Publicação:
Estimating the concentration of gold nanoparticles incorporated on natural rubber membranes using multi-level starlet optimal segmentation

Nenhuma Miniatura disponível

Data

2014-12-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Springer

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

This study consolidates multi-level starlet segmentation (MLSS) and multi-level starlet optimal segmentation (MLSOS) techniques for photomicrograph segmentation, based on starlet wavelet detail levels to separate areas of interest in an input image. Several segmentation levels can be obtained using MLSS; after that, Matthews correlation coefficient is used to choose an optimal segmentation level, giving rise to MLSOS. In this paper, MLSOS is employed to estimate the concentration of gold nanoparticles with diameter around 47 nm, reduced on natural rubber membranes. These samples were used for the construction of SERS/SERRS substrates and in the study of the influence of natural rubber membranes with incorporated gold nanoparticles on the physiology of Leishmania braziliensis. Precision, recall, and accuracy are used to evaluate the segmentation performance, and MLSOS presents an accuracy greater than 88 % for this application.

Descrição

Idioma

Inglês

Como citar

Journal Of Nanoparticle Research. Dordrecht: Springer, v. 16, n. 12, 13 p., 2014.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação