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Summary

	 Background:	 Although	obesity	has	been	associated	with	several	effects	in	rodents,	few	investigations	have	evalu-
ated	the	metabolic,	endocrine,	and	cardiac	parameters	of	spontaneously	hypertensive	rats	(SHR)	
with	dietary-induced	obesity.	The	current	study	analyzed	the	influence	of	dietary-induced	obesity	
on	metabolic,	endocrine,	and	cardiac	characteristics	in	SHR.

	Material/Methods:	 Male	SHR	were	distributed	in	2	groups:	C-SHR	(n=10)	and	OB-SHR	(n=10).	While	C-SHR	received	
a	standard	commercial	diet	(CD;	3.2	kcal/g),	OB-SHR	were	submitted	to	a	hypercaloric	diet	(HD;	
4.6	kcal/g)	for	20	weeks.	Nutritional,	metabolic,	and	endocrine	evaluation	involved	measurement	
of	calorie	intake,	dietary	efficiency,	body	weight,	adiposity,	glycemia,	triacylglycerol,	insulin,	and	
leptin.	Cardiovascular	evaluation	integrated	systolic	blood	pressure	(SBP),	echocardiography,	gross	
and	ultrastructural	morphology,	and	myosin	heavy	chain	(MHC)	analyses	of	the	myocardium.

	 Results:	 Animals	in	OB-SHR	had	greater	values	of	BW,	adiposity,	triacylglycerol,	and	leptin	and	impaired	
glycemic	 tolerance	compared	with	 the	C-SHR	group.	 In	 the	cardiovascular	context,	dietary-in-
duced	obesity	increased	interstitial	collagen,	the	cardiomyocyte	area,	and	the	relative	expression	
of	b-MHC,	and	well	as	b-/a-isoform	ratio	of	MHC.	Likewise,	OB-SHR	showed	ultrastructural	mor-
phologic	alterations,	with	loss	and	disorganization	of	myofilaments,	 lipid	droplets,	severe	mito-
chondrial	damage,	and	T-tubule	dilation.	Concerning	the	in-vivo	cardiovascular	profile,	although	
SBP	and	systolic	function	were	unchanged	by	dietary-induced	obesity,	echocardiography	results	
evidenced	impaired	diastolic	function	in	OB-SHR	in	relation	to	their	control	counterparts.

	 Conclusions:	 Diet-induced	obesity	was	associated	with	endocrine	alterations,	and	it	accentuated	cardiac	remod-
eling,	promoting	diastolic	dysfunction	of	restrictive	filling	pattern	in	the	SHR	strain.
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Background

Cardiac	remodeling	involves	an	adaptive	process	to	main-
tain	myocardial	performance	in	response	to	stress	condi-
tions,	including	mechanical	and	volumetric	overloads	[1].	
Remodeling	 is	characterized	by	 time-dependent	evolu-
tion	and	includes	several	adaptive	changes,	clinically	rep-
resented	by	modifications	of	cardiac	form,	size,	and	func-
tion	[1,2].	Cardiac	phenotypic	plasticity	involves	myocyte	
hypertrophy,	interstitial	fibrosis,	ultrastructural	disorgani-
zation	[2],	and	altered	expression	of	a-	and	b-isoforms	of	
myosin	heavy	chain	(MHC)	[3].

Essential	arterial	hypertension	configures	an	important	pro-
moting	condition	of	myocardial	remodeling	[4],	because	ap-
proximately	75%	of	human	heart	failure	has	a	hypertensive	
cause	[5].	In	studies	on	cardiac	remodeling,	spontaneously	
hypertensive	rats	(SHR)	are	often	used	experimentally	be-
cause	they	develop	similar	arterial	hypertension	conditions	to	
those	found	in	humans	[6,7].	During	maturation,	SHR	pres-
ent	progressive	myocardial	hypertrophy,	interstitial	fibrosis,	ul-
trastructural	degeneration,	b-myosin	heavy	chain	isoforms	up-
regulation,	and	ventricular	dysfunction	[6–8].	Among	18	to	
24	months	of	life,	these	animals	present	signals	of	ventricular	
dysfunction	and,	subsequently,	they	can	develop	heart	failure	
with	several	similar	characteristics	to	human	conditioning	[6,8].

Furthermore,	SHR	are	also	genetically	susceptible	to	nu-
tritional	and	metabolic	abnormalities,	such	as	glucose	in-
tolerance,	insulin	resistance,	central	obesity,	and	dyslipid-
emia	[9],	frequently	manifested	from	hypercaloric	dietary	
interventions	richer	in	lipids	[10–12]	and	sugars	[13–15].	
Despite	this,	the	information	on	nutritional,	endocrine,	and	
cardiovascular	profiles	in	SHR	with	dietary-induced	obesity	
are	limited	and	conflictive.	In	experimental	models,	few	stud-
ies	documented	glycemic	[10,16]	and	lipid	[10,11]	chang-
es;	in	the	cardiovascular	aspect,	accentuated	myocardial	hy-
pertrophy	[14,15,17]	was	accompanied	by	a	reduction	[14]	
or	increase	[15,17]	in	blood	pressure.	Majane	and	associ-
ates	[18]	observed	unchanged	responses	of	glycemia	and	
systolic	blood	pressure	with	cardiac	hypertrophy	and	distur-
bances	of	left	ventricular	systolic	function.	Because	cardiac	
remodeling	is	also	characterized	by	altered	molecular	ex-
pression	of	contractile	proteins,	including	a-	and	b-MHC	
isoforms	and	ultrastructural	alterations	[1],	it	is	not	clear	
if	these	effects	are	reproduced	in	models	of	SHR	with	diet-
induced	obesity.	The	maximal	shortening	velocity,	which	
correlates	to	the	ATP	hydrolysis	rate,	is	significantly	high-
er	in	fibers	that	contain	a	higher	proportion	of	a-MHC	iso-
forms	[3,19].	Hearts	that	express	predominantly	a-MHC,	
the	faster	motor	protein,	determine	higher	contractile	po-
tency;	up-regulation	of	the	b-MHC	isoforms,	lower	motor	
protein,	configures	a	contributing	factor	to	systolic	and	di-
astolic	dysfunction	in	heart	failure	[20].

Clinically,	essential	hypertension	and	obesity	are	comorbid	
diseased	conditions	that	are	identified	as	independent	risk	
factors	for	developing	myocardial	dysfunction	and	heart	fail-
ure	[21,22].	Because	the	role	of	diet-induced	obesity	is	not	
well-characterized	 in	essential	hypertension,	our	primary	
aim	was	to	test	the	hypothesis	that	dietary-induced	obesity	
is	associated	with	metabolic,	endocrine,	and	cardiovascular	
disorders	in	SHR,	which	are	genetically	more	susceptible	to	
these	disturbances	when	kept	on	a	hypercaloric	diet	[23].	

Accounting	 for	 this	proposition,	 the	present	 study	ana-
lyzed	metabolic,	endocrine,	and	cardiovascular	parame-
ters	of	spontaneously	hypertensive	rats	submitted	to	diet-
induced	obesity.

Material and Methods

Animals and experimental design

Sixty-day-old	male	SHR	were	distributed	in	2	groups:	a	con-
trol	group	(C-SHR)	and	an	obese	group	(OB-SHR),	each	
consisting	of	10	animals.	While	C-SHR	received	commer-
cial	Labina	rat	chow,	OB-SHR	rats	were	treated	with	5	pal-
atable	hypercaloric	diets	(HD1,	HD2,	HD3,	HD4,	HD5),	
alternately	administered	[20].	Each	chow	type	was	offered	
for	7	days,	and	the	experimental	period	was	20	weeks.	The	
animals	were	individually	housed	under	the	temperature	
of	22°C	to	24°C	and	humidity	of	50%	to	70%.	A	time-con-
trolled	system	provided	12-hour	light/dark	cycles.	All	the	
animals	had	free	access	to	water	and	chow	(50	g/d).

The	experimental	protocol	was	established	according	to	
National	Institutes	of	Health’s	“Guide	for	the	Care	and	Use	of	
Laboratory	Animals”	published	by	the	US	National	Institutes	
of	Health	(NIH	Publication	No.	85-23,	1996	revision)	and	ap-
proved	by	the	Ethics	Committee	for	Animal	Experimentation	
of	the	Botucatu	School	of	Medicine,	UNESP,	Brazil.

Diet characterization

Diets	were	prepared	from	a	mixture	of	industrialized	prod-
ucts	and	supplemented	ingredients	added	to	a	previously	
triturated	rat	chow	[24].	Importantly,	all	diets	provided	suf-
ficient	and	similar	amounts	of	vitamins,	minerals,	and	essen-
tial	amino	acids.	Detailed	diets	composition	is	described	in	
a	previous	study	[24].	Hypercaloric	diets	presented	higher	
energetic	density	related	to	control	diet	(4.6	kcal/g	vs	3.2	
kcal/g).	However,	while	HD2	and	HD4	were	richer	only	
in	lipids,	HD1	and	HD5	also	presented	important	carbo-
hydrate	content,	especially	sucrose.	Although	HD3	has	re-
vealed	similar	energetic	density	(4.4	kcal/g)	in	relation	to	
other	hypercaloric	diets,	its	composition	was	based	mainly	
in	sucrose	surplus	from	a	water	solution.	Hypercaloric	diets	
were	isocaloric	and	had	~30%	more	energy	content	than	
the	standard	diet,	and	they	are	corresponded	to	others	in-
terventions	from	studies	about	diet-induced	obesity	[25,26].

Nutritional, metabolic, and endocrine profiles of the 
animals

Nutritional	and	metabolic	profile	included	adiposity,	body	
weight	(BW),	calorie	intake,	feed	efficiency,	glycemic	toler-
ance,	and	triacylglycerolemia;	endocrine	variables	involved	
leptin	and	insulin.	To	analyze	if	dietary-induced	obesity	was	
associated	with	alterations	in	the	nutritional	behavior,	food	
consumption	and	water	intake	was	measured	daily.	Calorie	
intake	was	calculated	weekly	by	 the	average	weekly	 food	
consumption	×	dietary	energetic	density.	Feed	efficiency	
and	the	ability	to	transform	consumed	calories	into	body	
weight	were	determined	by	 following	the	formula:	mean	
body	weight	gain	(g)/total	calorie	intake.

In	relation	to	glycemic	tolerance,	after	fasting	for	12	to	15	
hours,	 rats	were	submitted	to	oral	glucose	 tolerance	 test	
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(OGTT).	Blood	samples	were	drawn	from	the	tail	at	base-
line	and	after	gavage	administration	of	glucose	(3	g/kg)	
[23–25].	Blood	samples	were	collected	at	0,	60,	120,	and	180	
minutes.	Glucose	levels	were	determined	using	the	ACCU-
CHEK	GO	KIT	glucose	analyzer	(Roche	Diagnostic	Brazil	
Ltd,	Brazil).	Glucose	tolerance	was	analyzed	from	the	area	
under	the	curve	of	glycemic	responses.

After	20	weeks	of	experiment,	after	12	to	15	hours	fasting,	
the	animals	were	anesthetized	with	sodium	pentobarbital	
(50	mg/kg)	and	killed	by	decapitation.	To	biochemical	
and	hormonal	analysis,	 trunk	blood	was	 instantly	collect-
ed	in	heparinized	tubes;	subsequently,	serum	was	separat-
ed	by	centrifugation	at	3000	g	for	15	minutes	at	4°C	and	
then	stored	to	–80°C	to	posterior	analyzes.	Serum	contents	
of	triacylglycerol	were	determined	with	enzymatic	colori-
metric	kits	(Kovalent	Diagnosis,	Rio	de	Janeiro/RJ,	Brazil).	
Spectrophotometry	was	performed	with	a	Micronal,	model	
B	382	spectrophotometer.	Serum	insulin	and	leptin	were	
measured	by	the	ELISA	method	using	assay	kits	from	Linco	
Research	Inc	(St.	Charles,	MO,	USA).

After	thoracotomy	and	abdominal	incision,	adipose	depos-
its	(AD)	from	visceral,	retroperitoneal,	epidid	ymal,	and	car-
cass	sites	were	measured	[24].	The	adiposity	index	was	ob-
tained	from	the	sum	of	the	weights	of	individual	fat	pads:	
SAD×100/BW.	Body	weight	(BW)	was	evaluated	once	a	week.

Cardiovascular profile

Blood pressure and ventricular performance

At	the	conclusion	of	the	experiments	(before	killing),	sys-
tolic	blood	pressure	(SBP)	was	assessed	using	a	nonin-
vasive	 tail-cuff	method	with	a	Narco	Biosystems	Electro-
Sphygmomanometer	(International	Biomedical,	Austin,	
TX,	USA)	[27].	Each	animal	was	 individually	coupled	to	
system	and	the	average	of	2	readings	was	recorded	for	each	
measurement.

At	follow-up	(20	weeks),	all	animals	were	weighed	and	eval-
uated	via	a	transthoracic	echocardiographic	examination	
performed	with	a	commercially	available	echocardiogra-
phy	machine	(Sonos	5500,	Philips,	Andover,	MA,	USA)	
equipped	with	a	12-MHz	phased	array	transducer.	All	mea-
surements	were	obtained	by	the	same	observer	according	
to	the	method	recommended	by	the	American	Society	of	
Echocardiography	[28].

Morphologic studies

The	heart	was	removed	and	dissected	at	the	time	of	killing.	
Gross	morphology	concerned	the	atria	(AW),	left	(LVW),	
and	right	ventricles	(RVW)	weights,	as	well	as	their	respec-
tive	relations	with	the	body	weight	(AW/BW,	LVW/BW,	and	
RVW/BW)	[29].	A	partial	section	from	the	left	ventricle	was	
used	for	histologic	analysis;	7-µm-thick	sections	were	cut	
from	the	blocked	tissue	and	stained	with	hematoxylin-eo-
sin	to	determination	of	myocyte	cross-sectional	area	(MA)	
and	with	the	collagen-specific	stain	picrosirius	red	(Sirius	
red	F3BA	in	aqueous	saturated	picric	acid)	to	analyze	in-
terstitial	collagen	volume	fraction.	Detailed	methods	are	
described	in	a	prior	study	[24].	Importantly,	MA	was	deter-
mined	for	at	least	100	myocytes	per	slide	stained	with	he-
matoxylin-eosin	[1].

For	ultrastructural	study,	3	animals	from	each	group	were	
used	for	analysis.	Small	fragments	of	the	left	ventricle	pap-
illary	muscle	were	fixed	 in	Karnovsky’s	fixative	(0.12	M	
phosphate,	pH	7.2)	for	1	to	2	hours	followed	by	postfix-
ation	in	1%	osmium	tetroxide	in	0.1	M	phosphate	buffer	
for	2	hours.	After	dehydrating	in	a	graded	ethanol	series,	
fragments	were	embedded	in	epoxy	resin.	Ultrathin	sec-
tions	were	double-stained	with	uranyl	acetate	and	lead	ci-
trate	and	examined	on	an	electron	microscope	(Phillips	
EM	301).

Myosin heavy chain composition

An	additional	sample	(200	to	300	mg	from	the	anterior	wall	
of	the	left	ventricle)	was	selected	and	frozen	to	myocardial	
MHC	evaluation,	realized	by	electrophoresis.	Methods	of	
sample	preparation	and	electrophoresis	conditions	are	pre-
sented	with	details	in	previous	study	[24].

Statistical analyzes

Results	are	expressed	as	descriptive	measures	of	central-
ization	and	variability.	Comparisons	between	groups	were	
performed	using	the	Student	t-test	or	Mann-Whitney	test	
for	independent	samples.	Body	weight	evolution,	in	func-
tion	of	the	experimental	period,	was	studied	by	non-lin-
ear	regression	models.	The	comparison	between	models	
was	performed	by	angular	coefficient	and	regression	con-
stant	tests	[30].	The	level	of	significance	was	considered	
to	be	P≤.05.
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Figure 1.  Non-linear regression models to body 
weight (BW) in function to experimental 
period evaluated in weeks; C-SHR: 
control SHR group; OB-SHR: obese SHR 
group; LL, UL: lower and upper limits 
of confidence interval (95%) to body 
weight, respectively. SHR groups profile.
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results

Body	weight	profile	from	both	groups	along	of	experimen-
tal	period	is	presented	in	Figure	1;	the	comparison	between	
regression	models	revealed	that	the	hypercaloric	diet	opti-
mized	body	weight	gain	in	relation	to	the	control	diet,	from	
the	second	to	the	third	interval	to	the	20th	week	(P<0.05,	
Figure	1).	Regression	model	referent	 to	OB-SHR	group	
presented	better	prediction	coefficient:	97.6%	(Table	1).	
Moreover,	obesity	was	associated	with	enhanced	calorie	in-
take,	feed	efficiency,	final	BW,	and	adiposity	in	relation	to	
the	control	group.	Although	insulin	levels	were	not	modi-
fied	in	the	obese	rats,	OB-SHR	presented	higher	triacylglyc-
erol	and	leptin	contents	as	well	as	impaired	glycemic	toler-
ance	in	relation	to	the	C-SHR	group	(Table	2).

In	the	cardiovascular	context,	dietary	obesity	increased	in-
dexes	of	the	left	ventricle’s	weight	(LVW),	interstitial	colla-
gen	fraction	(ICF;	P<0.01),	and	cardiomyocyte	cross-section-
al	area	(MA;	P<0.05;	Table	3).	In	relation	to	in vivo	variables,	
OB-SHR	presented	higher	left	ventricular	diastolic	thickness	
(LVDT)	in	relation	to	C-SHR	group.	Although	obesity	did	not	

Groups Regression model Coefficient of 
determination (%)

C-SHR BW = 201.538 + 
144.825 x log (W + 1) 94.04*

OB-SHR BW = 210.218 + 
164.871 x log (W + 1) 97.62*

Table 1.  Body weight (BW) non-linear regression models in function 
to experimental period.

* P<0.001 versus different weeks (W).

Variables
Groups

C-SHR OB-SHR

Body weight (g)  387±6  429±3**

Adiposity (%)  10.5±0.4  15.5±0.9**

Calorie Intake (Kcal/day)  71.4±0.7  78.7±1.5**

Feed Efficiency (g/Kcal)  0.131±0.004  0.149±0.009*

Glycemia (AUC)  26,298±375  29,016±480**

Triacylglycerol (mg/dL)  34.7±1.5  39.7±1.3*

Leptin (ng/ dL)  1.89±0.18  3.36±0.36*

Insulin (ng/ dL)  0.63±0.62  0.51±0.93

Table 2. Nutritional, metabolic and endocrine evaluation.

Values expressed as mean ± standard error; AUC – area under curve 
of response to oral glucose tolerance test; * p<0.05, ** p<0.01 vs. 
C-SHR; t-Student test. Insulin values expressed in median ± interval 
between 25th and 75th percentiles; Mann-Whitney test.

Variables
Groups

C-SHR OB-SHR

AW (g)  0.087±0.012  0.110±0.041

AW/BW (mg/g)  0.23±0.04  0.26±0.10

RVW (g)  0.20±0.03  0.21±0.03

RVW/BW (mg/g)  0.57±0.10  0.52±0.08

LVW (g)  0.90±0.07  1.05±0.04**

LVW/BW (mg/g)  2.54±0.12  2.58±0.05

ICF (%)  7.69±0.60  11.31±1.01**

MA (µm2)  316±15  374±19*

Table 3. Post-mortem cardiac morphological evaluation.

Values expressed as mean ± standard error. AW, RVW, and LVW – 
atria, right, and left ventricles weights (g), respectively; AW/BW, 
RVW/BW and LV/BW – ratios between AW, RVW and LVW and body 
weight, respectively; ICF – interstitial collagen fraction; MA – myocyte 
cross-sectional area; * p<0.05, ** p<0.01, vs. C-SHR; t-Student test. 
AW, AW/BW, RVW, RVW/BW, and LVW values expressed in median 
± interval between 25th and 75th percentiles; Mann-Whitney test.

Variables
Groups

C-SHR OB-SHR

Heart rate (beats/min)  300±11  269±7*

SBP (mmHg)  193±8  195±10

LVEDd (mm)  8.26±0.64  8.02±0.36

LVESd (mm)  4.39±0.19  4.05±0.21

LVDT (mm)  1.85±0.04  1.95±0.06*

LVDT/LVEDd  0.22±0.01  0.24±0.01

LA/AO  1.28±0.05  1.32±0.05

EFS (%)  46.80±1.57  49.99±1.61

EF  0.84±0.01  0.87±0.01

PWSV (mm/s)  35.3±1.2  38.5±1.0

E-wave (cm/s)  88.0±1.9  91.0±3.2

A-wave (cm/s)  61.1±5.8  47.0±5.3*

E/ A  1.57±0.15  2.07±0.18*

EDT (ms)  58.8±4.1  53.5±1.2

IVRT (ms)  31.5±6.0  27.0±6.0*

Table 4. Blood pressure and echocardiography study.

Values expressed as mean ± standard error; SBP – systolic blood 
pressure; LVEDd – left ventricular end-diastolic diameter; LVESd – left 
ventricular end-systolic diameter; LVDT – diastolic thickness of the 
left ventricle; LVDT/LVEDd – ratio between LVDT and LVEDd; LA/AO – 
ratio between LA and diameter of aortic artery; EFS – endocardium 
fraction shortening; EF – ejection fraction; PWSV – posterior 
wall shortening velocity; E/A – ratio between the E and A-waves 
evaluated in transmitral flow; EDT – E-wave deceleration time; IVRT 
– isovolumetric relaxation time; * p<0.05, ** p<0.01 versus C; 
t-Student test. LVEDd and IVRT values expressed in median ± interval 
between 25th and 75th percentiles; Mann-Whitney test.
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change	systolic	blood	pressure	(SBP)	or	systolic	function,	it	re-
duced	the	values	of	A-waves	evaluated	in	transmitral	flow	and	
the	isovolumetric	relaxation	time	of	the	left	ventricle,	while	it	
increased	the	ratio	between	E	and	A-waves	(P<0.05;	Table	4).

Electrophoresis	 separation	between	a-	 and	b-MHC	iso-
forms	is	presented	in	Figure	2A	and	2B;	OB-SHR	showed	

higher	relative	content	of	b-MHC	(C-SHR:	41.2±3.0	vs	OB-
SHR:	46.3%±3.2%,	P=0.002;	Figure	2A)	and	b/a-MHC	ratio	
(C-SHR:	0.71±0.09	vs	OB-SHR:	0.87±0.12,	P=.003;	Figure	2B)	
than	the	C-SHR	group.	Ultrastructural	analysis	showed	that	
C-SHR	presented	normal	cardiomyocyte	morphology,	 in-
cluding	sarcolemma,	myofibrils,	mitochondria,	central	nu-
cleus,	nucleolus,	and	sarcoplasmic	reticulum	(Figure	3A,B).	
OB-SHR	exhibited	focal	alterations	in	the	cardiomyocytes:	
Z-line	disorganization,	 swelling,	 severe	degradation	and	
polymorphisms	of	mitochondria	with	disorganized	or	ab-
sence	of	cristae,	and	lipid	droplets.	Moreover,	many	cells	
showed	areas	with	loss	of	myofilaments	and	mitochondria	
(Figure	3C–E)	as	well	as	T-tubules	dilation	(Figure	3F).

discussion

Hypertension	and	obesity	are	comorbid	diseased	conditions	
that	have	been	identified	as	 independent	risk	factors	for	
development	of	myocardial	dysfunction	and	heart	failure	
[21,22,31].	Importantly,	these	risk	factors	are	increasing	in	
prevalence	at	an	alarming	rate	and,	in	general,	blood	pres-
sure	is	strongly	correlated	with	body	mass	index	[22,31,32].	
The	major	findings	from	the	present	study	supported	the	is-
sue	that	diet-induced	obesity	accentuated	cardiac	remodeling	
from	hypertension,	causing	diastolic	dysfunction	of	restric-
tive	filling	pattern	in	young	SHR	rats	with	age	of	7–8	months.

In	the	present	research,	obesity	was	induced	from	hyper-
caloric	intervention,	obtained	by	adding	a	mixture	of	in-
dustrialized	products	 to	a	 standard	diet,	 resulting	 in	en-
hanced	content	of	fatty	acids,	mainly	unsaturated	fats,	and	
cholesterol	combined	to	sucrose	overload.	The	dietaries	
composition	were	based	in	models	of	obesity	cafeteria	di-
et-induced,	such	as	are	highly	energetic,	tasty	and	contain	
different	shapes	and	are	therefore	much	closer	to	the	food	
consumed	in	general	by	humans	[33].

The	OB-SHR	group	was	constituted	by	obese	animals,	as	
shown	by	superior	values	of	BW	and	adiposity	in	relation	to	
their	control	counterparts.	However,	although	body	weight	is	
associated	with	adiposity,	it	can	underestimate	differences	in	
fat	content.	The	OB-SHR	group	showed	increased	BW	and	
total	adiposity	by	14.0%	and	56.3%,	respectively.	Moreover,	

Figure 2.  C-SHR: control SHR group; OB-SHR: obese 
SHR group. Electrophoresis conditions: 
duodecil sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS-
PAGE) to 8%; Running: 70 V, 20°C, 30–36 
hours; sample concentrations: 10 µg/µL. 
Products were visualized with Coomassie 
brilliant blue staining. Quantification of 
the bands was obtained by densitometry 
analysis of the product as integrated 
optical density. (A) β- and α-myosin 
heavy chain (MHC) isoforms of the left 
ventricle. (B) Relative contents (%) of 
β-MHC, according diet. (C) Ratio obtained 
from relation between β- and α-MHC 
expression per animal; * p<0.01 versus 
C-SHR; Student t-test.
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Figure 3.  Panels A and B: Electron micrographs of the 
cardiomyocytes in C-SHR group. Tissues with normal 
morphology: myofibrils with well defined organelles, 
sarcomeres (*), and intercalated disk between adjacents 
cardiomyocytes (arrow). Panels C, D, E and F: Electron 
micrographs of the cardiomyocytes in OB-SHR group. 
Myofilaments and Z-line disorganization of sarcomeres (®) 
and myofibrils loss () in C and D. Swelling mitochondria 
with disorganized or absence of cristae (¤) in E and F; 
T-tubules dilation () in F.
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increased	adiposity	was	derived	from	higher	calorie	intake	
and	feed	efficiency	of	OB-SHR	in	relation	to	C-SHR	group.	
The	nutritional	results	confirm	biometric	findings	of	other	
studies,	which	showed	that	high-fat	and	hypercaloric	inter-
ventions	promoted	obesity	in	SHR	[17,18].

In	association	with	nutritional	and	biometric	characterization,	
OB-SHR	exhibited	higher	levels	of	triacylglycerol	and	leptin	
compared	to	C-SHR.	Previous	studies	showed	that	increased	
adiposity	is	directly	associated	with	leptinemia	[34,35].	Taking	
into	accounting	that	leptin	promotes	lipolysis,	reducing	the	
uptake	of	TG	in	adipocytes	[35],	it	is	probable	that	hyper-
leptinemia	increased	serum	TG	levels	in	OB-SHR	as	com-
pared	to	the	C-SHR	group.	Importantly,	hypertriacylglycer-
olemia	also	could	be	associated	with	insulin	resistance	[35];	
insulin	stimulates	the	uptake	of	TG	in	adipocytes,	contrib-
uting	to	adipogenesis,	and	inhibits	lipolysis,	therefore	pre-
venting	the	increase	of	serum	triacylglycerols	[35].	In	this	
study,	 it	 is	probable	that	OB-SHR	presented	insulin	resis-
tance,	since	obesity	was	associated	with	reduced	glycemic	
tolerance	although	insulin	levels	were	not	modified.	This	
insulin	profile	could	be	derived	from	fasting	periods,	since	
rats	were	maintained	in	fasting	for	periods	of	12–15	hours.

Clinically,	elevated	anthropometric	indexes	have	been	as-
sociated	with	hypertriacylglycerolemia,	glycemic	disorders	
as	well	as	arterial	hypertension	in	obese	patients	[22,37].

Regarding	structural	cardiac	evaluation,	dietary-induced	obesi-
ty	promoted	cardiomyocyte	hypertrophy,	interstitial	remodel-
ing,	ultrastructural	alterations,	and	synthesis	b-MHC	isoforms.	
Several	bioactive	molecules	secreted	by	the	adipose	tissue,	
such	as	rennin-angiotensin-aldosterone	system,	endothelin,	
catecholamine,	and	inflammatory	cytokines	[34,35],	could	
be	responsible	for	increased	myocyte	size,	myosin	changes,	
and	interstitial	remodeling	in	obese	animals.	Furthermore,	
lipotoxicity	[38]	and	oxidative	stress	[39]	are	not	disregard-
ed	in	these	structural	alterations.	Excessive	accumulation	
of	lipids	within	non-adipose	tissue	increases	the	intracellu-
lar	pool	of	long-chain	fatty	acyl-CoA,	thereby	providing	fat-
ty	acid	substrates	for	non-oxidative	processes,	including	tri-
acylglycerol,	diacylglycerol,	and	ceramide	synthesis,	which	
can	cause	cardiomyocyte	hypertrophy,	apoptotic	cell	death,	
and	interstitial	fibrosis	[38,39].	On	the	other	hand,	oxida-
tive	stress	constituted	a	causative	mechanism	of	endotheli-
al	dysfunction	and	cardiac	remodeling	in	rabbits	kept	on	
cholesterol	atherogenic	diet	[40].	Since	our	dietary	model	
present	sucrose	supplements,	it	is	not	possible	discard	the	
sugar	as	cause	of	cardiac	remodeling;	previous	studies	docu-
mented	accentuated	myocardial	hypertrophy,	and	synthesis	
b-MHC	isoforms	in	conditions	of	pressure	overload	and	sug-
ar	support	[41,42].	Therefore,	an	important	limitation	of	the	
current	study	is	the	multifactorial	universe	of	causes	which	
could	be	associated	with	cardiac	remodeling	in	this	experi-
mental	model	of	obesity.

It	is	noteworthy	that	ultrastructural	abnormalities	constituted	
an	interesting	finding.	These	disturbances	were	indicated	by	
cardiomyocyte	and	organelle	degradation,	including	Z-line	
disorganization,	swelling,	severe	degradation	and	polymor-
phisms	of	mitochondria	with	disorganized	or	absence	of	cris-
tae,	and	lipid	droplets.	Disorganization	and	lack	of	myofibrils,	
myofilaments,	and	Z	discs,	and	disconnection	among	myo-
cytes	can	hamper	the	coordinated	transmission	of	muscular	

contraction	and	reduce	myocardial	performance	[43,44].	
Among	the	ultrastructural	alterations,	T-tubular	dilatation	
constitutes	an	instigating	result.	Some	authors	documented	
that	cardiomyocytes	present	increased	T-tubular	surface	to	
maintain	a	normal	surface-to-volume	relationship	and	me-
chanical	performance	during	remodeling	[45,46].	One	ben-
efit	of	increasing	myocyte	surface	is	to	enhance	ionic	diffu-
sion	capabilities,	mainly	Ca+2	handling,	activating	contractility	
of	reminiscent	sarcomeres	[46].	The	mechanisms	underly-
ing	the	expression	and	maintenance	of	the	T-tubules	are	not	
clear	[47].	The	ability	of	the	tubular	system	to	maintain	its	
remarkable	degree	of	structure	despite	the	forces	exerted	
during	the	normal	contractile	cycle	depends	on	the	integri-
ty	of	focal	adhesion	molecules,	membrane,	and	basal	lami-
na-associated	proteins	[47].	Eventual	injuries	of	these	struc-
tures	could	affect	T-tubular	morphology	with	alteration	in	
its	form.	Further	investigations	about	morphology	and	com-
position	of	T-tubules	may	clarify	the	causes	of	this	dilatation.

Associated	 to	ultrastructural	disorders,	up-regulation	of	
b-MHC	isoforms	configured	other	important	indicative	of	
cardiac	remodeling.	In	general,	this	change	in	MHC	iso-
forms	 is	associated	with	reduced	contractile	 shortening	
velocity	and	consequent	energetic	economy	to	myocardi-
al	performance	in	pathological	conditions	[1,3,19].	It	was	
demonstrated	that	b-MHC	isoforms	promote	higher	dura-
tion	of	displacement	and	force	transients	than	a-MHC	iso-
forms	[3,19].	In	current	study,	although	in vivo	contractile	
shortening	velocity	was	not	affected	by	modified	MHC	com-
position,	these	changes	coupled	with	the	increased	collagen	
deposition,	cardiac	hypertrophy	and	myocardial	ultrastruc-
tural	damage	configure	potential	mechanisms	of	diastolic	
dysfunction	of	restrictive	filling	pattern	[6,8,20],	confirmed	
from	reduced	A-wave,	and	IVRT	accompanied	by	increase	
of	E/A-waves	ratio	in	OB-SHR	group.	These	parameters	are	
influenced	by	disturbances	in	relaxation	and	complacence	
phases	[20].	On	other	hand,	the	lower	heart	rate	could	op-
timize	the	mitral	blood	inflow	during	the	passive	relaxation,	
reducing	the	values	of	A-wave,	and,	therefore,	enhancing	
the	E/A	ratio	[20].	Decreased	heart	rate	is	an	unexpected	
finding,	since	dietary	obesity	induces	sympathetic	nervous	
system	hyperactivity	in	the	SHR	[17],	causing	tachycardia.	
Other	studies	will	can	to	elucidate	the	causal	mechanisms	
related	to	these	results.

conclusions

In	conclusion,	conjugated	results	sustain	the	initial	hypoth-
esis	in	this	study;	diet-induced	obesity	promoted	additional	
cardiac	remodeling	in	essential	hypertension,	indicated	by	
cardiomyocyte	hypertrophy,	interstitial	fibrosis,	synthesis	of	
b-MHC	isoforms	and	ultrastructural	alterations,	with	occur-
rence	of	diastolic	dysfunction	of	restrictive	filling	pattern	in	
young	SHR.	The	possible	mechanisms	responsible	for	car-
diac	alterations	are	indefinite	and	further	studies	are	nec-
essary	to	elucidate	them.	These	results	suggest	that	nutri-
tional	and	behavioral	conducts	focused	in	feeding	and	life	
style	could	be	beneficial	in	treatment	of	the	obesity,	hyper-
tension	and	cardiovascular	diseases	in	humans.
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