Stretched-exponential behavior and random walks on diluted hypercubic lattices
Carregando...
Fonte externa
Fonte externa
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Amer Physical Soc
Tipo
Artigo
Direito de acesso
Acesso aberto

Fonte externa
Fonte externa
Resumo
Diffusion on a diluted hypercube has been proposed as a model for glassy relaxation and is an example of the more general class of stochastic processes on graphs. In this article we determine numerically through large-scale simulations the eigenvalue spectra for this stochastic process and calculate explicitly the time evolution for the autocorrelation function and for the return probability, all at criticality, with hypercube dimensions N up to N = 28. We show that at long times both relaxation functions can be described by stretched exponentials with exponent 1/3 and a characteristic relaxation time which grows exponentially with dimension N. The numerical eigenvalue spectra are consistent with analytic predictions for a generic sparse network model.
Descrição
Palavras-chave
Idioma
Inglês
Citação
Physical Review E. College Pk: Amer Physical Soc, v. 84, n. 4, p. 6, 2011.