A genetic algorithm/mathematical programming approach to solve a two-level soft drink production problem
Carregando...
Fonte externa
Fonte externa
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Elsevier B.V.
Tipo
Artigo
Direito de acesso
Acesso restrito
Fonte externa
Fonte externa
Resumo
This study applies a genetic algorithm embedded with mathematical programming techniques to solve a synchronized and integrated two-level lot sizing and scheduling problem motivated by a real-world problem that arises in soft drink production. The problem considers a production process compounded by raw material preparation/storage and soft drink bottling. The lot sizing and scheduling decisions should be made simultaneously for raw material preparation/storage in tanks and soft drink bottling in several production lines minimizing inventory, shortage and setup costs. The literature provides mixed-integer programming models for this problem, as well as solution methods based on evolutionary algorithms and relax-and-fix approaches. The method applied by this paper uses a new approach which combines a genetic algorithm (GA) with mathematical programming techniques. The GA deals with sequencing decisions for production lots, so that an exact method can solve a simplified linear programming model, responsible for lot sizing decisions. The computational results show that this evolutionary/mathematical programming approach outperforms the literature methods in terms of production costs and run times when applied to a set of real-world problem instances provided by a soft drink company. (C) 2014 Elsevier Ltd. All rights reserved.
Descrição
Palavras-chave
Genetic algorithms, Mathematical programming, Mathheuristics, Soft drink industry, Production planning, Lot sizing and scheduling
Idioma
Inglês
Citação
Computers & Operations Research. Oxford: Pergamon-elsevier Science Ltd, v. 48, p. 40-52, 2014.