 48 63 0,13882 0,32047 19 63 1 64 0,00750 0,01732 124 64 64 65 0,27014 0,62362 124 65 65 66 0,38270 0,88	50		51	0,28374	0,28321	10	
53 53 54 0,06003 0,13858 29 54 54 55 0,03002 0,06929 8 55 55 56 0,02064 0,04764 3 56 53 57 0,10881 0,25118 40 57 57 58 0,25588 0,13460 40 58 58 59 0,41699 0,21934 38 59 59 60 0,50228 0,26421 26 60 60 61 0,33170 0,17448 8 61 61 62 0,20849 0,10967 1 62 48 63 0,13882 0,32047 19 63 1 64 0,00750 0,01732 124 64 64 65 0,27014 0,62362 124 65 65 66 66 67 0,33018 0,76787 88 68 68 69	51	49	52	0,04502	0,10394	74	
54 54 55 0,03002 0,06929 8 55 55 56 0,02064 0,04764 3 56 53 57 0,10881 0,25118 40 57 57 58 0,25588 0,13460 40 58 58 59 0,41699 0,21934 38 59 59 60 0,50228 0,26421 26 60 60 61 0,33170 0,17448 8 61 61 62 0,20849 0,10967 1 62 48 63 0,13882 0,32047 19 63 1 64 0,00750 0,01732 124 64 64 0,507014 0,62362 124 65 65 66 63 38270 0,88346 101 66 66 67 0,33018 0,76220 94 67 68 0,32830 0,75787 <td< td=""><td>52</td><td>52</td><td>53</td><td>0,02626</td><td>0,06063</td><td>74</td><td></td></td<>	52	52	53	0,02626	0,06063	74	
55 55 56 0,02064 0,04764 3 56 53 57 0,10881 0,25118 40 57 57 58 0,25588 0,13460 40 58 58 59 0,41699 0,21934 38 59 59 60 0,50228 0,26421 26 60 60 61 0,33170 0,17448 8 61 61 62 0,20849 0,10967 1 62 48 63 0,13882 0,32047 19 63 1 64 0,00750 0,01732 124 64 64 65 0,27014 0,62362 124 65 65 66 0,38270 0,83466 101 66 66 67 0,33018 0,76220 94 67 67 68 0,32830 0,75787 88 8 68 69 0,17072 0,3	53	53	54	0,06003	0,13858	29	
56 53 57 0,10881 0,25118 40 57 57 58 0,25588 0,13460 40 58 58 59 0,41699 0,21934 38 59 59 60 0,50228 0,26421 26 60 60 61 0,33170 0,17448 8 61 61 62 0,20849 0,10967 1 62 48 63 0,13882 0,32047 19 63 1 64 0,00750 0,01732 124 64 64 65 0,27014 0,62362 124 65 65 66 66 67 0,38270 0,88346 101 66 66 67 0,33018 0,76220 94 67 68 0,32830 0,75787 88 68 68 69 0,17072 0,39409 79 69 71 0,05816 0	54	54	55	0,03002	0,06929	8	
57 57 58 0,25588 0,13460 40 58 58 59 0,41699 0,21934 38 59 59 60 0,50228 0,26421 26 60 60 61 0,33170 0,17448 8 61 61 62 0,20849 0,10967 1 62 48 63 0,13882 0,32047 19 63 1 64 0,00750 0,01732 124 64 64 65 0,27014 0,62362 124 65 65 66 0,38270 0,88346 101 66 66 67 0,33018 0,76220 94 67 67 68 0,32830 0,575787 88 68 68 69 0,17072 0,39409 79 69 69 70 0,55914 0,29412 8 70 69 71 0,05816 0	55	55	56	0,02064	0,04764	3	
58 58 59 0,41699 0,21934 38 59 59 60 0,50228 0,26421 26 60 60 61 0,33170 0,17448 8 61 61 62 0,20849 0,10967 1 62 48 63 0,13882 0,32047 19 63 1 64 0,00750 0,01732 124 64 64 65 0,27014 0,62362 124 65 65 66 0,38270 0,88346 101 66 66 67 0,33018 0,76220 94 67 67 68 0,32830 0,75787 88 68 68 69 0,17072 0,39409 79 69 69 70 0,55914 0,29412 8 70 69 71 0,05816 0,13425 59 71 71 72 72 73	56	53	57	0,10881	0,25118	40	
59 59 60 0,50228 0,26421 26 60 60 61 0,33170 0,17448 8 61 61 62 0,20849 0,10967 1 62 48 63 0,13882 0,32047 19 63 1 64 0,00750 0,01732 124 64 64 65 0,27014 0,62362 124 65 65 66 66 67 0,33018 0,76220 94 67 68 0,32830 0,75787 88 68 68 69 0,17072 0,39409 79 69 69 70 0,55914 0,29412 8 70 69 71 0,05816 0,13425 59 71 71 72 0,70130 0,36890 3 72 72 73 1,02352 0,53839 1 73 71 74 0,06754 <td>57</td> <td>57</td> <td>58</td> <td>0,25588</td> <td>0,13460</td> <td>40</td> <td></td>	57	57	58	0,25588	0,13460	40	
60 60 61 0,33170 0,17448 8 61 61 61 62 0,20849 0,10967 1 62 48 63 0,13882 0,32047 19 63 1 64 0,00750 0,01732 124 64 64 65 0,27014 0,62362 124 65 65 65 66 0,38270 0,88346 101 66 66 67 0,33018 0,76220 94 67 67 68 0,32830 0,75787 88 68 68 69 0,17072 0,39409 79 69 69 70 0,55914 0,29412 8 70 69 71 0,05816 0,13425 59 71 71 72 0,70130 0,36890 3 72 72 73 1,02352 0,53839 1 73 71 74 0,06754 0,15591 39 74 74 74 75 1,32352 0,45397 33 75 1 76 0,01126 0,02598 133 76 76 77 0,72976 1,68464 133 77 77 78 0,22512 0,51968 125 78 78 78 79 0,20824 0,48071 114 79 79 80 0,04690 0,10827 106 80 80 81 0,61950 0,61857 82 81 81 82 0,34049 0,33998 71 82 82 83 0,56862 0,29911 8 83 82 84 0,10877 0,10860 41 84 84 85 0,56862 0,29911 8 85 1 86 0,01126 0,02598 223 86 86 87 0,41835 0,96575 223 87 87 88 89 0,43898 1,01338 125 88 87 89 0,48398 1,01338 125 89 89 90 0,07520 0,02579 88 90 90 91 0,07520 0,02579 88 90 90 91 0,07692 0,17756 57 91 91 91 92 0,33205 0,76653 57 92 92 93 0,08442 0,19488 50 93 93 94 0,13320 0,30748 43 94 94 95 0,29320 0,29276 37 95 95 96 0,21753 0,21721 31	58	58	59	0,41699	0,21934	38	
61 61 62 0,20849 0,10967 1 62 48 63 0,13882 0,32047 19 63 1 64 0,00750 0,01732 124 64 64 65 0,27014 0,62362 124 65 65 66 0,38270 0,88346 101 66 66 67 0,33018 0,76220 94 67 67 68 0,32830 0,75787 88 68 68 69 0,17072 0,39409 79 69 69 70 0,55914 0,29412 8 70 69 71 0,05816 0,13425 59 71 71 72 0,70130 0,36890 3 72 72 72 73 1,02352 0,53839 1 73 71 74 0,06754 0,15591 39 74 74 75 1,32352 0,45397 33 75 1 76 0,01126 0,02598 133 76 76 77 0,72976 1,68464 133 77 77 78 0,22512 0,51968 125 78 78 79 0,20824 0,48071 114 79 79 80 0,04690 0,10827 106 80 80 81 0,61950 0,61857 82 81 81 82 0,34049 0,33998 71 82 82 82 83 0,56862 0,29911 8 83 82 84 0,10877 0,10860 41 84 84 85 0,56862 0,29911 8 85 1 86 0,01126 0,02598 223 86 86 87 0,41835 0,96575 223 87 87 88 9 0,43898 1,01338 125 89 89 90 0,07520 0,02579 88 90 90 91 0,07692 0,17756 57 91 91 92 0,33205 0,76653 57 92 92 93 0,08442 0,19488 50 93 93 94 0,13320 0,30748 43 94 94 95 0,29320 0,29276 37 95 95 96 0,21753 0,21721 31	59	59	60	0,50228	0,26421	26	
62	60	60	61	0,33170	0,17448	8	
63	61	61	62	0,20849	0,10967	1	
63	62	48	63	0,13882	0,32047	19	
64 64 65 0,27014 0,62362 124 65 65 65 66 66 0,38270 0,88346 101 66 66 66 67 0,33018 0,76220 94 67 67 68 0,32830 0,75787 88 68 68 69 0,17072 0,39409 79 69 69 70 0,55914 0,29412 8 70 69 71 0,05816 0,13425 59 71 71 72 0,70130 0,36890 3 72 72 72 73 1,02352 0,53839 1 73 71 74 0,06754 0,15591 39 74 74 75 1,32352 0,45397 33 75 1 76 0,01126 0,02598 133 76 76 77 0,72976 1,68464 133 77 77 78 0,22512 0,51968 125 78 78 78 79 0,20824 0,48071 114 79 79 80 0,04690 0,10827 106 80 80 81 0,61950 0,61857 82 81 81 82 0,34049 0,33998 71 82 82 83 0,56862 0,29911 8 83 82 84 0,10877 0,10860 41 84 84 84 85 0,56862 0,29911 8 85 1 86 0,01126 0,02598 223 86 86 87 0,41835 0,96575 223 87 87 88 9 0,04898 1,01338 125 89 89 90 0,07520 0,02579 88 90 90 91 0,07692 0,17756 57 91 91 92 0,33205 0,76653 57 92 92 93 0,08442 0,19488 50 93 93 94 0,13320 0,29276 37 95 95 96 0,21753 0,21721 31	63	1	64			124	
65 65 66 0,38270 0,88346 101 66 66 66 67 0,33018 0,76220 94 67 67 68 0,32830 0,75787 88 68 68 69 0,17072 0,39409 79 69 69 70 0,55914 0,29412 8 70 69 71 0,05816 0,13425 59 71 71 72 0,70130 0,36890 3 72 72 72 73 1,02352 0,53839 1 73 71 74 0,06754 0,15591 39 74 74 75 1,32352 0,45397 33 75 1 76 0,01126 0,02598 133 76 76 77 0,72976 1,68464 133 77 77 78 0,22512 0,51968 125 78 78 78 79 0,20824 0,48071 114 79 79 80 0,04690 0,10827 106 80 80 81 0,61950 0,61857 82 81 81 82 0,34049 0,33998 71 82 82 83 0,56862 0,29911 8 83 82 84 0,10877 0,10860 41 84 84 84 85 0,56862 0,29911 21 85 1 86 0,01126 0,02598 223 86 86 87 0,41835 0,96575 223 87 87 88 0,01499 0,13641 92 88 87 88 0,044898 1,10133 125 89 89 90 0,07520 0,02579 88 90 90 91 0,07692 0,17756 57 91 91 92 0,33205 0,76653 57 92 92 93 0,08442 0,19488 50 93 93 94 0,13320 0,30748 43 94 94 95 0,29320 0,29276 37 95 95 96 0,21753 0,21721 31	64	64	65	·		124	
66 66 67 0,33018 0,76220 94 67 67 68 0,32830 0,75787 88 68 68 69 0,17072 0,39409 79 69 69 70 0,55914 0,29412 8 70 69 71 0,05816 0,13425 59 71 71 72 0,70130 0,36890 3 72 72 73 1,02352 0,53839 1 73 71 74 0,06754 0,15591 39 74 74 75 1,32352 0,45397 33 75 1 76 0,01126 0,02598 133 76 76 77 0,72976 1,68464 133 77 77 78 0,22512 0,51968 125 78 79 0,20824 0,48071 114 79 79 80 0,04690 0,10827	65	65	66			101	
67 67 68 0,32830 0,75787 88 68 68 69 0,17072 0,39409 79 69 69 70 0,55914 0,29412 8 70 69 71 0,05816 0,13425 59 71 71 72 0,70130 0,36890 3 72 72 73 1,02352 0,53839 1 73 71 74 0,06754 0,15591 39 74 74 75 1,32352 0,45397 33 75 1 76 0,01126 0,02598 133 76 76 77 0,72976 1,68464 133 77 77 78 0,22512 0,51968 125 78 79 0,20824 0,48071 114 79 79 80 0,04690 0,10827 106 80 80 81 0,61950 0,61857	66	66	67			94	
68 68 69 0,17072 0,39409 79 69 69 70 0,55914 0,29412 8 70 69 71 0,05816 0,13425 59 71 71 72 0,70130 0,36890 3 72 72 73 1,02352 0,53839 1 73 71 74 0,06754 0,15591 39 74 74 75 1,32352 0,45397 33 75 1 76 0,01126 0,02598 133 76 76 77 0,72976 1,68464 133 77 77 78 0,22512 0,51968 125 78 78 79 0,20824 0,48071 114 79 79 80 0,04690 0,10827 106 80 81 0,61950 0,61857 82 81 81 82 0,34049 0,33998	67	67	68			88	
69 69 70 0,55914 0,29412 8 70 69 71 0,05816 0,13425 59 71 71 72 0,70130 0,36890 3 72 72 73 1,02352 0,53839 1 73 71 74 0,06754 0,15591 39 74 74 75 1,32352 0,45397 33 75 1 76 0,01126 0,02598 133 76 76 77 0,72976 1,68464 133 77 77 78 0,22512 0,51968 125 78 78 79 0,20824 0,48071 114 79 79 80 0,04690 0,10827 106 80 80 81 0,61950 0,61857 82 81 81 82 0,34049 0,33998 71 82 82 83 0,56862	68	68	69			79	
70 69 71 0,05816 0,13425 59 71 71 72 0,70130 0,36890 3 72 72 73 1,02352 0,53839 1 73 71 74 0,06754 0,15591 39 74 74 75 1,32352 0,45397 33 75 1 76 0,01126 0,02598 133 76 76 77 0,72976 1,68464 133 77 77 78 0,22512 0,51968 125 78 78 79 0,20824 0,48071 114 79 79 80 0,04690 0,10827 106 80 80 81 0,61950 0,61857 82 81 81 82 0,34049 0,33998 71 82 82 83 0,56862 0,29911 8 83 82 84 0,10877	69	69	70			8	
71 71 72 0,70130 0,36890 3 72 72 73 1,02352 0,53839 1 73 71 74 0,06754 0,15591 39 74 74 75 1,32352 0,45397 33 75 1 76 0,01126 0,02598 133 76 76 77 0,72976 1,68464 133 77 77 78 0,22512 0,51968 125 78 78 79 0,20824 0,48071 114 79 79 80 0,04690 0,10827 106 80 80 81 0,61950 0,61857 82 81 81 82 0,34049 0,33998 71 82 82 83 0,56862 0,29911 8 83 82 84 0,10877 0,10860 41 84 84 85 0,56862	70	69	71			59	
72 72 73 1,02352 0,53839 1 73 71 74 0,06754 0,15591 39 74 74 75 1,32352 0,45397 33 75 1 76 0,01126 0,02598 133 76 76 77 0,72976 1,68464 133 77 77 78 0,22512 0,51968 125 78 78 79 0,20824 0,48071 114 79 79 80 0,04690 0,10827 106 80 80 81 0,61950 0,61857 82 81 81 82 0,34049 0,33998 71 82 82 83 0,56862 0,29911 8 83 82 84 0,10877 0,10860 41 84 84 85 0,56862 0,29911 21 85 1 86 0,01126	71	71	72			3	
73 71 74 0,06754 0,15591 39 74 74 75 1,32352 0,45397 33 75 1 76 0,01126 0,02598 133 76 76 77 0,72976 1,68464 133 77 77 78 0,22512 0,51968 125 78 78 79 0,20824 0,48071 114 79 79 80 0,04690 0,10827 106 80 80 81 0,61950 0,61857 82 81 81 82 0,34049 0,33998 71 82 82 83 0,56862 0,29911 8 83 82 84 0,10877 0,10860 41 84 84 85 0,56862 0,29911 21 85 1 86 0,01126 0,02598 223 86 86 87 0,41835 <t< td=""><td>72</td><td>72</td><td>73</td><td>•</td><td></td><td></td><td></td></t<>	72	72	73	•			
74 74 75 1,32352 0,45397 33 75 1 76 0,01126 0,02598 133 76 76 77 0,72976 1,68464 133 77 77 78 0,22512 0,51968 125 78 78 79 0,20824 0,48071 114 79 79 80 0,04690 0,10827 106 80 80 81 0,61950 0,61857 82 81 81 82 0,34049 0,33998 71 82 82 83 0,56862 0,29911 8 83 82 84 0,10877 0,10860 41 84 84 85 0,56862 0,29911 21 85 1 86 0,01126 0,02598 223 86 86 87 0,41835 0,96575 223 87 87 88 0,10499 <	73	71	74		·	39	
75 1 76 0,01126 0,02598 133 76 76 77 0,72976 1,68464 133 77 77 78 0,22512 0,51968 125 78 78 79 0,20824 0,48071 114 79 79 80 0,04690 0,10827 106 80 80 81 0,61950 0,61857 82 81 81 82 0,34049 0,33998 71 82 82 83 0,56862 0,29911 8 83 82 84 0,10877 0,10860 41 84 84 85 0,56862 0,29911 21 85 1 86 0,01126 0,02598 223 86 86 87 0,41835 0,96575 223 87 87 88 0,10499 0,13641 92 88 87 89 0,43898 <	74	74	75	1,32352	0,45397	33	
76 76 77 0,72976 1,68464 133 77 77 78 0,22512 0,51968 125 78 78 79 0,20824 0,48071 114 79 79 80 0,04690 0,10827 106 80 80 81 0,61950 0,61857 82 81 81 82 0,34049 0,33998 71 82 82 83 0,56862 0,29911 8 83 82 84 0,10877 0,10860 41 84 84 85 0,56862 0,29911 21 85 1 86 0,01126 0,02598 223 86 86 87 0,41835 0,96575 223 87 87 88 0,10499 0,13641 92 88 87 89 0,43898 1,01338 125 89 89 90 0,07520	75	1			·		
77 78 0,22512 0,51968 125 78 78 79 0,20824 0,48071 114 79 79 80 0,04690 0,10827 106 80 80 81 0,61950 0,61857 82 81 81 82 0,34049 0,33998 71 82 82 83 0,56862 0,29911 8 83 82 84 0,10877 0,10860 41 84 84 85 0,56862 0,29911 21 85 1 86 0,01126 0,02598 223 86 86 87 0,41835 0,96575 223 87 87 88 0,10499 0,13641 92 88 87 89 0,43898 1,01338 125 89 89 90 0,07520 0,02579 88 90 90 91 0,07692 0,17756		76					
78 78 79 0,20824 0,48071 114 79 79 80 0,04690 0,10827 106 80 80 81 0,61950 0,61857 82 81 81 82 0,34049 0,33998 71 82 82 83 0,56862 0,29911 8 83 82 84 0,10877 0,10860 41 84 84 85 0,56862 0,29911 21 85 1 86 0,01126 0,02598 223 86 86 87 0,41835 0,96575 223 87 87 88 0,10499 0,13641 92 88 87 89 0,43898 1,01338 125 89 89 90 0,07520 0,02579 88 90 90 91 0,07692 0,17756 57 91 91 92 0,33205 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
79 79 80 0,04690 0,10827 106 80 80 81 0,61950 0,61857 82 81 81 82 0,34049 0,33998 71 82 82 83 0,56862 0,29911 8 83 82 84 0,10877 0,10860 41 84 84 85 0,56862 0,29911 21 85 1 86 0,01126 0,02598 223 86 86 87 0,41835 0,96575 223 87 87 88 0,10499 0,13641 92 88 87 89 0,43898 1,01338 125 89 89 90 0,07520 0,02579 88 90 90 91 0,07692 0,17756 57 91 91 92 0,33205 0,76653 57 92 92 93 0,08442 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
80 80 81 0,61950 0,61857 82 81 81 82 0,34049 0,33998 71 82 82 83 0,56862 0,29911 8 83 82 84 0,10877 0,10860 41 84 84 85 0,56862 0,29911 21 85 1 86 0,01126 0,02598 223 86 86 87 0,41835 0,96575 223 87 87 88 0,10499 0,13641 92 88 87 89 0,43898 1,01338 125 89 89 90 0,07520 0,02579 88 90 90 91 0,07692 0,17756 57 91 91 92 0,33205 0,76653 57 92 92 93 0,08442 0,19488 50 93 93 94 0,13320 0,30748 43 94 94 95 0,29320 0,29276		79	80	•		106	
81 81 82 0,34049 0,33998 71 82 82 83 0,56862 0,29911 8 83 82 84 0,10877 0,10860 41 84 84 85 0,56862 0,29911 21 85 1 86 0,01126 0,02598 223 86 86 87 0,41835 0,96575 223 87 87 88 0,10499 0,13641 92 88 87 89 0,43898 1,01338 125 89 89 90 0,07520 0,02579 88 90 90 91 0,07692 0,17756 57 91 91 92 0,33205 0,76653 57 92 92 93 0,08442 0,19488 50 93 93 94 0,13320 0,30748 43 94 94 95 0,29320 0,29276 37 95 95 96 0,21753 0,21721	80						
82 82 83 0,56862 0,29911 8 83 82 84 0,10877 0,10860 41 84 84 85 0,56862 0,29911 21 85 1 86 0,01126 0,02598 223 86 86 87 0,41835 0,96575 223 87 87 88 0,10499 0,13641 92 88 87 89 0,43898 1,01338 125 89 89 90 0,07520 0,02579 88 90 90 91 0,07692 0,17756 57 91 91 92 0,33205 0,76653 57 92 92 93 0,08442 0,19488 50 93 93 94 0,13320 0,30748 43 94 94 95 0,29320 0,29276 37 95 95 96 0,21753 0,21721 31							
83 82 84 0,10877 0,10860 41 84 84 85 0,56862 0,29911 21 85 1 86 0,01126 0,02598 223 86 86 87 0,41835 0,96575 223 87 87 88 0,10499 0,13641 92 88 87 89 0,43898 1,01338 125 89 89 90 0,07520 0,02579 88 90 90 91 0,07692 0,17756 57 91 91 92 0,33205 0,76653 57 92 92 93 0,08442 0,19488 50 93 93 94 0,13320 0,30748 43 94 94 95 0,29320 0,29276 37 95 95 96 0,21753 0,21721 31							
84 84 85 0,56862 0,29911 21 85 1 86 0,01126 0,02598 223 86 86 87 0,41835 0,96575 223 87 87 88 0,10499 0,13641 92 88 87 89 0,43898 1,01338 125 89 89 90 0,07520 0,02579 88 90 90 91 0,07692 0,17756 57 91 91 92 0,33205 0,76653 57 92 92 93 0,08442 0,19488 50 93 93 94 0,13320 0,30748 43 94 94 95 0,29320 0,29276 37 95 95 96 0,21753 0,21721 31	83						
85 1 86 0,01126 0,02598 223 86 86 87 0,41835 0,96575 223 87 87 88 0,10499 0,13641 92 88 87 89 0,43898 1,01338 125 89 89 90 0,07520 0,02579 88 90 90 91 0,07692 0,17756 57 91 91 92 0,33205 0,76653 57 92 92 93 0,08442 0,19488 50 93 93 94 0,13320 0,30748 43 94 94 95 0,29320 0,29276 37 95 95 96 0,21753 0,21721 31							
86 86 87 0,41835 0,96575 223 87 87 88 0,10499 0,13641 92 88 87 89 0,43898 1,01338 125 89 89 90 0,07520 0,02579 88 90 90 91 0,07692 0,17756 57 91 91 92 0,33205 0,76653 57 92 92 93 0,08442 0,19488 50 93 93 94 0,13320 0,30748 43 94 94 95 0,29320 0,29276 37 95 95 96 0,21753 0,21721 31	85	1					
87 87 88 0,10499 0,13641 92 88 87 89 0,43898 1,01338 125 89 89 90 0,07520 0,02579 88 90 90 91 0,07692 0,17756 57 91 91 92 0,33205 0,76653 57 92 92 93 0,08442 0,19488 50 93 93 94 0,13320 0,30748 43 94 94 95 0,29320 0,29276 37 95 95 96 0,21753 0,21721 31		86				223	
88 87 89 0,43898 1,01338 125 89 89 90 0,07520 0,02579 88 90 90 91 0,07692 0,17756 57 91 91 92 0,33205 0,76653 57 92 92 93 0,08442 0,19488 50 93 93 94 0,13320 0,30748 43 94 94 95 0,29320 0,29276 37 95 95 96 0,21753 0,21721 31							
89 89 90 0,07520 0,02579 88 90 90 91 0,07692 0,17756 57 91 91 92 0,33205 0,76653 57 92 92 93 0,08442 0,19488 50 93 93 94 0,13320 0,30748 43 94 94 95 0,29320 0,29276 37 95 95 96 0,21753 0,21721 31							
90 90 91 0,07692 0,17756 57 91 91 92 0,33205 0,76653 57 92 92 93 0,08442 0,19488 50 93 93 94 0,13320 0,30748 43 94 94 95 0,29320 0,29276 37 95 95 96 0,21753 0,21721 31							
91 91 92 0,33205 0,76653 57 92 92 93 0,08442 0,19488 50 93 93 94 0,13320 0,30748 43 94 94 95 0,29320 0,29276 37 95 95 96 0,21753 0,21721 31							
92 92 93 0,08442 0,19488 50 93 93 94 0,13320 0,30748 43 94 94 95 0,29320 0,29276 37 95 95 96 0,21753 0,21721 31				•			
93 93 94 0,13320 0,30748 43 94 94 95 0,29320 0,29276 37 95 95 96 0,21753 0,21721 31							
94 94 95 0,29320 0,29276 37 95 95 96 0,21753 0,21721 31							
95 95 96 0,21753 0,21721 31							
•,							
96 96 97 0,26482 0,26443 12	96	96	97	0,26482	0,26443	12	

97	94	98	0,10318	0,23819	7
98	98	99	0,13507	0,31181	7
99	1	100	0,00938	0,02165	250
100	100	101	0,16884	0,38976	250
101	101	102	0,11819	0,27283	245
102	102	103	2,28608	0,78414	2
103	102	104	0,45587	1,05236	240
104	104	105	0,69600	1,60669	240
105	105	106	0,45774	1,05669	225
106	106	107	0,20298	0,26373	99
107	107	108	0,21348	0,27737	72
108	108	109	0,54967	0,28914	40
109	109	110	0,54019	0,28415	22
110	108	111	0,04550	0,05911	27
111	111	112	0,47385	0,24926	10
112	112	113	0,86241	0,45364	5 1
113 114	113	114 115	0,56862	0,29911	1 14
114	109 115	115	0,77711	0,40878	14
116	110	117	1,08038	0,56830 0,57827	22
117	117	117	1,06633 0,47385	•	1
118	105	119	0,32267	0,24926 0,74488	14
119	119	120	0,14633	0,74488	9
120	120	120	0,12382	0,28583	6
121	1	122	0,01126	0,02598	166
122	122	123	0,64910	1,49842	166
123	123	124	0,04502	0,10394	158
124	124	125	0,52640	0,18056	11
125	124	126	0,02064	0,04764	144
126	126	127	0,53071	0,27917	13
127	126	128	0,09755	0,22520	126
128	128	129	0,11819	0,27283	7
129	128	130	0,13882	0,32047	118
130	130	131	0,04315	0,09961	99
131	131	132	0,09192	0,21220	96
132	132	133	0,16134	0,37244	75
133	133	134	0,37832	0,37775	49
134	134	135	0,39724	0,39664	22
135	135	136	0,29320	0,29276	1
			oblema de reconfigu		
	8	74 2.5	0,13132	0,30315	200
	10	25	0,26536	0,13958	200
	16	84	0,14187	0,14166	200
	39 26	136	0,08512	0,08499	200
	26 51	52 97	0,04502 0,14187	0,10394 0,14166	200 200
	56	99	0,14187	0,14166	200
	63	121	0,03940	0,09094	200
	67	80	0,12944	0,29882	200
	80	132	0,01688	0,03898	200
	85	136	0,33170	0,17448	200
	92	105	0,14187	0,14166	200
	91	130	0,07692	0,17756	200
	91	104	0,07692	0,17756	200
	93	105	0,07692	0,17756	200
	93	132	0,07692	0,17756	200
	97 111	121 48	0,26482	0,26443	200 200
	111	40	0,49696	0,64567	∠UU

127	77	0,17059	0,08973	200	
129	78	0,05253	0,12126	200	
136	99	0,29320	0,29276	200	

B. 5 - DADOS DO SISTEMA DE 202 NÓS

Tabela B.9: Sistema de 202 nós - dados das barras

-	de 202 nos - dados das barra	
Barras	Demanda ativa (kW)	Demanda reativa (kVAr)
1	0	0
2 3	0	0
	38,25	23,7
4	0	0
5	63,75	39,5
6	0	0
7	0	0
8	38,25	23,7
9	95,2	58,99
10	63,75	39,5
11	0	0
12	510	316,02
13	0	0
14	0	0
15	0	0
16	63,75	39,5
17	127,5	79,01
18	63,75	39,5
19	63,75	39,5
20	255	158,01
21	0	0
22	0	0
23	255	158,01
24	255	158,01
25	382,5	237,02
26	0	0
27	191,25	118,51
28	0	0
29	51	31,6
30	95,63	59,25
31	95,63	59,25
32	0	0
33	350,63	217,26
34	350,63	217,26
35	0	0
36	0	0
37	63,75	39,5
38	0	0
39	95,63	59,25
40	0	0
41	255	158,01
42	0	0
43	191,25	118,51
44		
	95,63	59,25
45	0	0
46 47	0	0
47	63,75	39,5

48	0	0
49	605,63	375,27
50	573,75	355,52
51	191,25	118,51
52	255	158,01
53	765	474,03
54	255	158,01
55	0	0
56	0	0
57	318,75	197,51
58	318,75	197,51
59	0	0
60	25,5	15,8
61	0	0
62	0	0
63	0	0
64	0	0
65	95,63	59,25
66	0	0
67	38,25	23,7
68	0	0
69	102	63,2
70		
	0	0
71	89,25	55,3
72	0	0
73	0	0
74	38,25	23,7
75	0	0
76	0	0
77	510	316,02
78	595	368,69
79	0	0
80	0	0
81	382,5	237,02
82	0	0
83	350,63	217,26
84	0	0
85	38,25	23,7
86	255	158,01
87		
	446,25	276,52
88	382,5	237,02
89	0	0
90	0	0
91	0	0
92	95,63	59,25
93	191,25	118,51
94		
	216,75	134,31
95	95,63	59,25
96	191,25	118,51
97	63,75	39,5
98	382,5	237,02
99	0	0
100	0	0
101	63,75	39,5
102	0	0
103	0	0
104	63,75	39,5
105	127,5	79,01
	·	`

106			
107 106,25 65,84 108 127,5 79,01 109 95,63 59,25 110 0 0 111 127,5 79,01 112 127,5 79,01 113 0 0 114 0 0 115 318,75 197,51 116 350,63 217,26 117 446,25 276,52 118 63,75 39,5 119 127,5 79,01 120 63,75 39,5 121 382,5 237,02 122 0 0 123 76,5 47,4 124 255 158,01 125 191,25 118,51 126 255 158,01 127 233,75 144,84 128 573,75 355,52 129 276,25 171,18 130 255 158,01	106	95.63	59.25
108 127,5 79,01 109 95,63 59,25 110 0 0 111 127,5 79,01 112 127,5 79,01 113 0 0 114 0 0 115 318,75 197,51 116 350,63 217,26 117 446,25 276,52 118 63,75 39,5 119 127,5 79,01 120 63,75 39,5 121 382,5 237,02 122 0 0 123 76,5 47,4 124 255 158,01 125 191,25 118,51 126 255 158,01 127 233,75 144,84 128 573,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6			
109 95,63 59,25 110 0 0 111 127,5 79,01 112 127,5 79,01 113 0 0 114 0 0 115 318,75 197,51 116 350,63 217,26 117 446,25 276,52 118 63,75 39,5 119 127,5 79,01 120 63,75 39,5 121 382,5 237,02 122 0 0 123 76,5 47,4 124 255 158,01 125 191,25 118,51 126 255 158,01 127 233,75 144,84 128 573,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02			
110 0 0 111 127,5 79,01 112 127,5 79,01 113 0 0 114 0 0 115 318,75 197,51 116 350,63 217,26 117 446,25 276,52 118 63,75 39,5 119 127,5 79,01 120 63,75 39,5 121 382,5 237,02 122 0 0 123 76,5 47,4 124 255 158,01 125 191,25 118,51 126 255 158,01 127 233,75 144,84 128 573,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0			
111 127,5 79,01 112 127,5 79,01 113 0 0 114 0 0 115 318,75 197,51 116 350,63 217,26 117 446,25 276,52 118 63,75 39,5 119 127,5 79,01 120 63,75 39,5 121 382,5 237,02 122 0 0 123 76,5 47,4 124 255 158,01 125 191,25 118,51 126 255 158,01 127 233,75 144,84 128 573,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0			
112 127,5 79,01 113 0 0 114 0 0 115 318,75 197,51 116 350,63 217,26 117 446,25 276,52 118 63,75 39,5 119 127,5 79,01 120 63,75 39,5 121 382,5 237,02 122 0 0 123 76,5 47,4 124 255 158,01 125 191,25 118,51 126 255 158,01 127 233,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137			
113 0 0 114 0 0 115 318,75 197,51 116 350,63 217,26 117 446,25 276,52 118 63,75 39,5 119 127,5 79,01 120 63,75 39,5 121 382,5 237,02 122 0 0 123 76,5 47,4 124 255 158,01 125 191,25 118,51 126 255 158,01 127 233,75 144,84 128 573,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 <td></td> <td></td> <td></td>			
114 0 0 115 318,75 197,51 116 350,63 217,26 117 446,25 276,52 118 63,75 39,5 119 127,5 79,01 120 63,75 39,5 121 382,5 237,02 122 0 0 123 76,5 47,4 124 255 158,01 125 191,25 118,51 126 255 158,01 127 233,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 14	112	127,5	79,01
115 318,75 197,51 116 350,63 217,26 117 446,25 276,52 118 63,75 39,5 119 127,5 79,01 120 63,75 39,5 121 382,5 237,02 122 0 0 123 76,5 47,4 124 255 158,01 125 191,25 118,51 126 255 158,01 127 233,75 144,84 128 573,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 <td>113</td> <td>0</td> <td>0</td>	113	0	0
115 318,75 197,51 116 350,63 217,26 117 446,25 276,52 118 63,75 39,5 119 127,5 79,01 120 63,75 39,5 121 382,5 237,02 122 0 0 123 76,5 47,4 124 255 158,01 125 191,25 118,51 126 255 158,01 127 233,75 144,84 128 573,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 <td>114</td> <td>0</td> <td>0</td>	114	0	0
116 350,63 217,26 117 446,25 276,52 118 63,75 39,5 119 127,5 79,01 120 63,75 39,5 121 382,5 237,02 122 0 0 123 76,5 47,4 124 255 158,01 125 191,25 118,51 126 255 158,01 127 233,75 144,84 128 573,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 14			197.51
117 446,25 276,52 118 63,75 39,5 120 63,75 39,5 121 382,5 237,02 122 0 0 123 76,5 47,4 124 255 158,01 125 191,25 118,51 126 255 158,01 127 233,75 144,84 128 573,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 <td></td> <td></td> <td></td>			
118 63,75 39,5 119 127,5 79,01 120 63,75 39,5 121 382,5 237,02 122 0 0 123 76,5 47,4 124 255 158,01 125 191,25 118,51 126 255 158,01 127 233,75 144,84 128 573,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144			
119 127,5 79,01 120 63,75 39,5 121 382,5 237,02 122 0 0 123 76,5 47,4 124 255 158,01 125 191,25 118,51 126 255 158,01 127 233,75 144,84 128 573,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 <td></td> <td></td> <td></td>			
120 63,75 39,5 121 382,5 237,02 122 0 0 123 76,5 47,4 124 255 158,01 125 191,25 118,51 126 255 158,01 127 233,75 144,84 128 573,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 146 63,75 39,5 150			
121 382,5 237,02 122 0 0 123 76,5 47,4 124 255 158,01 125 191,25 118,51 126 255 158,01 127 233,75 144,84 128 573,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 145 0 0 146 63,75 39,5 150 <			
122 0 0 123 76,5 47,4 124 255 158,01 125 191,25 118,51 126 255 158,01 127 233,75 344,84 128 573,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 145 0 0 146 63,75	120	63,75	39,5
122 0 0 123 76,5 47,4 124 255 158,01 125 191,25 118,51 126 255 158,01 127 233,75 144,84 128 573,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 146 63,75 39,5 147 0	121	382,5	237,02
123 76,5 47,4 124 255 158,01 125 191,25 118,51 126 255 158,01 127 233,75 144,84 128 573,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 147 0 0 148 0 0 149 95,63			
124 255 158,01 125 191,25 118,51 126 255 158,01 127 233,75 144,84 128 573,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 0 0 0 151 63,75 39,5 155 212,5 131,68 156 63,75 <td< td=""><td></td><td></td><td></td></td<>			
125 191,25 118,51 126 255 158,01 127 233,75 144,84 128 573,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 158 0 0 159 63,75 <			
126 255 158,01 127 233,75 144,84 128 573,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 158 0 0 159 63,75 39,5 <td></td> <td></td> <td></td>			
127 233,75 144,84 128 573,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 145 0 0 146 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 0 0 0			
128 573,75 355,52 129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 145 0 0 146 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5			
129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 145 0 0 146 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68			
129 276,25 171,18 130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 145 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 <	128	573,75	355,52
130 255 158,01 131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 145 0 0 146 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5	129		
131 393,13 243,6 132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 145 0 0 146 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5			
132 510 316,02 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 145 0 0 146 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0			
133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 145 0 0 146 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5			
134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 145 0 0 146 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 159 63,75 39,5 </td <td></td> <td></td> <td></td>			
135 0 0 136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 145 0 0 146 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 </td <td></td> <td></td> <td></td>			
136 0 0 137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 145 0 0 146 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5			
137 0 0 138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 145 0 0 146 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0			
138 0 0 139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 145 0 0 146 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0			
139 63,75 39,5 140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 145 0 0 146 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0	137	0	0
140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 145 0 0 146 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0	138	0	0
140 0 0 141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 145 0 0 146 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0	139	63,75	39,5
141 0 0 142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 145 0 0 146 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0	140		
142 38,25 23,7 143 38,25 23,7 144 63,75 39,5 145 0 0 146 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0			
143 38,25 23,7 144 63,75 39,5 145 0 0 146 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0			
144 63,75 39,5 145 0 0 146 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0			
145 0 0 146 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0			
146 63,75 39,5 147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0			
147 0 0 148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0			
148 0 0 149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0			
149 95,63 59,25 150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0			
150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0		0	
150 0 0 151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0	149	95,63	59,25
151 63,75 39,5 152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0			
152 0 0 153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0			
153 0 0 154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0			
154 63,75 39,5 155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0			
155 212,5 131,68 156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0			
156 63,75 39,5 157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0			
157 63,75 39,5 158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0			
158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0			
158 0 0 159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0		63,75	39,5
159 63,75 39,5 160 38,25 23,7 161 63,75 39,5 162 0 0	158		
160 38,25 23,7 161 63,75 39,5 162 0 0			
161 63,75 39,5 162 0 0			
162 0 0			
103 0			
	103	U	U

164	95,63	59,25
165	0	0
166	0	0
167	446,25	276,52
168	191,25	118,51
169	255	158,01
170	605,63	375,27
171	63,75	39,5
172	127,5	79,01
173	63,75	39,5
174	191,25	118,51
175	0	0
176	0	0
177	208,25	129,04
178	191,25	118,51
179	127,5	79,01
180	127,5	79,01
181	0	0
182	0	0
183	255	158,01
184	127,5	79,01
185	850	526,7
186	127,5	79,01
187	510	316,02
188	0	0
189	0	0
190	0	0
191	191,25	118,51
192	448,38	277,83
193	255	158,01
194	510	316,02
195	382,5	237,02
196	255	158,01
197	191,25	118,51
198	446,25	276,52
199	133,88	82,96
200	95,63	59,25
201	382,5	237,02
202	1030,2	638,36

Tabela B.10: Sistema de 202 nós - dados dos ramos,

Ramo	de	para	Resistência(Ω)	Reatância(Ω)	Imax(A)
1	1	2	0,00001	0,00001	1581,6
2	2	3	0,0188300	0,0423200	1581,6
3	3	4	0,0659050	0,1481200	1574,4
4	4	5	0,0376600	0,0846400	1574,4
5	5	6	0,0188300	0,0423200	1560
6	6	7	0,00001	0,00001	1560
7	7	8	0,0188300	0,0423200	1560
8	8	9	0,0169470	0,0380880	1552,8
9	9	10	0,0188300	0,0423200	1533,6
10	10	11	0,00001	0,00001	117,6
11	11	12	0,0593500	0,0465400	117,6
12	10	13	0,0188300	0,0423200	1293,6
13	13	14	0,00001	0,00001	1293,6

14	10	15	0,00001	0,00001	132
15	15	16	0,0467050	0,0244500	132
16	16	17	0,0934100	0,0489000	117,6
17	17	18	0,0747280	0,0391200	26,4
18	17	19	0,1868200	0,0978000	79,2
19	19	20	0,0747280	0,0391200	64,8
20	14	21	0,0376600	0,0846400	1293,6
21	21	22	0,0414260	0,0931040	1293,6
22	22	23	0,00001	0,00001	1293,6
23	23	24	0,0065900	0,0148120	1240,8
24	24	25	0,0065900	0,0148120	1185,6
25	25	26	0,00001	0,00001	873,6
26	26	27	0,0244790	0,0550160	873,6
27	25	28	0,00001	0,00001	244,8
28	28	29	0,0653870	0,0342300	244,8
29	29	30	0,0467050	0,0244500	199,2
30	30	31	0,0467050	0,0244500	180
31	31	32	0,0467050	0,0244500	160,8
32	32	33	0,0594160	0,0202600	86,4
33	32	34	0,0891240	0,0303900	86,4
34	29	35	0,0934100	0,0489000	45,6
35	35	36	0,00001	0,00001	26,4
36	36	37	0,0373640	0,0195600	26,4
37	35	38	•		
38	38	39	0,00001	0,00001	31,2
39	27	40	0,0373640	0,0195600	31,2
	40	40	0,0094150	0,0211600	832,8
40			0,0371350	0,0126625	64,8
41	40	42	0,0094150	0,0211600	780
42	42	43	0,0094150	0,0211600	638,4
43	43	44	0,0094150	0,0211600	597,6
44	42	45	0,0594160	0,0202600	153,6
45	45	46	0,00001	0,00001	26,4
46	46	47	0,0371350	0,0126625	26,4
47	45	48	0,00001	0,00001	139,2
48	48	49	0,0371350	0,0126625	139,2
49	44	50	0,0141220	0,0317400	578,4
50	50	51	0,0131810	0,0296240	456
51	51	52	0,0112980	0,0253920	415,2
52	52	53	0,0112980	0,0253920	362,4
53	53	54	0,0112980	0,0253920	201,6
54	54	55	0,0112980	0,0253920	146,4
55	55	56	0,0742700	0,0253250	146,4
56	56	57	0,00001	0,00001	146,4
57	57	58	0,1039780	0,0354550	79,2
58	1	59	0,00001	0,00001	2196
59	59	60	0,0159700	0,0409500	2196
60	60	61	0,0990140	0,2538900	2191,2
61	61	62	0,00001	0,00001	1826
62	62	63	0,0415220	0,1064700	2191,2
63	63	64	0,00001	0,00001	2140,8
64	63	65	0,0191640	0,0491400	62,4
65	65	66	0,00001	0,00001	40,8
66	66	67	0,0159700	0,0409500	40,8
67	67	68	0,00001	0,00001	33,6
68	68	69	0,1336860	0,0455850	33,6
69	64	70	0,0188300	0,0423200	2140,8
70	70	70 71	0,1114050	0,0423200	•
/0	/ U	/ 1	0,1114030	0,03/98/3	31,2

71	70	72	0,00001	0,00001	43,2
72	72	73	0,1336860	0,0455850	43,2
73	73	74	0,0816970	0,0278575	43,2
74	70	75	0,0207130	0,0465520	2114,4
75	75	76	0,00001	0,00001	120
76	76	77	0,1633940	0,0557150	120
77	75	78	0,0112980	0,0253920	2006,4
78	78	79	0,0075320	0,0169280	1881,6
79	79	80	0,00001	0,00001	86,4
80	79	81	0,0094150	0,0211600	1545,6
81	81	82	0,0112980	0,0253920	1466,4
82	80	83	0,1262590	0,0430525	86,4
83	82	84	0,00001	0,00001	1466,4
84	84	85	0,0131810	0,0296240	43,2
85	84	86	0,0047070	0,0105800	1456,8
86	86	87	0,0056490	0,0126960	1404
87	87	88	0,0094150	0,0211600	1308
88	79	89	0,00001	0,00001	273,6
89	89	90	0,1782480	0,0607800	273,6
90	90	91	0,00001	0,0007300	31,2
91	91	92	0,1114050	0,0379870	31,2
92	90	93	0,00001	0,00001	254,4
93	93	94	0,0560460	0,0279240	213,6
94	94	95	0,0280230	0,0139620	168
95	95	96	0,0280230	0,0139620	146,4
96	96	97	0,0280230	0,0139620	105,6
97	97	98	0,0280230	0,0255970	93,6
98	88	99	0,0313730	0,0465520	1228,8
99	99	100	0,0207130	0,0403320	1228,8
100	100	100	•	0,00001	
100	100	101	0,0141220	•	26,4
101	100	102	0,0056490 0,00001	0,0126960	1214,4
102	102	103	•	0,00001	26,4
103	103	104	0,0742700	0,0253250	26,4 1152
104	102	105	0,0047070	0,0105800	
105	103	106	0,0056490	0,0126960	1123,2
			0,0065900	0,0148120	62,4
107	107	108	0,0103560	0,0232760	38,4
108	106	109	0,0112980	0,0253920	1104
109	109	110	0,00001	0,00001	1084,8
110	110	111	0,0075320	0,0169280	1084,8
111	111	112	0,0075320	0,0169280	1056
112	112	113	0,0075320	0,0169280	1029,6
113	113	114	0,00001	0,00001	26,4
114	113	115	0,0056490	0,0126960	249,6
115	115	116	0,0075320	0,0169280	182,4
116	116	117	0,0094150	0,0211600	108
117	114	118	0,0519890	0,0177270	26,4
118	113	119	0,0075320	0,0169280	777,6
119	119	120	0,0075320	0,0169280	751,2
120	120	121	0,0065900	0,0148120	736,8
121	121	122	0,0056490	0,0126960	655,2
122	122	123	0,00001	0,00001	81,6
123	122	124	0,00001	0,00001	585,6
124	124	125	0,0150640	0,0338560	530,4
125	123	126	0,0653870	0,0300300	67,2
126	125	127	0,0094150	0,0211600	489,6
127	127	128	0,0094150	0,0211600	134,4

128	127	129	0,0150640	0,0338560	319,2
129	129	130	0,0131810	0,0296240	259,2
130	130	131	0,0131810	0,0296240	204
131	131	132	0,0169470	0,0380880	120
132	1	133	0,00001	0,00001	2109,6
133	133	134	0,0696710	0,1565840	2109,6
134	134	135	0,00001	0,00001	2109,6
135	135	136	0,0150640	0,0338560	2109,6
136	136	137	0,0602560	0,1354240	2109,6
137	137	138	0,0094150	0,0211600	36
138	137	139	0,00001	0,00001	2064
139	139	140	0,0207130	0,0465520	2049,6
140	140	141	0,00001	0,00001	26,4
141	140	142	0,0094150	0,0211600	2037,6
142	142	143	0,0056490	0,0126960	2030,4
143	141	144	0,0280230	0,0146700	26,4
144	137	145	0,00001	0,00001	57,6
145	145	146	0,0747280	0,0391200	57,6
146	146	147	0,0560460	0,0293400	31,2
147	147	148	0,00001	0,00001	31,2
148	148	149	0,0373640	0,0195600	31,2
149	146	150	0,00001	0,00001	26,4
150	150	151	0,0467050	0,0244500	26,4
151	143	152	0,0056490	0,0126960	2020,8
152	152	153	0,00001	0,00001	26,4
153	152	154	0,0056490	0,0126960	2008,8
154	154	155	0,0056490	0,0126960	1994,4
155	155	156	0,0056490	0,0126960	1951,2
156	153	157	0,0373640	0,01255600	26,4
157	156	158	0,0056490	0,0126960	1936,8
158	158	159	0,0280230	0,0126700	33,6
159	159	160	0,0467050	0,0244500	43,2
160	158	161	0,0094150	0,0211600	1915,2
161	161	162	0,0112980	0,0253920	1913,2
162	162	163	0,00001	0,00001	1900,8
163	163	164	0,00001	0,00001	1900,8
164	164	165	0,0188300	0,0423200	1881,6
165	165	166	0,0188300	0,0423200	139,2
166	165	167			139,2 1754,4
167	167	168	0,0056490	0,0126960	
168	168	169	0,0056490	0,0126960	1658,4 1620
169	166		0,0075320	0,0169280 0,0342300	
		170	0,0653870	•	139,2
170	169	171	0,00001	0,00001	1564,8
171	171	172	0,0712200	0,0558480	38,4
172	171	173	0,0094150	0,0211600	1524
173	173	174	0,0094150	0,0211600	1512
174	174	175	0,0094150	0,0211600	1471,2
175	175	176	0,00001	0,00001	55,2
176	176	177	0,0747280	0,0391200	55,2
177	175	178	0,0037660	0,0084640	1425,6
178	178	179	0,0037660	0,0084640	1384,8
179	179	180	0,0056490	0,0126960	1358,4
180	180	181	0,00001	0,00001	1332
181	181	182	0,00001	0,00001	38,4
182	181	183	0,0467050	0,0244500	67,2
183	182	184	0,0607165	0,0317850	38,4
184	181	185	0,0056490	0,0126960	1250,4

185	185	186	0,0056490	0,0126960	1070,4
186	186	187	0,0056490	0,0126960	1041,6
187	187	188	0,0056490	0,0126960	933,6
188	188	189	0,00001	0,00001	108
189	188	190	0,00001	0,00001	52,8
190	190	191	0,0385775	0,0302510	52,8
191	189	192	0,0504475	0,0395590	108
192	188	193	0,0225960	0,0507840	796,8
193	193	194	0,0653870	0,0342300	120
194	193	195	0,0467050	0,0244500	511,2
195	195	196	0,0467050	0,0244500	429,6
196	196	197	0,0467050	0,0244500	374,4
197	193	198	0,0094150	0,0211600	134,4
198	198	199	0,0094150	0,0211600	40,8
199	197	200	0,0467050	0,0244500	333,6
200	200	201	0,1120920	0,0586800	93,6
201	200	202	0,0934100	0,0489000	232,8

B. 6 - DADOS DO SISTEMA DE 400 NÓS

Tabela B.11: Sistema de 400 nós - dados das barras

Barras	Demanda ativa (kW)	Demanda reativa (kVAr)
1	0	0
2	0	0
2 3	0	0
4	0	0
5	0	0
6	0	0
7	0	0
8	0	0
9	0	0
10	0	0
11	0	0
12	69	29,25
13	0	0
14	0	0
15	0	0
16	46	19,5
17	0	0
18	0	0
19	0	0
20	0	0
21	0	0
22	69	29,25
23	0	0
24	69	29,25
25	0	0
26	0	0
27	0	0
28	0	0
29	0	0
30	0	0
31	0	0
32	0	0
33	0	0

34	0	0
35	0	0
36	0	0
37	0	0
38	0	0
39	0	0
40	0	0
41	0	0
42	69	29,25
		0
43	0	0
44	0	0
45	0	0
46	0	0
47	41,4	17,55
48	0	0
49	0	0
50	69	29,25
51	0	0
52	0	0
53	0	0
54	0	0
55	69	29,25
56	41,4	17,55
57	0	0
58	103,5	43,88
59	0	0
60	0	0
61	0	0
62	0	0
	0	0
63		
64	0	0
65	0	0
66	0	0
67	0	0
68	0	0
69	0	0
70	0	0
	0	0
71		
72	41,4	17,55
73	0	0
74	27,6	11,7
75	0	0
76	0	0
77	0	0
78	69	29,25
76		
79	0	0
80	0	0
81	0	0
82	0	0
83	69	29,25
84	0	0
85	0	0
96	0	
86		0
87	69	29,25
88	0	0
89	0	0
90	0	0
91	0	0
92	69	29,25
93	0	0

94	0	0
95	0	o O
96	0	0
97	0	0
98	0	0
99	0	0
100	0	0
101	0	0
102	0	0
103	41,4	17,55
104	0	0
105	0	0
106	0	0
107	0	0
108	0	0
109	0	0
110	0	0
111	0	0
112	0	0
113	103,5	43,88
114	0	0
115	0	0
116	0	0
117	0	0
118	0	0
119	69	29,25
120	0	0
	0	0
121		
122	103,5	43,88
123	0	0
124	0	0
125	0	0
126	69	29,25
127	0	0
128	0	0
129	0	Ö
130	0	0
131	41,4	17,55
132	0	0
133	0	0
134	0	0
135	41,4	17,55
136	0	0
137	0	0
138	Ö	Ö
	0	0
139		
140	0	0
141	0	0
142	27,6	11,7
143	0	
		0
144	0	0
145	0	0
146	0	0
147	0	0
148	0	0
149	0	0
150	0	0
151	0	0
152	69	29,25
153	0	0

154	13,8	5,85
155	0	0
156	0	0
157	0	0
158	0	0
159	391	165,75
160	0	0
161	0	0
162	0	0
163	0	0
164	46	19,5
165	0	0
166	0	0
167	0	0
168	0	0
169	0	0
170	0	0
171	0	0
172	69	29,25
173	41,4	17,55
174	0	0
175	0	0
176	0	0
177	0	0
178	41,4	17,55
179	0	0
180	0	0
181	0	0
182	0	0
183	0	0
184	41,4	17,55
185	0	0
186	0	0
187	0	0
188	0	0
189	0	0
190	0	0
191	0	0
192	0	0
193	0	0
194	9,2	3,9
195	0	0
196	0	0
197	0	0
198	0	0
199	0	0
200	27,6	11,7
201	0	0
202	0	0
203	69	29,25
204	0	0
205	0	0
206	0	0
207	0	0
208	0	0
209	0	0
210	0	0
211	0	0
212	0	0
213	9,2	3,9

214 0 0 215 9,2 3,9 216 0 0 217 0 0 218 0 0 219 0 0 220 9,2 3,9 221 0 0 222 0 0 223 0 0 224 0 0 225 13,8 5,85 226 0 0 227 0 0 228 0 0 229 0 0 230 0 0 231 0 0 232 0 0 233 0 0	
215 9,2 3,9 216 0 0 217 0 0 218 0 0 219 0 0 220 9,2 3,9 221 0 0 222 0 0 223 0 0 224 0 0 225 13,8 5,85 226 0 0 227 0 0 228 0 0 229 0 0 230 0 0 231 0 0 232 0 0	
216 0 0 217 0 0 218 0 0 219 0 0 220 9,2 3,9 221 0 0 222 0 0 223 0 0 224 0 0 225 13,8 5,85 226 0 0 227 0 0 228 0 0 229 0 0 230 0 0 231 0 0 232 0 0	
216 0 0 217 0 0 218 0 0 219 0 0 220 9,2 3,9 221 0 0 222 0 0 223 0 0 224 0 0 225 13,8 5,85 226 0 0 227 0 0 228 0 0 229 0 0 230 0 0 231 0 0 232 0 0	
217 0 0 218 0 0 219 0 0 220 9,2 3,9 221 0 0 222 0 0 223 0 0 224 0 0 225 13,8 5,85 226 0 0 227 0 0 228 0 0 229 0 0 230 0 0 231 0 0 232 0 0	
218 0 0 219 0 0 220 9,2 3,9 221 0 0 222 0 0 223 0 0 224 0 0 225 13,8 5,85 226 0 0 227 0 0 228 0 0 229 0 0 230 0 0 231 0 0 232 0 0	
218 0 0 219 0 0 220 9,2 3,9 221 0 0 222 0 0 223 0 0 224 0 0 225 13,8 5,85 226 0 0 227 0 0 228 0 0 229 0 0 230 0 0 231 0 0 232 0 0	
219 0 0 220 9,2 3,9 221 0 0 222 0 0 223 0 0 224 0 0 225 13,8 5,85 226 0 0 227 0 0 228 0 0 229 0 0 230 0 0 231 0 0 232 0 0	
220 9,2 3,9 221 0 0 222 0 0 223 0 0 224 0 0 225 13,8 5,85 226 0 0 227 0 0 228 0 0 229 0 0 230 0 0 231 0 0 232 0 0	
220 9,2 3,9 221 0 0 222 0 0 223 0 0 224 0 0 225 13,8 5,85 226 0 0 227 0 0 228 0 0 229 0 0 230 0 0 231 0 0 232 0 0	
221 0 0 222 0 0 223 0 0 224 0 0 225 13,8 5,85 226 0 0 227 0 0 228 0 0 229 0 0 230 0 0 231 0 0 232 0 0	
222 0 0 223 0 0 224 0 0 225 13,8 5,85 226 0 0 227 0 0 228 0 0 229 0 0 230 0 0 231 0 0 232 0 0	
222 0 0 223 0 0 224 0 0 225 13,8 5,85 226 0 0 227 0 0 228 0 0 229 0 0 230 0 0 231 0 0 232 0 0	
223 0 0 224 0 0 225 13,8 5,85 226 0 0 227 0 0 228 0 0 229 0 0 230 0 0 231 0 0 232 0 0	
224 0 0 225 13,8 5,85 226 0 0 227 0 0 228 0 0 229 0 0 230 0 0 231 0 0 232 0 0	
225 13,8 5,85 226 0 0 227 0 0 228 0 0 229 0 0 230 0 0 231 0 0 232 0 0	
225 13,8 5,85 226 0 0 227 0 0 228 0 0 229 0 0 230 0 0 231 0 0 232 0 0	
226 0 0 227 0 0 228 0 0 229 0 0 230 0 0 231 0 0 232 0 0	
226 0 0 227 0 0 228 0 0 229 0 0 230 0 0 231 0 0 232 0 0	
227 0 0 228 0 0 229 0 0 230 0 0 231 0 0 232 0 0	
228 0 0 229 0 0 230 0 0 231 0 0 232 0 0	
228 0 0 229 0 0 230 0 0 231 0 0 232 0 0	
229 0 230 0 231 0 232 0	
230 0 0 231 0 0 232 0 0	
230 0 0 231 0 0 232 0 0	
231 0 0 232 0 0	
232 0 0	
232 0 0	
233 0 0	
234 0 0	
235 0 0	
236 0	
237 0 0	
238 0 0	
239 0	
241 0 0	
242 0 0	
243 0	
244 0 0	
245 0 0	
246 0 0	
247 0 0	
248 0 0	
249 0 0	
250 0	
251 0 0	
252 0 0	
253 0 0	
254 0 0	
255 0 0	
256 0 0	
257	
257 41,4 17,55	
258 0 0	
259 0 0	
260 41,4 17,55	
261 0 0	
262 0	
263 0 0	
264 41,4 17,55	
265 0 0	
266 0 0	
267 0 0	
268 0 0	
269 0 0	
270 0	
271 0 0	
272 0 0	
0 0	
273 0 0	

274 9,2 3,9 275 0 0 276 0 0 277 0 0 278 0 0 279 0 0 280 69 29,25 281 0 0 282 0 0 283 0 0 284 0 0 285 0 0 286 27,6 11,7 287 0 0 288 0 0 289 0 0 290 0 0 291 0 0 292 103,5 43,88 293 0 0 294 0 0 295 0 0 296 0 0 297 0 0 298 0 0 299 0 0			
275 0 0 276 0 0 277 0 0 278 0 0 279 0 0 280 69 29,25 281 0 0 282 0 0 283 0 0 284 0 0 285 0 0 286 27,6 11,7 287 0 0 288 0 0 289 0 0 290 0 0 291 0 0 292 103,5 43,88 293 0 0 294 0 0 295 0 0 296 0 0 297 0 0 298 0 0 301 0 0 302 0 0 <td>274</td> <td>9,2</td> <td>3,9</td>	274	9,2	3,9
276 0 0 277 0 0 279 0 0 280 69 29,25 281 0 0 282 0 0 283 0 0 284 0 0 285 0 0 286 27,6 11,7 287 0 0 289 0 0 289 0 0 290 0 0 291 0 0 292 103,5 43,88 293 0 0 294 0 0 295 0 0 296 0 0 297 0 0 298 0 0 299 0 0 300 0 0 301 0 0 302 0 0 <td>275</td> <td></td> <td></td>	275		
277 0 0 278 0 0 280 69 29,25 281 0 0 282 0 0 283 0 0 284 0 0 285 0 0 286 27,6 11,7 287 0 0 288 0 0 289 0 0 290 0 0 291 0 0 292 103,5 43,88 293 0 0 294 0 0 295 0 0 296 0 0 297 0 0 298 0 0 299 0 0 301 0 0 302 0 0 303 0 0 304 46 19,5			
278 0 0 279 0 0 280 69 29,25 281 0 0 282 0 0 283 0 0 284 0 0 285 0 0 286 27,6 11,7 288 0 0 289 0 0 290 0 0 291 0 0 292 103,5 43,88 293 0 0 294 0 0 295 0 0 296 0 0 297 0 0 298 0 0 299 0 0 299 0 0 300 0 0 301 0 0 302 0 0 303 0 0 <td></td> <td></td> <td></td>			
279 0 0 29,25 281 29,25 281 0 0 29,25 282 0 0 0 282 282 0 0 0 282 283 0 0 0 283 0 0 0 284 0 0 0 285 0 0 0 0 0 0 284 0			
280 69 29,25 281 0 0 282 0 0 283 0 0 284 0 0 285 0 0 286 27,6 11,7 287 0 0 288 0 0 289 0 0 290 0 0 291 0 0 291 0 0 292 103,5 43,88 293 0 0 294 0 0 295 0 0 296 0 0 297 0 0 298 0 0 299 0 0 300 0 0 301 0 0 302 0 0 303 0 0 304 46 19,5			
281 0 0 282 0 0 284 0 0 286 27,6 11,7 287 0 0 288 0 0 289 0 0 290 0 0 291 0 0 292 103,5 43,88 293 0 0 294 0 0 295 0 0 296 0 0 297 0 0 298 0 0 299 0 0 299 0 0 300 0 0 301 0 0 302 0 0 303 0 0 304 46 19,5 305 0 0 306 0 0 307 0 0 <td></td> <td></td> <td></td>			
282			0
283 0 0 284 0 0 286 27,6 11,7 287 0 0 288 0 0 289 0 0 290 0 0 291 0 0 292 103,5 43,88 293 0 0 294 0 0 295 0 0 296 0 0 297 0 0 298 0 0 299 0 0 300 0 0 301 0 0 302 0 0 303 0 0 304 46 19,5 305 0 0 306 0 0 307 0 0 308 41,4 17,55 309 0 0			
284 0 0 285 0 0 286 27,6 11,7 287 0 0 288 0 0 289 0 0 290 0 0 291 0 0 291 0 0 292 103,5 43,88 293 0 0 294 0 0 295 0 0 296 0 0 297 0 0 298 0 0 299 0 0 300 0 0 301 0 0 302 0 0 303 0 0 304 46 19,5 305 0 0 306 0 0 307 0 0 311 0 0 <td></td> <td></td> <td></td>			
285 0 0 0 286 27,6 11,7 11,7 287 0			
286 27,6 11,7 287 0 0 288 0 0 289 0 0 289 0 0 290 0 0 291 0 0 292 103,5 43,88 293 0 0 294 0 0 295 0 0 296 0 0 297 0 0 298 0 0 299 0 0 300 0 0 301 0 0 302 0 0 303 0 0 304 46 19,5 305 0 0 306 0 0 307 0 0 308 41,4 17,55 309 0 0 311 0 0			
287 0 0 288 0 0 290 0 0 291 0 0 291 0 0 291 0 0 292 103,5 43,88 293 0 0 294 0 0 295 0 0 296 0 0 297 0 0 298 0 0 299 0 0 300 0 0 301 0 0 302 0 0 303 0 0 304 46 19,5 305 0 0 306 0 0 307 0 0 308 41,4 17,55 309 0 0 311 0 0 312 0 0 <td></td> <td></td> <td></td>			
288 0 0 289 0 0 290 0 0 291 0 0 292 103,5 43,88 293 0 0 294 0 0 295 0 0 296 0 0 297 0 0 298 0 0 300 0 0 301 0 0 302 0 0 303 0 0 304 46 19,5 305 0 0 306 0 0 307 0 0 308 41,4 17,55 309 0 0 310 0 0 311 0 0 312 0 0 313 0 0 314 0 0 <td></td> <td></td> <td></td>			
289 0 0 0 0 291 0 0 0 292 103,5 43,88 293 0 0 0 294 0 0 0 294 0 0 0 295 0 0 0 0 296 0 0 0 0 0 297 0<			
290 0 0 0 291 0 0 292 103,5 43,88 293 0 0 0 294 0 0 0 294 0 0 0 0 0 295 0 0 0 0 0 0 0 296 0 <td></td> <td></td> <td></td>			
291 0 0 0 292 103,5 43,88 293 0 0 0 0 294 0 0 0 0 295 0 0 0 0 295 0			
292 103,5 43,88 293 0 0 294 0 0 295 0 0 296 0 0 297 0 0 298 0 0 299 0 0 300 0 0 301 0 0 302 0 0 303 0 0 304 46 19,5 305 0 0 306 0 0 307 0 0 308 41,4 17,55 309 0 0 310 0 0 311 0 0 312 0 0 313 0 0 314 0 0 315 0 0 316 27,6 11,7 317 0 0			
293 0 0 294 0 0 295 0 0 296 0 0 297 0 0 298 0 0 300 0 0 301 0 0 302 0 0 303 0 0 304 46 19,5 305 0 0 306 0 0 307 0 0 308 41,4 17,55 309 0 0 311 0 0 312 0 0 313 0 0 314 0 0 315 0 0 316 27,6 11,7 317 0 0 318 0 0 320 13,8 5,85 321 0 0			
294 0 0 295 0 0 296 0 0 297 0 0 298 0 0 300 0 0 301 0 0 302 0 0 303 0 0 304 46 19,5 305 0 0 306 0 0 307 0 0 308 41,4 17,55 309 0 0 310 0 0 311 0 0 312 0 0 313 0 0 314 0 0 315 0 0 316 27,6 11,7 317 0 0 318 0 0 320 13,8 5,85 321 0 0			
295 0 0 296 0 0 297 0 0 298 0 0 299 0 0 300 0 0 301 0 0 302 0 0 303 0 0 304 46 19,5 305 0 0 306 0 0 307 0 0 308 41,4 17,55 309 0 0 310 0 0 311 0 0 312 0 0 313 0 0 314 0 0 315 0 0 316 27,6 11,7 317 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 <td></td> <td></td> <td></td>			
296 0 0 297 0 0 298 0 0 299 0 0 300 0 0 301 0 0 302 0 0 303 0 0 304 46 19,5 305 0 0 306 0 0 307 0 0 308 41,4 17,55 309 0 0 310 0 0 311 0 0 312 0 0 313 0 0 314 0 0 315 0 0 316 27,6 11,7 317 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 <td></td> <td></td> <td></td>			
297 0 0 298 0 0 299 0 0 300 0 0 301 0 0 302 0 0 303 0 0 304 46 19,5 305 0 0 306 0 0 307 0 0 308 41,4 17,55 309 0 0 310 0 0 311 0 0 312 0 0 313 0 0 314 0 0 315 0 0 316 27,6 11,7 317 0 0 318 0 0 319 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 <td></td> <td></td> <td></td>			
298 0 0 299 0 0 300 0 0 301 0 0 302 0 0 303 0 0 304 46 19,5 305 0 0 306 0 0 307 0 0 308 41,4 17,55 309 0 0 310 0 0 311 0 0 312 0 0 313 0 0 314 0 0 315 0 0 316 27,6 11,7 317 0 0 318 0 0 319 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 <td></td> <td></td> <td></td>			
299 0 0 0 300 0 0 0 301 0 0 0 302 0 0 0 303 0 0 0 304 46 19,5 305 305 0 0 0 306 0 0 0 307 0 0 0 308 41,4 17,55 309 0 0 0 310 0 0 0 311 0 0 0 312 0 0 0 313 0 0 0 314 0 0 0 315 0 0 0 316 27,6 11,7 317 0 0 0 318 0 0 0 320 13,8 5,85 321 <			
300 0 0 301 0 0 302 0 0 303 0 0 304 46 19,5 305 0 0 306 0 0 307 0 0 308 41,4 17,55 309 0 0 310 0 0 311 0 0 312 0 0 313 0 0 314 0 0 315 0 0 316 27,6 11,7 317 0 0 318 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 330 0 0			
301 0 0 302 0 0 303 0 0 304 46 19,5 305 0 0 306 0 0 307 0 0 308 41,4 17,55 309 0 0 310 0 0 311 0 0 312 0 0 313 0 0 314 0 0 315 0 0 316 27,6 11,7 317 0 0 318 0 0 319 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 <td></td> <td></td> <td></td>			
302 0 0 303 0 0 304 46 19,5 305 0 0 306 0 0 307 0 0 308 41,4 17,55 309 0 0 310 0 0 311 0 0 312 0 0 313 0 0 314 0 0 315 0 0 316 27,6 11,7 317 0 0 318 0 0 319 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 330 0 0			
303 0 0 304 46 19,5 305 0 0 306 0 0 307 0 0 308 41,4 17,55 309 0 0 310 0 0 311 0 0 312 0 0 313 0 0 314 0 0 315 0 0 316 27,6 11,7 317 0 0 318 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,			
304 46 19,5 305 0 0 306 0 0 307 0 0 308 41,4 17,55 309 0 0 310 0 0 311 0 0 312 0 0 313 0 0 314 0 0 315 0 0 316 27,6 11,7 317 0 0 318 0 0 319 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 330 0 0 331 41,4 17,55 332 0 <td< td=""><td></td><td></td><td></td></td<>			
305 0 0 306 0 0 307 0 0 308 41,4 17,55 309 0 0 310 0 0 311 0 0 312 0 0 313 0 0 314 0 0 315 0 0 316 27,6 11,7 317 0 0 318 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0			
306 0 0 307 0 0 308 41,4 17,55 309 0 0 310 0 0 311 0 0 312 0 0 313 0 0 314 0 0 315 0 0 316 27,6 11,7 317 0 0 318 0 0 319 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 329 0 0 331 41,4 17,55 332 0 0			
307 0 0 308 41,4 17,55 309 0 0 310 0 0 311 0 0 312 0 0 313 0 0 314 0 0 315 0 0 316 27,6 11,7 317 0 0 318 0 0 319 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0			
308 41,4 17,55 309 0 0 310 0 0 311 0 0 312 0 0 313 0 0 314 0 0 315 0 0 316 27,6 11,7 317 0 0 318 0 0 319 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0			
309 0 0 310 0 0 311 0 0 312 0 0 313 0 0 314 0 0 315 0 0 316 27,6 11,7 317 0 0 318 0 0 319 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0			
310 0 0 311 0 0 312 0 0 313 0 0 314 0 0 315 0 0 316 27,6 11,7 317 0 0 318 0 0 319 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0			
311 0 0 312 0 0 313 0 0 314 0 0 315 0 0 316 27,6 11,7 317 0 0 318 0 0 319 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0		0	
312 0 0 313 0 0 314 0 0 315 0 0 316 27,6 11,7 317 0 0 318 0 0 319 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0			
313 0 0 314 0 0 315 0 0 316 27,6 11,7 317 0 0 318 0 0 319 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0			
314 0 0 315 0 0 316 27,6 11,7 317 0 0 318 0 0 319 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0			
315 0 0 316 27,6 11,7 317 0 0 318 0 0 319 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0			
316 27,6 11,7 317 0 0 318 0 0 319 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0			
317 0 0 318 0 0 319 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0			
318 0 0 319 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0			
319 0 0 320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0	31 / 210		
320 13,8 5,85 321 0 0 322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0			
321 0 0 322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0			
322 27,6 11,7 323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0			
323 0 0 324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0			
324 0 0 325 0 0 326 0 0 327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0			
325 0 0 326 0 0 327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0			
326 0 0 327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0			
327 0 0 328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0			
328 0 0 329 0 0 330 0 0 331 41,4 17,55 332 0 0			
329 0 0 330 0 0 331 41,4 17,55 332 0 0			
330 0 0 331 41,4 17,55 332 0 0	328		
331 41,4 17,55 332 0 0	329		
332 0	330		
	331		
333 13,8 5,85			
	333	13,8	5,85

-		
334	0	0
335	0	0
336	0	0
337	0	0
338	0	0
339	0	0
340	69	29,25
341	0	0
342	0	0
343	0	0
344	0	0
345	41,4	17,55
346	0	0
347	0	0
348 349	0	0
350	0	0
351	0	0
352	0	0
353	0	0
354	0	0
355	41,4	17,55
356	0	0
357	0	0
358	0	0
359	0	0
360	0	0
361	0	0
362	0	0
363	0	0
364	0	0
365	0	0
366	0	0
367	69	29,25
368	0	0
369	0	0
370	0	0
371	0	0
372	0	0
		0
373	0	
374	69	29,25
375	0	0
376	0	0
377	0	0
378	0	0
379	0	0
380	0	0
381	0	0
382	0	0
383	69	29,25
384	0	0
385	0	0

386	0	0
387	0	0
388	0	0
389	0	0
390	0	0
391	0	0
392	0	0
393	41,4	17,55
394	0	0
395	0	0
396	0	0
397	0	0
398	0	0
399	0	0
400	69	29,25

Tabela B.12: Sistema de 400 nós - dados dos ramos

Ramo	de	para	Resistência(Ω)	Reatância(Ω)	Imax(A)
1	1	2	0,0378	0,0125	9999
2	2	3	0,0305	0,0101	9999
3	3	4	0,0309	0,0102	9999
4	4	5	0,0331	0,0109	9999
5	5	6	0,0378	0,0125	9999
6	6	7	0,0326	0,0107	9999
7	7	8	0,0378	0,0125	9999
8	8	9	0,0422	0,0139	9999
9	9	10	0,0326	0,0107	9999
10	10	11	0,0331	0,0109	9999
11	11	12	0,0305	0,0101	9999
12	12	13	0,0378	0,0125	9999
13	13	14	0,0378	0,0125	9999
14	14	15	0,0378	0,0125	9999
15	6	16	0,0378	0,0125	9999
16	14	17	0,0422	0,0139	9999
17	17	18	0,0368	0,0121	9999
18	18	19	0,0347	0,0114	9999
19	19	20	0,0431	0,0093	9999
20	20	21	0,0516	0,0111	9999
21	21	22	0,0331	0,0109	9999
22	9	23	0,0378	0,0125	9999
23	23	24	0,0339	0,0112	9999
24	9	25	0,0339	0,0112	9999
25	25	26	0,0378	0,0125	9999
26	26	27	0,0420	0,0139	9999
27	27	28	0,0441	0,0146	9999
28	28	29	0,0378	0,0125	9999
29	29	30	0,0378	0,0125	9999
30	30	31	0,0378	0,0125	9999
31	31	32	0,0368	0,0121	9999
32	32	33	0,0347	0,0114	9999
33	33	34	0,0284	0,0094	9999
34	34	35	0,0326	0,0107	9999

35	35	36	0,0326	0,0107	9999
36	36	37	0,0441	0,0146	9999
37	37	38	0,0422	0,0139	9999
38	38	39	0,0378	0,0125	9999
39	39	40	0,0378	0,0125	9999
40	40	41	0,0331	0,0109	9999
41	41	42	0,0305	0,0101	9999
42	28	43	0,0339	0,0112	9999
43	43	44	0,0305	0,0101	9999
44	44	45	0,0309	0,0102	9999
45	45	46	0,0309	0,0102	9999
46	46	47	0,0326	0,0107	9999
47	28	48	0,0331	0,0109	9999
48	48	49	0,0294	0,0097	9999
49	49	50	0,0305	0,0101	9999
50	50	51	0,0378	0,0125	9999
51	51	52	0,0378	0,0125	9999
52	52	53	0,0378	0,0129	9999
53	53	54	0,0339	0,0112	9999
54	54	55	0,0339	0,0112	9999
55	55	56	0,0339	0,0112	9999
56	36	57	•		9999
57	57	58	0,0378	0,0125	9999
	5 <i>7</i> 58		0,0339	0,0112	9999
58		59	0,0420	0,0139	
59	59	60	0,0441	0,0146	9999
60	60	61	0,0284	0,0094	9999
61	61	62	0,0305	0,0101	9999
62	62	63	0,0331	0,0109	9999
63	63	64	0,0326	0,0107	9999
64	64	65	0,0284	0,0094	9999
65	65	66	0,0378	0,0125	9999
66	66	67	0,0305	0,0101	9999
67	67	68	0,0378	0,0125	9999
68	68	69	0,0284	0,0094	9999
69	69	70	0,0326	0,0107	9999
70	70	71	0,0441	0,0146	9999
71	71	72	0,0420	0,0139	9999
72	65	73	0,0339	0,0112	9999
73	73	74	0,0331	0,0109	9999
74	74	75	0,0309	0,0102	9999
75	75	76	0,0294	0,0097	9999
76	76	77	0,0368	0,0121	9999
77	77	78	0,0347	0,0114	9999
78	78	79	0,0305	0,0101	9999
79	79	80	0,0347	0,0114	9999
80	80	81	0,0422	0,0139	9999
81	81	82	0,0326	0,0107	9999
82	82	83	0,0284	0,0094	9999
83	83	84	0,0326	0,0107	9999
84	84	85	0,0441	0,0146	9999
85	85	86	0,0420	0,0139	9999
86	86	87	0,0378	0,0125	9999
87	87	88	0,0378	0,0125	9999
88	88	89	0,0378	0,0123	9999
89	89	90	0,0309	0,0102	9999
90	90	91	0,0309	0,0102	9999
91	91	92	0,0294	0,0097	9999
91	91	34	0,0308	0,0121	2222

92	60	93	0,0326	0,0107	9999
93	93	94	0,0339	0,0112	9999
94	94	95	0,0331	0,0109	9999
95	95	96	0,0326	0,0107	9999
96	96	97	0,0284	0,0094	9999
97	97	98	0,0368	0,0121	9999
98	98	99	0,0368	0,0121	9999
99	99	100	0,0441	0,0146	9999
100	100	101	0,0294	0,0097	9999
101	101	102	0,0309	0,0102	9999
102	102	103	0,0284	0,0094	9999
103	97	104	0,0326	0,0107	9999
104	104	105	0,0378	0,0125	9999
105	105	106	0,0331	0,0109	9999
106	106	107	0,0331	0,0109	9999
107	107	108	0,0378	0,0125	9999
108	108	109	0,0339	0,0112	9999
109	109	110	0,0331	0,0109	9999
110	110	111	0,0305	0,0101	9999
111	111	112	0,0378	0,0125	9999
112	112	113	0,0378	0,0125	9999
113	113	114	0,0284	0,0094	9999
114	114	115	0,0420	0,0139	9999
115	115	116	0,0441	0,0146	9999
116	116	117	0,0326	0,0107	9999
117	117	118	0,0284	0,0094	9999
118	118	119	0,0347	0,0114	9999
119	107	120	0,0378	0,0125	9999
120	120	121	0,0368	0,0121	9999
121	121	122	0,0347	0,0114	9999
122	107	123	0,0305	0,0101	9999
123	123	124	0,0305	0,0101	9999
124	124	125	0,0331	0,0109	9999
125	125	126	0,0339	0,0112	9999
126	126	127	0,0347	0,0114	9999
127	127	128	0,0368	0,0121	9999
128	128	129	0,0284	0,0094	9999
129	129	130	0,0326	0,0107	9999
130	130	131	0,0378	0,0125	9999
131	130	132	0,0441	0,0146	9999
132	132	133	0,0326	0,0107	9999
133	133	134	0,0441	0,0146	9999
134	134	135	0,0420	0,0139	9999
135	135	136	0,0378	0,0125	9999
136	136	137	0,0420	0,0139	9999
137	137	138	0,0378	0,0125	9999
138	138	139	0,0347	0,0114	9999
139	139	140	0,0368	0,0121	9999
140	140	141	0,0331	0,0109	9999
141	141	142	0,0422	0,0139	9999
142	142	143	0,0305	0,0101	9999
143	143	144	0,0378	0,0125	9999
144	144	145	0,0441	0,0146	9999
145	145	146	0,0339	0,0112	9999
146	146	147	0,0420	0,0139	9999
147	147	148	0,0305	0,0101	9999
148	148	149	0,0305	0,0101	9999

149	149	150	0,0642	0,0138	9999
150	150	151	0,0463	0,0100	9999
151	151	152	0,0503	0,0108	9999
152	148	153	0,0284	0,0094	9999
153	153	154	0,0368	0,0121	9999
154	154	155	0,0347	0,0114	9999
155	155	156	0,0441	0,0146	9999
156	156	157	0,0495	0,0107	9999
157	157	158	0,0575	0,0124	9999
158	158	159	0,0575	0,0124	9999
159	139	160	0,0294	0,0097	9999
160	160	161	0,0284	0,0094	9999
161	161	162	0,0441	0,0146	9999
162	162	163	0,0326	0,0107	9999
163	163	164	0,0420	0,0139	9999
164	164	165	0,0378	0,0125	9999
165	165	166	0,0331	0,0109	9999
166	166	167	0,0378	0,0125	9999
167	167	168	0,0422	0,0139	9999
168	168	169	0,0378	0,0125	9999
169	169	170	0,0441	0,0146	9999
170	170	171	0,0305	0,0101	9999
171	171	172	0,0642	0,0138	9999
172	171	173	0,0516	0,0111	9999
173	169	174	0,0378	0,0125	9999
174	174	175	0,0331	0,0109	9999
175	175	176	0,0294	0,0097	9999
176	176	177	0,0326	0,0107	9999
177	177	178	0,0284	0,0094	9999
178	166	179	0,0305	0,0101	9999
179	179	180	0,0378	0,0125	9999
180	180	181	0,0331	0,0109	9999
181	181	182	0,0305	0,0101	9999
182	182	183	0,0339	0,0112	9999
183	183	184	0,0294	0,0097	9999
184	183	185	0,0347	0,0114	9999
185	185	186	0,0378	0,0125	9999
186	186	187	0,0339	0,0112	9999
187	187	188	0,0378	0,0125	9999
188	188	189	0,0294	0,0097	9999
189	189	190	0,0284	0,0094	9999
190	190	191	0,0422	0,0139	9999
191	191	192	0,0378	0,0125	9999
192	192	193	0,0331	0,0109	9999
193	193	194	0,0331	0,0109	9999
194	194	195	0,0284	0,0094	9999
195	195	196	0,0326	0,0107	9999
196	196	197	0,0642	0,0138	9999
197	197	198	0,0431	0,0093	9999
198	198	199	0,0559	0,0120	9999
199	199	200	0,0516	0,0111	9999
200	198	201	0,0516	0,0111	9999
201	201	202	0,0503	0,0108	9999
202	202	203	0,0326	0,0107	9999
203	183	204	0,0326	0,0107	9999
204	204	205	0,0305	0,0101	9999
205	205	206	0,0378	0,0125	9999

206	206	207	0,0378	0,0125	9999
207	207	208	0,0326	0,0107	9999
208	208	209	0,0326	0,0107	9999
209	209	210	0,0422	0,0139	9999
210	210	211	0,0331	0,0109	9999
211	211	212	0,0339	0,0112	9999
212	212	213	0,0331	0,0109	9999
213	213	214	0,0305	0,0101	9999
214	214	215	0,0378	0,0125	9999
215	215	216	0,0326	0,0107	9999
216	216	217	0,0441	0,0146	9999
217	217	218	0,0305	0,0101	9999
218	218	219	0,0331	0,0109	9999
219	219	220	0,0368	0,0121	9999
220	220	221	0,0339	0,0112	9999
221	221	222	0,0284	0,0094	9999
222	222	223	0,0326	0,0107	9999
223	223	224	0,0503	0,0108	9999
224	224	225	0,0516	0,0111	9999
225	223	226	0,0420	0,0139	9999
226	226	227	0,0441	0,0146	9999
227	227	228	0,0339	0,0112	9999
228	228	229	0,0767	0,0101	9999
229	229	230	0,0990	0,0130	9999
230	230	231	0,0891	0,0117	9999
231	231	232	0,1039	0,0137	9999
232	232	233	0,0767	0,0101	9999
233	233	234	0,0866	0,0114	9999
234	234	235	0,0668	0,0088	9999
235	235	236	0,0816	0,0108	9999
236	236	237	0,0559	0,0120	9999
237	237	238	0,0527	0,0113	9999
238	238	239	0,0668	0,0088	9999
239	239	240	0,0671	0,0144	9999
240	239	241	0,0767	0,0101	9999
241	241	242	0,0717	0,0095	9999
242	241	243	0,0891	0,0117	9999
243	243	244	0,0767	0,0101	9999
244	244	245	0,0995	0,0131	9999
245	245	246	0,0799	0,0105	9999
246	246	247	0,0816	0,0108	9999
247	247	248	0,0668	0,0088	9999
248	248	249	0,1039	0,0137	9999
249	249	250	0,0799	0,0105	9999
250	250	251	0,0779	0,0103	9999
251	248	252	0,0767	0,0101	9999
252	252	253	0,0995	0,0131	9999
253	253	254	0,0891	0,0117	9999
254	254	255	0,0717	0,0095	9999
255	255	256	0,0891	0,0117	9999
256	256	257	0,0779	0,0103	9999
257	247	258	0,0891	0,0117	9999
258	258	259	0,0575	0,0124	9999
259	259	260	0,0463	0,0100	9999
260	259	261	0,0575	0,0124	9999
261	261	262	0,0995	0,0131	9999
262	262	263	0,0799	0,0105	9999

263	263	264	0,0767	0,0101	9999
264	263	265	0,0799	0,0105	9999
265	265	266	0,0891	0,0117	9999
266	266	267	0,0866	0,0114	9999
267	267	268	0,0816	0,0108	9999
268	228	269	0,0368	0,0121	9999
269	269	270	0,0339	0,0112	9999
270	270	271	0,0305	0,0101	9999
271	271	272	0,0495	0,0107	9999
272	272	273	0,0671	0,0144	9999
273	273	274	0,0575	0,0124	9999
274	271	275	0,0305	0,0101	9999
275	275	276	0,0378	0,0125	9999
276	276	277	0,0331	0,0109	9999
277	277	278	0,0305	0,0101	9999
278	278	279	0,0378	0,0101	9999
279	279	280	0,0420	0,0123	9999
280	280	281	0,0378	0,0139	9999
281	281	282	0,0378	0,0125	9999
282	282	283	•	0,0123	9999
283	283	284	0,0339		9999
			0,0378	0,0125	9999
284	284	285	0,0378	0,0125	
285	285	286	0,0495	0,0107	9999
286	285	287	0,0326	0,0107	9999
287	287	288	0,0378	0,0125	9999
288	288	289	0,0422	0,0139	9999
289	289	290	0,0284	0,0094	9999
290	290	291	0,0309	0,0102	9999
291	291	292	0,0431	0,0093	9999
292	291	293	0,0331	0,0109	9999
293	293	294	0,0559	0,0120	9999
294	294	295	0,0447	0,0096	9999
295	295	296	0,0495	0,0107	9999
296	296	297	0,0431	0,0093	9999
297	293	298	0,0305	0,0101	9999
298	298	299	0,0331	0,0109	9999
299	299	300	0,0420	0,0139	9999
300	300	301	0,0441	0,0146	9999
301	301	302	0,0575	0,0124	9999
302	302	303	0,0503	0,0108	9999
303	303	304	0,0463	0,0100	9999
304	301	305	0,0368	0,0121	9999
305	305	306	0,0339	0,0112	9999
306	306	307	0,0347	0,0114	9999
307	307	308	0,0495	0,0107	9999
308	307	309	0,0378	0,0125	9999
309	309	310	0,0420	0,0139	9999
310	310	311	0,0463	0,0100	9999
311	311	312	0,0575	0,0124	9999
312	312	313	0,0642	0,0124	9999
313	313	314	0,0495	0,0138	9999
314	313	314	0,0431	0,0107	9999
315	314	316	0,0503	0,0093	9999
316	315	317	0,0303	0,0108	9999
317	313	317			9999
317	317	318	0,0495	0,0107	9999
			0,0642	0,0138	9999
319	319	320	0,0431	0,0093	לללל

320	310	321	0,0339	0,0112	9999
321	321	322	0,0516	0,0111	9999
322	321	323	0,0331	0,0109	9999
323	323	324	0,0378	0,0125	9999
324	324	325	0,0378	0,0125	9999
325	325	326	0,0326	0,0107	9999
326	326	327	0,0527	0,0113	9999
327	327	328	0,0495	0,0107	9999
328	328	329	0,0639	0,0137	9999
329	329	330	0,0671	0,0144	9999
330	330	331	0,0575	0,0124	9999
331	330	332	0,0463	0,0100	9999
332	332	333	0,0516	0,0111	9999
333	326	334	0,0331	0,0109	9999
334	334	335	0,0284	0,0094	9999
335	335	336	0,0527	0,0113	9999
336	336	337	0,0559	0,0120	9999
337	337	338	0,0516	0,0111	9999
338	338	339	0,0503	0,0108	9999
339	339	340	0,0463	0,0100	9999
340	335	341	0,0339	0,0112	9999
341	341	342	0,0378	0,0112	9999
342	342	343	0,0378	0,0125	9999
343	343	344	0,0671	0,0123	9999
344	344	345	0,0639	0,0144	9999
345	343	345			9999
346	343	347	0,0326	0,0107	9999
347	340 347	347	0,0378	0,0125	9999
			0,0378	0,0125	
348	348	349	0,0305	0,0101	9999
349	349	350	0,0331	0,0109	9999
350	350	351	0,0339	0,0112	9999
351	351	352	0,0331	0,0109	9999
352	352	353	0,0378	0,0125	9999
353	353	354	0,0378	0,0125	9999
354	354	355	0,0642	0,0138	9999
355	354	356	0,0305	0,0101	9999
356	356	357	0,0422	0,0139	9999
357	356	358	0,0422	0,0139	9999
358	358	359	0,0326	0,0107	9999
359	358	360	0,0326	0,0107	9999
360	360	361	0,0339	0,0112	9999
361	361	362	0,0463	0,0100	9999
362	362	363	0,0671	0,0144	9999
363	363	364	0,0575	0,0124	9999
364	364	365	0,0639	0,0137	9999
365	365	366	0,0431	0,0093	9999
366	366	367	0,0527	0,0113	9999
367	350	368	0,0717	0,0095	9999
368	368	369	0,0693	0,0091	9999
369	369	370	0,0891	0,0117	9999
370	370	371	0,0891	0,0117	9999
371	371	372	0,0799	0,0105	9999
372	372	373	0,0779	0,0103	9999
373	373	374	0,0575	0,0124	9999
374	369	375	0,0668	0,0088	9999
375	375	376	0,0816	0,0108	9999
376	376	377	0,0866	0,0114	9999
-			, *	, -	

377	377	378	0,0799	0,0105	9999
378	378	379	0,0779	0,0103	9999
379	379	380	0,0717	0,0095	9999
380	380	381	0,0799	0,0105	9999
381	381	382	0,0891	0,0117	9999
382	382	383	0,0891	0,0117	9999
383	380	384	0,0503	0,0108	9999
384	384	385	0,0516	0,0111	9999
385	385	386	0,0503	0,0108	9999
386	386	387	0,0463	0,0100	9999
387	387	388	0,0575	0,0124	9999
388	388	389	0,0575	0,0124	9999
389	389	390	0,0639	0,0137	9999
390	390	391	0,0671	0,0144	9999
391	391	392	0,0642	0,0138	9999
392	392	393	0,0575	0,0124	9999
393	391	394	0,0503	0,0108	9999
394	394	395	0,0463	0,0100	9999
395	395	396	0,0575	0,0124	9999
396	396	397	0,0575	0,0124	9999
397	397	398	0,0516	0,0111	9999
398	398	399	0,0503	0,0108	9999
399	399	400	0,0559	0,0120	9999
		_			

ANEXO C - DADOS PARA O PROBLEMA DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA RADIAL COM FONTES RENOVÁVEIS E ARMAZENAMENTO DE ENERGIA

C. 1 - DADOS DO SISTEMA DE 11 NÓS

Tabela C.1: Sistema de 11 nós - dados das barras

Ramo	de	para	Resistência (Ω)	Reatância (Ω)	Imax (A)
1	1	2	0,2285280	1,904400	1000
2	2	3	0,4189680	0,990288	1100
3	2	4	0,0266616	0,076176	1100
4	4	5	0,3047040	0,647496	1100
5	4	8	0,0495144	0,171396	1100
6	4	10	0,5332320	0,990288	1100
7	5	6	0,5713200	0,647496	1100
8	5	7	0,4189680	1,675872	1100
9	8	9	0,4189680	0,990288	1100
10	10	11	0,4951440	1,599696	1100

Fonte: Dados da pesquisa do autor

C. 2 - DADOS DO SISTEMA DE 42 NÓS

Tabela C.2: Sistema de 42 nós - dados das ramos

Ramo	de	para	Resistência (ohm)	Reatância (ohm)	Imax (A)
1	1	4	0,010000	0,148000	900
2	1	5	0,010000	0,148000	900
3	6	2	0,010000	0,057500	1000
4	7	3	0,010000	0,057500	1000
5	4	26	0,157380	0,285480	1000
6	4	30	0,162540	0,294840	800
7	5	8	0,214140	0,324030	800
8	5	9	0,804050	1,028300	800
9	6	10	0,256390	0,333970	700
10	6	11	0,592420	0,888500	700
11	9	6	0,221690	0,327260	700
12	7	17	0,050640	0,060960	800
13	7	19	0,377110	0,528000	800
14	31	7	0,164580	0,420550	800
15	8	13	0,089680	0,153740	700
16	8	40	0,214144	0,324028	400
17	10	15	0,116050	0,139700	500
18	10	20	0,274560	0,200080	600
19	10	39	0,264020	0,347050	400
20	11	12	0,010000	0,075000	700
21	12	16	0,369430	0,555770	600
22	13	21	0,166000	0,284580	600
23	21	14	0,328180	0,562610	600

24	15	22	0,315740	0,230090	500
25	16	23	0,393050	0,673830	600
26	17	18	0,010000	0,075000	800
27	18	24	0,434570	0,604960	700
28	19	25	0,068690	0,117760	700
29	23	27	0,333900	0,572430	500
30	24	28	0,068690	0,117760	700
31	25	29	0,238500	0,408880	700
32	25	41	0,684296	1,054627	400
33	26	31	0,276860	0,498800	800
34	28	33	0,087770	0,150470	700
35	28	34	0,572400	0,981300	600
36	29	35	0,688790	1,180830	500
37	29	42	0,445796	0,645752	400
38	30	36	0,244450	0,438860	700
39	36	32	0,099430	0,172000	600
40	33	37	0,354890	0,608410	700
41	36	38	0,406992	0,733000	400