An Extension of Craig's Family of Lattices
Carregando...
Arquivos
Fonte externa
Fonte externa
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Canadian Mathematical Soc
Tipo
Artigo
Direito de acesso
Acesso restrito
Arquivos
Fonte externa
Fonte externa
Resumo
Let p be a prime, and let zeta(p) be a primitive p-th root of unity. The lattices in Craig's family are (p - 1)-dimensional and are geometrical representations of the integral Z[zeta(p)]-ideals < 1 - zeta(p)>(i), where i is a positive integer. This lattice construction technique is a powerful one. Indeed, in dimensions p - 1 where 149 <= p <= 3001, Craig's lattices are the densest packings known. Motivated by this, we construct (p - 1)(q - 1)-dimensional lattices from the integral Z[zeta(pq)]-ideals < 1 - zeta(p)>(i) < 1 - zeta(q)>(j), where p and q are distinct primes and i and fare positive integers. In terms of sphere-packing density, the new lattices and those in Craig's family have the same asymptotic behavior. In conclusion, Craig's family is greatly extended while preserving its sphere-packing properties.
Descrição
Palavras-chave
geometry of numbers, lattice packing, Craig's lattices, Quadratic form, Cyclotomic fields
Idioma
Inglês
Citação
Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques. Ottawa: Canadian Mathematical Soc, v. 54, n. 4, p. 645-653, 2011.


