Publicação:
A hybrid method for the probabilistic maximal covering location-allocation problem

Nenhuma Miniatura disponível

Data

2015-05-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Elsevier B.V.

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

This paper presents a hybrid algorithm that combines a metaheuristic and an exact method to solve the Probabilistic Maximal Covering Location-Allocation Problem. A linear programming formulation for the problem presents variables that can be partitioned into location and allocation decisions. This model is solved to optimality for small- and medium-size instances. To tackle larger instances, a flexible adaptive large neighborhood search heuristic was developed to obtain location solutions, whereas the allocation subproblems are solved to optimality. An improvement procedure based on an integer programming method is also applied. Extensive computational experiments on benchmark instances from the literature confirm the efficiency of the proposed method. The exact approach found new best solutions for 19 instances, proving the optimality for 18 of them. The hybrid method performed consistently, finding the best known solutions for 94.5% of the instances and 17 new best solutions (15 of them optimal) for a larger dataset in one-third of the time of a state-of-the-art solver. (C) 2014 Elsevier Ltd. All rights reserved.

Descrição

Idioma

Inglês

Como citar

Computers & Operations Research. Oxford: Pergamon-elsevier Science Ltd, v. 57, p. 51-59, 2015.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação