Root morphology and phosphorus uptake by potato cultivars grown under deficient and sufficient phosphorus supply
Carregando...
Arquivos
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Elsevier B.V.
Tipo
Artigo
Direito de acesso
Acesso aberto

Arquivos
Resumo
Information regarding the characteristics that affect P-uptake capacity may assist in the selection of more adapted potato (Solanum tuberosum L.) cultivars and more adequate fertilization management for each cultivar. This study evaluated the P-uptake capacity of potato cultivars (Agata, Asterix, Atlantic, Markies, and Mondial) grown under P-deficient (2 mg L-1) or P-sufficient (31 mg L-1) conditions in nutrient solution and related it to physiological parameters of uptake and morphological root characteristics. When the plants were 24 days old, they were subjected to a P-uptake kinetics study. The length and surface area of roots and the uptake kinetic parameters (I-max, K-m, and C-min) varied among potato cultivars. Phosphorus-deficient potato plants had an approximately 60% smaller root surface area and an increase of 86% in the I-max and net P influx compared with the plants in P-sufficient conditions. However, these modifications in P uptake kinetics can do not influence P acquisition in the soil environment due to very limited P diffusion. The amount of P accumulated by plants grown under P-deficient conditions was directly related to the root length and surface area; a greater root surface, as demonstrated by the Asterix cultivar, is the most important factor for achieving a greater P-uptake capacity. Under P-sufficient conditions, potato cultivars such as Markies and Mondial showed a balance between morphological root characteristics (medium/large length and surface area) and physiological parameters (medium/high I-max values and net P influx) and had a greater P-uptake capacity. However, under field conditions, the responses to P deficiency may be different due to the very limited diffusion of P in the soil and because plants can use additional mechanisms to improve their P uptake from the soil. (C) 2014 Elsevier B.V. All rights reserved.
Descrição
Palavras-chave
Solanum tuberosum, Uptake kinetics, Mineral nutrition, Root length, Root surface area, Phosphorus uptake efficiency
Idioma
Inglês
Citação
Scientia Horticulturae. Amsterdam: Elsevier Science Bv, v. 180, p. 190-198, 2014.


