Prostaglandin receptors (EP2 and EP4) and angiotensin receptor (AGTR2) mRNA expression increases in the oviducts of Nelore cows submitted to ovarian superstimulation

Nenhuma Miniatura disponível

Data

2014

Autores

Fontes, P. K.
Castilho, Anthony César de Souza [UNESP]
Razza, E. M.
Ereno, R. L.
Satrapa, R. A.
Barros, C. M.

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

Many peptides are responsible for the coordination of muscle contraction, secretion and ciliary beating of the oviduct epithelium to allow the transport of gametes and embryos, including vascular endothelial growth factors (VEGF), prostaglandins (PGs), endotelin-1 (ET-1) andangiotensinII(Ang II). The effect of reproductive biotechnologiesusedto improve embryo yield on oviduct gene expression is poorly understood. Thus, the aim of the present study was to evaluate the effect of ovarian superstimulation on the mRNA expression of the genes encoding the major peptides involved in oviduct contraction in bovine. Therefore, Nelore cows were submitted to P-36 (n = 5) or P-36/eCG (n = 5) ovarian superstimulatory protocols and a control group of cows was not submitted to any superstimulatory protocol (n = 5). The relative expression of VEGF (VEGF, Flk1, Flt1), Ang II (AGTR2, ACE1), ET1 (ET1, ECE1) and PG pathway members (PGES, EP2, EP4, COX1, COX2) was analyzed using real time RT-PCR in each of oviduct segment (infundibulum, ampulla and isthmus). All target genes were expressed in the three segments of the bovine oviduct; however, specific genes were regulated by ovarian superstimulation: EP2 and EP4 receptors mRNA was affected by P- 36/eCG protocol, in the ampulla and infundibulum, respectively; and AGTR2 mRNA was up-regulated by both the P-36/eCG and P-36 protocols in the isthmus. The upregulation of EP2, EP4 and AGTR2 expression in the superstimulated cows suggests a suitable effect of FSH and eCG on bovine oviduct physiology, coordinating the contraction in Nelore cows

Descrição

Palavras-chave

Como citar

Animal Reproduction Science, v. 151, n. 3/4, p. 112-118, 2014.