Publicação:
Local classification of singular hexagonal 3-webs with holomorphic Chern connection form and infinitesimal symmetries

Nenhuma Miniatura disponível

Data

2014

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

Implicit ODE, cubic in derivative, generically has no infinitesimal symmetries even at regular points with distinct roots. Cartan showed that at regular points, ODEs with hexagonal 3-web of solutions have symmetry algebras of the maximal possible dimension 3. At singular points such a web can lose all its symmetries. In this paper we study hexagonal 3-webs having at least one infinitesimal symmetry at singular points. In particular, we establish sufficient conditions for the existence of non-trivial symmetries and show that under natural assumptions such a symmetry is semi-simple, i.e. is a scaling in some coordinates. Using the obtained results, we provide a complete classification of hexagonal singular 3-web germs in the complex plane, satisfying the following two conditions: 1) the Chern connection form is holomorphic at the singular point, 2) the web admits at least one infinitesimal symmetry at this point. As a by-product, a classification of hexagonal weighted homogeneous 3-webs is obtained.

Descrição

Idioma

Inglês

Como citar

Geometriae Dedicata, v. 176, n. 1, p. 87-115, 2014.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação