Publicação: A note on model uncertainty in linear regression
Carregando...
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Blackwell Publ Ltd
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
We consider model selection uncertainty in linear regression. We study theoretically and by simulation the approach of Buckland and co-workers, who proposed estimating a parameter common to all models under study by taking a weighted average over the models, using weights obtained from information criteria or the bootstrap. This approach is compared with the usual approach in which the 'best' model is used, and with Bayesian model averaging. The weighted predictor behaves similarly to model averaging, with generally more realistic mean-squared errors than the usual model-selection-based estimator.
Descrição
Palavras-chave
akaike information criterion, Bayes information criterion, bootstrap, model averaging, model uncertainty, prediction
Idioma
Inglês
Como citar
Journal Of The Royal Statistical Society Series D-the Statistician. Oxford: Blackwell Publ Ltd, v. 52, p. 165-177, 2003.