Publicação: Conjuntos limite e bifurfações de campos de vetores suaves por partes no plano
Carregando...
Arquivos
Data
Autores
Orientador
Buzzi, Claudio Aguinaldo 

Coorientador
Pós-graduação
Matemática - IBILCE
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Estadual Paulista (Unesp)
Tipo
Tese de doutorado
Direito de acesso
Acesso aberto

Resumo
Resumo (português)
Este trabalho está relacionado com Teoria Qualitativa dos Sistemas Dinâmicos suaves por partes. Estudamos a existência de conjuntos limite, chamados ciclos canard, para esta classe de sistemas definidos no plano e analisamos quando ciclos limite de campos suaves convergem para estes. O conceito de Índice de Poincará foi generalizado para cmapos suaves por partes no plano. Seguindo o programa de Thpm-Smale, exibimos famílias a 3-parâmetros, bem como os respectivos diagramas de bifurcação, das singularidades planares denominadas Dobra-Sela e Dobra-Cúspide. Também aplicamos o Método Averaging de Primeira Ordem para quantificar os ciclos limite e ciclos canard de uma classe de campos lineares por partes no espaço n-dimensional.
Resumo (inglês)
This work is related to Qualitative Theory of non-smooth Dynamical Systems. We study the existence os limit sets, named canard cycles, for this class of planar systems. And we analyze when limit cycles of smooth vector fields converge to them. The concept of Poincaré Index was generalized for planar non-smooth systems. Following the Thom-Smale program we exhibit 3-parameter families, and its bifurcation diagrams, of the planar singularities called Fold-Saddle and Fold-Cusp. We apply the First Order Averaging Method to obtain an upper bound to the number of limit cycles and canard cycles for a special class of piecewise linear differential systems in the n-dimensional space.
Descrição
Palavras-chave
Sistemas dinâmicos diferenciais, Campos vetoriais, Teoria da bifurcação, Sistemas dinâmicos
Idioma
Português
Como citar
CARVALHO, Tiago de. Conjuntos limite e bifurfações de campos de vetores suaves por partes no plano. 2011. 128 f. Tese (doutorado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2011.