Birth of limit cycles bifurcating from a nonsmooth center
Carregando...
Arquivos
Fonte externa
Fonte externa
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Elsevier B.V.
Tipo
 Artigo 
Direito de acesso
Acesso restrito
Arquivos
Fonte externa
Fonte externa
Resumo
This paper is concerned with a codimension analysis of a two-fold singularity of piecewise smooth planar vector fields, when it behaves itself like a center of smooth vector fields (also called nondegenerate Sigma-center). We prove that any nondegenerate Sigma-center is Sigma-equivalent to a particular normal form Z(0). Given a positive integer number k we explicitly construct families of piecewise smooth vector fields emerging from Z(0) that have k hyperbolic limit cycles bifurcating from the nondegenerate Sigma-center of Z(0) (the same holds for k = infinity). Moreover, we also exhibit families of piecewise smooth vector fields of codimension k emerging from Z(0). As a consequence we prove that Z(0) has infinite codimension. (c) 2013 Elsevier Masson SAS. All rights reserved.
Descrição
Palavras-chave
Nonsmooth vector field, Bifurcation, Limit cycles, Centers
Idioma
 Inglês 
Citação
Journal De Mathematiques Pures Et Appliquees. Paris: Gauthier-villars/editions Elsevier, v. 102, n. 1, p. 36-47, 2014.


