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Abstract. Some dynamical properties of the one dimensional Fermi accelerator model, under the presence of frictional force 
are studied. Fhe frictional force is assumed as being proportional to the square particle's velocity. Fhe problem is described 
by use of a two dimensional non linear mapping, therefore obtained via the solution of differential equations. We confirm 
that the model experiences contraction of the phase space area and in special, we characterized the behavior of the particle 
approaching an attracting fixed point. 
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1. INTRODUCTION 

The one dimensional bouncing ball model, sometimes also referred as to the Fermi accelerator model, consists of a 
classical particle confined between two rigid walls and suffering elastic collisions with them. One wall is assumed to be 
fixed while the other one is periodically time varying. The fundament of this model back to earlies 1949 when Enrico 
Fermi [1] proposed a simple model as an attempt to describe a mechanism in which cosmic rays would be accelerated 
by intense time varying magnetic fields. After that, many other different versions of the model including e.g. external 
fields, quantum effects, damping forces and many other modifications were considered [2, 3, 4, 5, 6, 7, 8, 9] (see also 
refs. [10, 11, 12] for recent results of the Fermi accelerator model). Moreover, the model may also be considered as a 
toy model and many tools developed to study and characterize such system can be extended to more complex models 
including classical static and time dependent billiard problems. 

For the non dissipative case, i.e. the case where dissipative forces are absent in the model, the phase space is of 
mixed kind in the sense that there are a set of Kolmogorov-Arnold-Moser (KAM) islands surrounded by a chaotic 
sea (characterized by a positive Lyapunov exponent) which is also confined by a set of invariant spanning curves. The 
introduction of damping forces however yield profounds consequences on the dynamics of the problem. It is worth 
stressing that there are different ways of introducing dissipation in the model. One of them is to consider inelastic 
collisions with the walls [13, 14, 15]. Thus, after the colision, the particle experiences a fractional loss of energy. 
Some consequences of such a dissipation include: events of crisis [16, 17] yielding the particle to experience the 
phenomenon of transient [18]; annihilation of fixed points [19]; depending on the strength of the damping coefficient, 
the particle can also shows the phenomenon of locking [20, 21]. Other kind of dissipation which is eventually present 
in real experiments is the effect of drag force [22]. Such force is generated by a relative motion of a particle inside a 
fluid, like a gas. Thus the particle looses energy proportionally to a power law of its velocity. The phase space of the 
problem no longer present a mixed form with chaos and regularity. Besides, it is possible to observe attracting sinks 
and a chaotic attractors. Recently, Leonel and McClintock [23, 24] had shown that, for a damping force proportional 
the velocity and considering a simplified version,1 the system has a determinant of the Jacobian matrix equals to the 
unity, thus confirming that parts of the phase space are area preserving. This apparent paradox was explained by using 
the well known Poincare recurrence theorem (see [25] for specific details). 

The simplified version assumes that both walls are fixed but that, after the collisions with one wall, the particle suffers an exchange of energy and 
momentum as if the wall were moving. Such a simplification was often used to speed up numerical simulations when computers were far slower. It 
also makes easier some analytical treatment. 
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In this paper, we revisit the one dimensional Fermi accelerator model seeking to understand and describe some of 
its dynamical properties in the presence of quadratic frictional force. In our approach, we are considering that the drag 
force is proportional to the square particle's velocity. As it is so usual, the model is described by a two dimensional 
non linear mapping for the variables velocity of the particle and corresponding time. The dynamical equations that 
describes all the possible motion of the model were obtained by solution of the Newton's law. The paper is organized 
as follows, in section 2 we describe the procedures used in the construction of the mapping. Section 3 is devoted to 
discuss some numerical results while final remarks and conclusions are drawn in section 4. 

2. THE MODEL AND THE MAPPING 

Let us now describe the model and all the details needed to construct the equations of the mapping. The model 
consists of a classical particle of mass m confined between two rigid walls and suffering elastic collisions with them. 
The particle also suffers the effect of a frictional force whose magnitude is assumed to be of the type F = -rjv2, where 
rj is the strength of the viscosity and v is the particle's velocity. In our approach on this paper, we will consider only the 
simplified version (see footnote 1). Thus we assume that either walls are fixed. One of them is atx = / while the other 
is at the origin x = 0. However, when the particle hits the wall located at the origin, it suffers a change of energy and 
momentum as if the wall were moving according to xw(t) = e' cos(a)t), where e' is the amplitude of oscillation and a 
is the frequency of oscillation. This approximation retain the nonlinearity of the problem and avoid the inconveniency 
of finding numerical solutions from transcendental equations.2 

The problem is them described in terms of a two dimensional mapping T(v„,t„) = (v„+1, tn+ \). In order to construct 
the map, we will suppose that in the instant t = t„ the particle is at the position x = 0 with velocity v = v„ > 0. After 
solving the Newton's law -rjv2 = mdv/dt, consider the effects of elastic collisions with both wall and define the 
dimensionless variables V„ = vn/{a>l), 8 = rjl, e = e'/l and 0„ = (otn we find that the mapping is given by 

T: 
Vn+l = \V* 

<t>n+l = 0 « + 2 

2esin(0„+i)| 

Vn8 mod27z; (1) 

where the auxiliary term is V* = V„/(2es - 1). It is important to stress that in the simplified model, non-positive 
velocities are forbidden because they are equivalent to the particle traveling beyond the wall. In order to avoid such 
problems, if after the collision the particle has a negative velocity, we inject it back with the same modulus of velocity. 
This procedure is effected by use of a module function. Note that the velocity of the particle is reversed by the module 
function only if, after the collision, the particle remains traveling in the negative direction. The module function has 
no effect on the motion of the particle if it moves in the positive direction after the collision. We stress that this 
approximation is valid only for small values of e. 

We now describe some details of the Jacobian matrix for the mapping (1). It is defined as 

J = 
°9n+l °9n+l 

d(p„ dVn 

dVn+l dVn+i 

dtpn dV„ 

with coefficients given by 

h+\ 
dtyn 

= 1 , h+\ 

- ^ - = sign[F„* -2esin(0„+i)] x 

dVn 

-2ecos(0„ + i , 

-^L = Sign [V* - 2e sin((j)n+i)] x 1 
2e5-\ 

•2ecos(0„ +D 

2 e 5 - 2 

d<t>n+l 

dVn 

where the function sign(«) = 1 if u > 0 and sign(«) = - 1 if u < 0. 

(2) 

2 In the complete model, the solutions of the transcendental equations furnish the time that the particle hits the periodically varying wall. Such time 
is obtained by matching the condition that, at the instant of the colision, the particle's position is the same as that of the time varying wall. 
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After a careful investigation, we find that the determinant of the Jacobian matr ix yields that 

det J = sign[V* - 2esin(0„+i)] 
( 2 e 5 - l ) ' 

thus confirming that the system now shrinks area in the phase space. 

3. NUMERICAL RESULTS 

Let us now present and discuss some of our numerical results. We beg in discussing the behavior for large values of the 
par t ic le ' s velocity. Consider ing the first equat ion of the mapping (1), we find that 

V0 
Vl = 2e5-\ ~ 2 £ s i n ( ^ ) ' 

VQ 2esin(0i) „ . .x , 

( 2 e 5 - l ) 3 ( 2 e 5 - l ) 2 ( 2 e 5 - l ) KY ' 

Finally, the general express ion can be wri t ten as 

Vn=, 5
V° , -2e±( Tm (3) 

(2e5-l)« (tl(2e5-l)"-' v ' 
Before present the behavior of the veloci ty V as function of the i teration number , let us discuss some approximat ions 
of the eq. (3). Firstly, it is important to say that the second te rm in eq. (3) contr ibutes wi th an oscil lat ion on the veloci ty 
wi th m a x i m u m ampl i tude of 2 e (recall that e is small) . However , it is easy to see that on the average, the second te rm 
can be disregarded3 . If we then expand the first t e rm of eq. (3) in powers of 5 , we obtain that 

V„ = V0 x 
„2 ^ 3 \ _3 / 13 5 2 . ~ T . 2 

\-2nS + (n + 2nz)Sz+ [ -n-2nz- - « j J <5j + ( — « + - « / + 2« j + - « 4 ) 5 4 + 0(5 : ' (4) 

Moreover, if we consider that n is relatively large4, one might conclude that only the larger terms inside each brackets 
dominate. Thus, disregarding the lower powers of n inside the brackets, we can rewrite eq. (4) as 

V„ = V0 x 1 - 2n8 + 2n282 - ( A-rA S3 + Q n 4 ) S4 + 0(8' (5) 

The power series shown in eq. (5) is the own definition of the exponent ia l g iven by 

Vn = V0e-2Sn . (6) 

In order to confirm our approach, it is shown in figure 1 the behavior of the veloci ty V as function of i teration number 
n. The control parameters and initial condi t ions used in the construct ion of the figure were e = 10~ 2 , 5 = 10~ 4 and 
Fo = 3 . After doing an exponent ia l fit of the type Y = AeBx, we found that A = 3 .02(1) and 5 = - 1 . 9 9 7 ( 1 ) x 10~ 4 . 
Such a result thus confirms that the part icle approaches the fixed point exponential ly, as it was expected in eq. (6). 

Suppose now that the part icle is evolving in t ime and then suddenly it is captured by an attracting region, like if 
the particle was moving in a bas in of attraction of a sink. The part icle will approach it and we will describe such 
approaching as function of the i teration number . As an attempt to investigate the asymptot ic behavior to the attracting 
sink, we first define a set of different initial condi t ions and then allow the system to evolve in t ime. Moreover , we 
have to stablish a convergency criterion in order to check whether the particle is near e n o u g h to the attracting fixed 

3 Such property can be considered since that fa might be assumed as being uniformally distributed in 0,- £ [0,2TT). 
4 As for example, consider that n > 4 
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FIGURE 1. Behavior of the velocity V plotted against n. The control parameters used were e = l(T2and<5 = 10 

point. The criterion lies basically in checking the distance of the particle to the fixed point. We thus define a critical 
radius rc = 10~6 and evolve each set of initial condition. If the particle is sufficiently close to the attracting sink, say 
less then rc, we thus save, in an array, the corresponding iteration number spent until match such condition and start 
a new initial condition. The evolution of an ensemble of different initial conditions allow us to define the average 
iteration number nx = 1 / M ^ y «;. It is shown in figure 2(a) the behavior of the average iteration number nx plotted 
against the proximity of the attracting sink for a set of different trajectories approaching it. The horizontal axis denotes 

)2, where the coordinates of the fixed point are given by V* and 0* The the distance r{n) = ^/{Vn - V*)2 + (0„ - 0 * 
average was made using the 500 different initial conditions in the range (Fb, <j>o) = ([0.325,0.33], n). 

We have fitted each curve of figure 2(a) by the function nx = A + B ln(r). In figure 2, we assume as fixed the control 
parameter e = 10~2 and we obtain that, for 5 = 10"4 ,^ = -4.680(4) x 104 and 5 = -9.9991(4) x 104. On the other 
hand, using 5 = 5 x 10~5, we found that A = -9.379(8) x 104 and 5 = -1.99984(4) x 104. Finally, for 5 = 10~5, we 
obtain^ = -4.702(3) x 105 and B = -9.996(3) x 105. We can conclude that trajectories approach the attracting sink 
exponentially as the iteration number evolves. 

Let us now describe how the trajectory evolves towards the fixed point as function of the drag coefficient. Thus, it 
is shown in figure 2(b) the behavior of nx x 5. In that figure, we have evolved our simulations up to r < 10~6. Such a 
behavior can be described as 

H x - S " . (7) 

After fitting a power law, as shown in figure 2(b), we obtain that /i = -0.9993(7). It is worth stressing that, in the 
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FIGURE 2. (a) It is shown the behavior of the average nxxr while (b) plots the transient nxxS. The control parameter used was 
£ = 1(T2. 

limit 5 ^ 0 , equation (7) gives us that nx —> °°, thus confirming that no convergency to the fixed point is observed. 
Note however that the preservation of the phase space measure is recovered for that limit of 5. We can also conclude 
that, beyond the particle approach exponentially the attracting sink, the speed of the approach depends on the strength 
of the damping coefficient. 

4. CONCLUSIONS 

As a final remark, we have studied the one dimensional Fermi accelerator model in the presence of frictional force 
proportional to the square particle's velocity. Our results confirm that the model experiences contraction of the phase 
space area. We have also characterized the behavior of the particle approaching an attracting sink. It was shown that 
the particle approaches a fixed point exponentially as the iteration number evolves and with a speed of approach that 
depends on the strength of the drag force. 
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