Publicação: Structure of 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase from Pseudomonas putida
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Blackwell Munksgaard
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
2-Keto-3-deoxy-6-phosphogluconate (KDPG) aldolase from Pseudomonas putida is a key enzyme in the Entner-Doudoroff pathway which catalyses the cleavage of KDPG via a class I Schiff-base mechanism. The crystal structure of this enzyme has been refined to a crystallographic residual R = 17.1% (R-free = 21.4%). The N-terminal helix caps one side of the torus of the (betaalpha)(8)-barrel and the active site is located on the opposite, carboxylic side of the barrel. The Schiff-base-forming Lys145 is coordinated by a sulfate (or phosphate) ion and two solvent water molecules. The interactions that stabilize the trimer are predominantly hydrophobic, with the exception of the cyclically permuted bonds formed between Glu132 OE1 of one molecule and Thr129 OG1 of a symmetry-equivalent molecule. Except for the N-terminal helix, the structure of KDPG aldolase from P. putida closely resembles the structure of the homologous enzyme from Escherichia coli.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Acta Crystallographica Section D-biological Crystallography. Copenhagen: Blackwell Munksgaard, v. 59, p. 1454-1458, 2003.