Logotipo do repositório
 

Publicação:
Redes neuro-fuzzy adaptativas (ANFIS) aplicadas na inspeção visual de materiais ligno-celulósicos

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (inglês)

Wood visual classification have a direct influence on its final use as a product, so the adoption of this stage in sawmills is a way to add value to this product. This paper aim to evaluate the KNN method (K-Nearest Neighbor) for wood visual classification in three qualities for creating a low cost equipment for local sawmills. The results show that this algorithm is effective only for the classification of quality wood A.

Resumo (português)

A classificação visual da madeira têm influência direta no seu uso final como produto, por isso, a adoção desta classificação por serrarias é uma maneira de agregar valor a este produto. Este trabalho têm como objetivo avaliar o método KNN (K-Nearest Neighbor) para classificação visual da madeira em três qualidades para criação de um equipamento de baixo custo para as serrarias locais. Os resultados mostram que este algoritmo foi eficaz apenas na classificação das madeiras de qualidade A.

Descrição

Palavras-chave

KNN, Quality, Wood, KNN, Qualidade, Madeira

Idioma

Português

Como citar

8º Congresso de extensão universitária da UNESP, p. 1-4, 2015.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação