Logotipo do repositório
 

Publicação:
Classificação de anomalias e redução de falsos positivos em sistemas de detecção de intrusão baseados em rede utilizando métodos de agrupamento

Carregando...
Imagem de Miniatura

Orientador

Cansian, Adriano Mauro

Coorientador

Pós-graduação

Ciência da Computação - FC/FCT/IBILCE/IGCE 33004153073P2

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Dissertação de mestrado

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (inglês)

Network Intrusion Detection Systems (NIDS) are traditionally divided into two types according to the detection methods they employ, namely (i) misuse detection and (ii) anomaly detection. The main advantage in anomaly detection is its ability to detect new attacks. However, this methodology has some downsides. In anomaly detection, the analysis of the detected anomalies is expensive, since they often have no clear information about the malicious events they represent; also, it suffers with high amounts of false positives detected. In this context, this work presents a model for automated classification of anomalies detected by an anomaly based NIDS. Our main goal is the classification of the detected anomalies in well-known classes of attacks. By these means, we intend the clear identification of anomalies as well as the identification of false positives erroneously detected by NIDSs. Therefore, by addressing the key issues surrounding anomaly based detection, our main goal is to equip security analysts with best resources for their analyses.

Resumo (português)

Os Sistemas de Detecção de Intrusão baseados em rede (NIDS) são tradicionalmente divididos em dois tipos de acordo com os métodos de detecção que empregam, a saber: (i) detecção por abuso e (ii) detecção por anomalia. Aqueles que funcionam a partir da detecção de anomalias têm como principal vantagem a capacidade de detectar novos ataques, no entanto, é possível elencar algumas dificuldades com o uso desta metodologia. Na detecção por anomalia, a análise das anomalias detectadas pode se tornar dispendiosa, uma vez que estas geralmente não apresentam informações claras sobre os eventos maliciosos que representam; ainda, NIDSs que se utilizam desta metodologia sofrem com a detecção de altas taxas de falsos positivos. Neste contexto, este trabalho apresenta um modelo para a classificação automatizada das anomalias detectadas por um NIDS. O principal objetivo é a classificação das anomalias detectadas em classes conhecidas de ataques. Com essa classificação pretende-se, além da clara identificação das anomalias, a identificação dos falsos positivos detectados erroneamente pelos NIDSs. Portanto, ao abordar os principais problemas envolvendo a detecção por anomalias, espera-se equipar os analistas de segurança com melhores recursos para suas análises.

Descrição

Palavras-chave

Anomalies classification, Clustering methods, Network intrusion detection systems, False positives reduction, Classificação de anomalias, Métodos de agrupamento, Sistemas de detecção de intrusão baseados em rede, Redução de falsos positivos

Idioma

Português

Como citar

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação